Articles | Volume 14, issue 10
https://doi.org/10.5194/gmd-14-5977-2021
https://doi.org/10.5194/gmd-14-5977-2021
Development and technical paper
 | 
06 Oct 2021
Development and technical paper |  | 06 Oct 2021

Grid-stretching capability for the GEOS-Chem 13.0.0 atmospheric chemistry model

Liam Bindle, Randall V. Martin, Matthew J. Cooper, Elizabeth W. Lundgren, Sebastian D. Eastham, Benjamin M. Auer, Thomas L. Clune, Hongjian Weng, Jintai Lin, Lee T. Murray, Jun Meng, Christoph A. Keller, William M. Putman, Steven Pawson, and Daniel J. Jacob

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Liam Bindle on behalf of the Authors (28 Jun 2021)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (23 Aug 2021) by Fiona O'Connor
RR by Anonymous Referee #2 (26 Aug 2021)
ED: Publish as is (26 Aug 2021) by Fiona O'Connor
AR by Liam Bindle on behalf of the Authors (06 Sep 2021)
Download
Short summary
Atmospheric chemistry models like GEOS-Chem are versatile tools widely used in air pollution and climate studies. The simulations used in such studies can be very computationally demanding, and thus it is useful if the model can simulate a specific geographic region at a higher resolution than the rest of the globe. Here, we implement, test, and demonstrate a new variable-resolution capability in GEOS-Chem that is suitable for simulations conducted on supercomputers.