Articles | Volume 14, issue 10
https://doi.org/10.5194/gmd-14-5927-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-5927-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Performance of the Adriatic Sea and Coast (AdriSC) climate component – a COAWST V3.3-based one-way coupled atmosphere–ocean modelling suite: ocean results
Physical Oceanography Laboratory, Institute of Oceanography and Fisheries, Šetalište I.
Meštrovića 63, 21000 Split, Croatia
Cléa Denamiel
Physical Oceanography Laboratory, Institute of Oceanography and Fisheries, Šetalište I.
Meštrovića 63, 21000 Split, Croatia
Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
Ivica Vilibić
Physical Oceanography Laboratory, Institute of Oceanography and Fisheries, Šetalište I.
Meštrovića 63, 21000 Split, Croatia
Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
Related authors
Davide Bonaldo, Sandro Carniel, Renato R. Colucci, Cléa Denamiel, Petra Pranić, Fabio Raicich, Antonio Ricchi, Lorenzo Sangelantoni, Ivica Vilibić, and Maria Letizia Vitelletti
Ocean Sci., 21, 1003–1031, https://doi.org/10.5194/os-21-1003-2025, https://doi.org/10.5194/os-21-1003-2025, 2025
Short summary
Short summary
We present a high-resolution modelling effort to investigate the possible end-of-century evolution of the main physical processes in the Adriatic Sea in a severe climate change scenario, with an ensemble approach (i.e. use of multiple simulations) allowing us to control the uncertainty of the predictions. Our model exhibits a satisfactory capability to reproduce the recent past and provides a basis for a set of multidisciplinary studies in this area over a multi-decadal horizon.
Cléa Denamiel, Iva Tojčić, and Petra Pranić
Ocean Sci., 21, 37–62, https://doi.org/10.5194/os-21-37-2025, https://doi.org/10.5194/os-21-37-2025, 2025
Short summary
Short summary
We use a high-resolution atmosphere–ocean model to project Adriatic Dense Water dynamics under extreme warming. We find that a 15 % increase in sea surface evaporation will offset a 25 % decrease in extreme windstorms. As a result, future dense water will form at the same rate as today but will be too light to reach the Adriatic's deepest parts, making deep-water presence reliant on exchanges with the Ionian Sea.
Petra Pranić, Cléa Denamiel, Ivica Janeković, and Ivica Vilibić
Ocean Sci., 19, 649–670, https://doi.org/10.5194/os-19-649-2023, https://doi.org/10.5194/os-19-649-2023, 2023
Short summary
Short summary
In this study, we analyse and compare the results of four different approaches in modelling bora-driven dense-water dynamics in the Adriatic. The study investigated the likely requirements for modelling the ocean circulation in the Adriatic and found that a 31-year run of a fine-resolution Adriatic climate model is able to outperform most aspects of the newest reanalysis product, a short-term hindcast and data-assimilated simulation, in reproducing the dense-water dynamics in the Adriatic Sea.
Cléa Denamiel, Petra Pranić, Damir Ivanković, Iva Tojčić, and Ivica Vilibić
Geosci. Model Dev., 14, 3995–4017, https://doi.org/10.5194/gmd-14-3995-2021, https://doi.org/10.5194/gmd-14-3995-2021, 2021
Short summary
Short summary
The atmospheric results of the Adriatic Sea and Coast (AdriSC) climate simulation (1987–2017) are evaluated against available observational datasets in the Adriatic region. Generally, the AdriSC model performs better than regional climate models that have resolutions that are 4 times more coarse, except concerning summer temperatures, which are systematically underestimated. High-resolution climate models may thus provide new insights about the local impacts of global warming in the Adriatic.
Cléa Denamiel
Ocean Sci., 21, 1909–1931, https://doi.org/10.5194/os-21-1909-2025, https://doi.org/10.5194/os-21-1909-2025, 2025
Short summary
Short summary
This study advances our understanding of Adriatic marine heatwaves (MHWs) under historical and far-future extreme warming scenarios, emphasizing the critical role of the Po River plume and Adriatic natural variability in shaping MHW dynamics. While the pseudo-global-warming (PGW) approach used in the study provides valuable insights, future research should adopt more comprehensive modelling frameworks to better capture the complexities of future climate change and its impacts on MHWs.
Elena Terzić, Clara Gardiol, and Ivica Vilibić
Ocean Sci., 21, 1441–1459, https://doi.org/10.5194/os-21-1441-2025, https://doi.org/10.5194/os-21-1441-2025, 2025
Short summary
Short summary
Vertical salinity profiles with their highest values at the surface layers – surface saline lakes – have been known to occur in the eastern Mediterranean, where strong evaporation, warm summers, and low winds all contribute to an increase in surface salinity. Our analysis of Argo data from the past 2 decades showed that saline lakes also occur in other regions across the Mediterranean Sea. This poses the question of whether such changes indicate a salinification of the entire basin due to climate change.
Davide Bonaldo, Sandro Carniel, Renato R. Colucci, Cléa Denamiel, Petra Pranić, Fabio Raicich, Antonio Ricchi, Lorenzo Sangelantoni, Ivica Vilibić, and Maria Letizia Vitelletti
Ocean Sci., 21, 1003–1031, https://doi.org/10.5194/os-21-1003-2025, https://doi.org/10.5194/os-21-1003-2025, 2025
Short summary
Short summary
We present a high-resolution modelling effort to investigate the possible end-of-century evolution of the main physical processes in the Adriatic Sea in a severe climate change scenario, with an ensemble approach (i.e. use of multiple simulations) allowing us to control the uncertainty of the predictions. Our model exhibits a satisfactory capability to reproduce the recent past and provides a basis for a set of multidisciplinary studies in this area over a multi-decadal horizon.
Cléa Denamiel, Iva Tojčić, and Petra Pranić
Ocean Sci., 21, 37–62, https://doi.org/10.5194/os-21-37-2025, https://doi.org/10.5194/os-21-37-2025, 2025
Short summary
Short summary
We use a high-resolution atmosphere–ocean model to project Adriatic Dense Water dynamics under extreme warming. We find that a 15 % increase in sea surface evaporation will offset a 25 % decrease in extreme windstorms. As a result, future dense water will form at the same rate as today but will be too light to reach the Adriatic's deepest parts, making deep-water presence reliant on exchanges with the Ionian Sea.
Petra Pranić, Cléa Denamiel, Ivica Janeković, and Ivica Vilibić
Ocean Sci., 19, 649–670, https://doi.org/10.5194/os-19-649-2023, https://doi.org/10.5194/os-19-649-2023, 2023
Short summary
Short summary
In this study, we analyse and compare the results of four different approaches in modelling bora-driven dense-water dynamics in the Adriatic. The study investigated the likely requirements for modelling the ocean circulation in the Adriatic and found that a 31-year run of a fine-resolution Adriatic climate model is able to outperform most aspects of the newest reanalysis product, a short-term hindcast and data-assimilated simulation, in reproducing the dense-water dynamics in the Adriatic Sea.
Cléa Denamiel and Ivica Vilibić
EGUsphere, https://doi.org/10.5194/egusphere-2023-913, https://doi.org/10.5194/egusphere-2023-913, 2023
Preprint archived
Short summary
Short summary
We present a new methodology using coupled atmosphere-ocean-wave models and demonstrate the feasibility to provide meter scale assessments of the impact of climate change on storm surge hazards. We show that sea level variations and distributions can be derived at the climate scale in the Adriatic Sea small lagoons and bays. We expect that the newly developed methodology could lead to more targeted adaptation strategies in regions of the world vulnerable to atmospherically driven extreme events.
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Petra Zemunik, Jadranka Šepić, Havu Pellikka, Leon Ćatipović, and Ivica Vilibić
Earth Syst. Sci. Data, 13, 4121–4132, https://doi.org/10.5194/essd-13-4121-2021, https://doi.org/10.5194/essd-13-4121-2021, 2021
Short summary
Short summary
A new global dataset – MISELA (Minute Sea-Level Analysis) – has been developed and contains quality-checked sea-level records from 331 tide gauges worldwide for a period from 2004 to 2019. The dataset is appropriate for research on atmospherically induced high-frequency sea-level oscillations. Research on these oscillations is important, as they can, like all sea-level extremes, seriously threaten coastal zone infrastructure and populations.
Iva Tojčić, Cléa Denamiel, and Ivica Vilibić
Nat. Hazards Earth Syst. Sci., 21, 2427–2446, https://doi.org/10.5194/nhess-21-2427-2021, https://doi.org/10.5194/nhess-21-2427-2021, 2021
Short summary
Short summary
This study quantifies the performance of the Croatian meteotsunami early warning system (CMeEWS) composed of a network of air pressure and sea level observations developed in order to help coastal communities prepare for extreme events. The system would have triggered the warnings for most of the observed events but also set off some false alarms if it was operational during the multi-meteotsunami event of 11–19 May 2020 in the eastern Adriatic. Further development of the system is planned.
Cléa Denamiel, Petra Pranić, Damir Ivanković, Iva Tojčić, and Ivica Vilibić
Geosci. Model Dev., 14, 3995–4017, https://doi.org/10.5194/gmd-14-3995-2021, https://doi.org/10.5194/gmd-14-3995-2021, 2021
Short summary
Short summary
The atmospheric results of the Adriatic Sea and Coast (AdriSC) climate simulation (1987–2017) are evaluated against available observational datasets in the Adriatic region. Generally, the AdriSC model performs better than regional climate models that have resolutions that are 4 times more coarse, except concerning summer temperatures, which are systematically underestimated. High-resolution climate models may thus provide new insights about the local impacts of global warming in the Adriatic.
Cited articles
Akhtar, N., Brauch, J., and Ahrens, B.: Climate modeling over the
Mediterranean Sea: impact of resolution and ocean coupling, Clim. Dynam., 51,
933–948, https://doi.org/10.1007/s00382-017-3570-8, 2018.
Amante, C. and Eakins, B. W.: ETOPO1 1 arc-minute global relief model:
procedures, data sources and analysis, in: NOAA Technical Memorandum NESDIS,
NGDC-24, NOAA, Boulder, Colorado, 2009.
Artegiani, A., Bregant, D., Paschini, E., Pinardi, N., Raicich, F., and
Russo, A.: The Adriatic Sea general circulation, part I: air-sea
interactions and water mass structure, J. Phys. Oceanogr., 27, 1492–1514,
https://doi.org/10.1175/1520-0485(1997)027<1492:TASGCP>2.0.CO;2,
1997.
Batistić, M., Garić, R., and Molinero, J. C.: Interannual variations
in Adriatic Sea zooplankton mirror shifts in circulation regimes in the
Ionian Sea, Clim. Res., 61, 231–240, https://doi.org/10.3354/cr01248, 2014.
Beg Paklar, G., Isakov, V., Koračin, D., Kourafalou, V., and Orlić, M.: A case study of bora-driven flow and density changes on the Adriatic shelf (January 1987), Cont. Shelf Res., 21, 1751–1783,
https://doi.org/10.1016/S0278-4343(01)00029-2, 2001.
Benetazzo, A., Bergamasco, A., Bonaldo, D., Falcieri, F. M., Sclavo, M.,
Langone, L., and Carniel, S.: Response of the Adriatic Sea to an intense
cold air outbreak: Dense water dynamics and wave-induced transport, Prog.
Oceanogr., 128, 115–138, https://doi.org/10.1016/j.pocean.2014.08.015, 2014.
Bergamasco, A., Oguz, T., and Malanotte-Rizzoli, P.: Modeling dense water
mass formation and winter circulation in the northern and central Adriatic
Sea, J. Marine Syst., 20, 279–300,
https://doi.org/10.1016/S0924-7963(98)00087-6, 1999.
Boldrin, A., Carniel, S., Giani, M., Marini, M., Bernardi Aubry, F., Campanelli,
A., Grilli, F., and Russo, A.: Effects of bora wind on physical and
biogeochemical properties of stratified waters in the northern Adriatic, J.
Geophys. Res.-Oceans, 114, C08S92, https://doi.org/10.1029/2008JC004837, 2009.
Burrage, D. M., Book, J. W., and Martin, P. J.: Eddies and filaments of the
Western Adriatic Current near Cape Gargano: Analysis and prediction, J. Marine Syst., 78, S205–S226, https://doi.org/10.1016/j.jmarsys.2009.01.024, 2009.
Carniel, S., Benetazzo, A., Bonaldo, D., Falcieri, F. M., Miglietta, M. M.,
Ricchi, A., and Sclavo, M.: Scratching beneath the surface while coupling
atmosphere, ocean and waves: Analysis of a dense water formation event,
Ocean Model., 101, 101–112, https://doi.org/10.1016/j.ocemod.2016.03.007, 2016.
Cavaleri, L. and Bertotti, L.: In search of the correct wind and wave fields
in a minor basin, Mon. Weather Rev., 125, 1964–1975,
https://doi.org/10.1175/1520-0493(1997)125<1964:ISOTCW>2.0.CO;2,
1997.
Cavaleri, L., Bertotti, L., Buizza, R., Buzzi, A., Masato, V., Umgiesser,
G., and Zampieri, M.: Predictability of extreme meteo-oceanographic events
in the Adriatic Sea, Q. J. R. Meteorol. Soc., 136, 400–413,
https://doi.org/10.1002/qj.567, 2010.
Cavaleri, L., Abdalla, S., Benetazzo, A., Bertotti, L., Bidlot, J-R,
Breivik, Ø., Carniel, S., Jensen, R. E., Portilla-Yandun, Rogers, W. E.,
Roland, A., Sanchez-Arcilla, A., Smith, J. M., Staneva, J., Toledo, Y., van
Vledder, G. P., and van der Westhuysen, A. J.: Wave modelling in coastal and
inner seas, Prog. Oceanogr., 167, 164–233,
https://doi.org/10.1016/j.pocean.2018.03.010, 2018.
Chapman, D. C.: Numerical treatment of cross-shelf open boundaries in a
barotropic coastal ocean model, J. Phys. Oceanogr., 15, 1060–1075,
https://doi.org/10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2,
1985.
Cushman-Roisin, B. and Naimie, C. E.: A 3d finite-element model of the
Adriatic tides, J. Mar. Syst., 37, 279–297, https://doi.org/10.1016/S0924-7963(02)00204-X, 2002.
Darmaraki, S., Somot, S., Sevault, F., Nabat, P., Cabos Narvaez, W. D.,
Cavicchia, L., Djurdjevic, V., Li, L., Sannino, G., and Sein, D. V.: Future
evolution of Marine Heatwaves in the Mediterranean Sea, Clim. Dynam., 53,
1371–1392, https://doi.org/10.1007/s00382-019-04661-z, 2019.
Denamiel, C. L.: AdriSC Climate Model: Evaluation Run, OSF [code], https://doi.org/10.17605/OSF.IO/ZB3CM, 2021.
Denamiel, C., Šepić, J., Ivanković, D., and Vilibić, I.: The
Adriatic Sea and Coast modelling suite: Evaluation of the meteotsunami
forecast component, Ocean Model., 135, 71–93,
https://doi.org/10.1016/j.ocemod.2019.02.003, 2019.
Denamiel, C., Pranić, P., Quentin, F., Mihanović, H., and
Vilibić, I.: Pseudo-global warming projections of extreme wave storms in
complex coastal regions: the case of the Adriatic Sea, Clim. Dynam.,
55, 2483–2509, https://doi.org/10.1007/s00382-020-05397-x, 2020a.
Denamiel, C., Tojčić, I., and Vilibić, I.: Far future climate
(2060–2100) of the northern Adriatic air–sea heat transfers associated
with extreme bora events, Clim. Dynam., 55, 3043–3066,
https://doi.org/10.1007/s00382-020-05435-8, 2020b.
Denamiel, C., Tojčić, I., and Vilibić, I.: Balancing accuracy
and efficiency of atmospheric models in the northern Adriatic during severe
bora events, J. Geophys. Res.-Atmos., 126, e2020JD033516,
https://doi.org/10.1029/2020JD033516, 2021a.
Denamiel, C., Pranić, P., Ivanković, D., Tojčić, I., and Vilibić, I.: Performance of the Adriatic Sea and Coast (AdriSC) climate component – a COAWST V3.3-based coupled atmosphere–ocean modelling suite: atmospheric dataset, Geosci. Model Dev., 14, 3995–4017, https://doi.org/10.5194/gmd-14-3995-2021, 2021b.
Di Luca, A., Flaounas, E., Drobinski, P., and Lebeaupin-Brossier, C.: The
atmospheric component of the Mediterranean Sea water budget in a WRF
multi-physics ensemble and observations, Clim. Dynam., 43,
2349–2375, https://doi.org/10.1007/s00382-014-2058-z, 2014.
Dunić, N., Vilibić, I., Šepić, J., Mihanović, H.,
Sevault, F., Somot, S., Waldman, R., Nabat, P., Arsouze, T., Pennel, R.,
Jordà, G., and Precali, R.: Performance of multi-decadal ocean
simulations in the Adriatic Sea, Ocean Model., 134, 84–109,
https://doi.org/10.1016/j.ocemod.2019.01.006, 2019.
Dutour Sikirić, M., Janeković, I., and Kuzmić, M.: A new
approach to bathymetry smoothing in sigma-coordinate ocean models, Ocean
Model., 29, 128–136, https://doi.org/10.1016/j.ocemod.2009.03.009, 2009.
Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse modeling of barotropic
ocean tides, J. Atmos. Ocean. Technol., 19, 183–204,
https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2,
2002.
Egbert, G. D., Bennett, A. F., and Foreman, M. G. G.: Topex/Poseidon tides
estimated using a global inverse model, J. Geophys. Res., 99, 24821–24852,
https://doi.org/10.1029/94JC01894, 1994.
Escudier, R., Clementi, E., Omar, M., Cipollone, A., Pistoia, J., Aydogdu,
A., Drudi, M., Grandi, A., Lyubartsev, V., Lecci, R., Cretí, S.,
Masina, S., Coppini, G., and Pinardi, N.: Mediterranean Sea Physical
Reanalysis (CMEMS MED-Currents) (Version 1), Copernicus
Monitoring Environment Marine Service (CMEMS) [data set],
https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1, 2020.
Flather, R. A.: A tidal model of the north-west European continental shelf,
Mem. Soc. R. Sci Liege, 6, 141–164, 1976.
Gačić, M., Civitarese, G., Miserocchi, S., Cardin, V., Crise, A.,
and Mauri, E.: The open-ocean convection in the Southern Adriatic: A
controlling mechanism of the spring phytoplankton bloom, Cont. Shelf Res.,
22, 1897–1908, https://doi.org/10.1016/S0278-4343(02)00050-X, 2002.
Gačić, M., Borzelli, G. E., Civitarese, G., Cardin, V., and Yari,
S.: Can internal processes sustain reversals of the ocean upper circulation?
The Ionian Sea example, Geophys. Res. Lett., 37, L09608,
https://doi.org/10.1029/2010GL043216, 2010.
Gačić, M., Civitarese, G., Eusebi Borzelli, G. L.,
Kovačević, V., Poulain, P.-M., Theocharis, A., Menna, M., Catucci,
A., and Zarokanellos, N.: On the relationship between the decadal
oscillations of the northern Ionian Sea and the salinity distributions in
the eastern Mediterranean, J. Geophys. Res., 116, C12002,
https://doi.org/10.1029/2011JC007280, 2011.
Gačić, M., Civitarese, G., Kovačević, V., Ursella, L., Bensi, M., Menna, M., Cardin, V., Poulain, P.-M., Cosoli, S., Notarstefano, G., and Pizzi, C.: Extreme winter 2012 in the Adriatic: an example of climatic effect on the BiOS rhythm, Ocean Sci., 10, 513–522, https://doi.org/10.5194/os-10-513-2014, 2014.
Hersbach, H., de Rosnay, P., Bell, B., Schepers, D., Simmons, A., Soci, C.,
Abdalla, S., Alonso-Balmaseda, M., Balsamo, G., Bechtold, P., Berrisford,
P., Bidlot, J.-R., de Boisséson, E., Bonavita, M., Browne, P., Buizza,
R., Dahlgren, P., Dee, D., Dragani, R., Diamantakis, M., Flemming, J.,
Forbes, R., Geer, A.J., Haiden, T., Hólm, E., Haimberger, L., Hogan, R.,
Horányi, A., Janiskova, M., Laloyaux, P., Lopez, P., Munoz-Sabater, J.,
Peubey, C., Radu, R., Richardson, D., Thépaut, J.-N., Vitart, F., Yang,
X., Zsótér, E., and Zuo, H.: Operational global reanalysis:
Progress, future directions and synergies with NWP, ECMWF ERA Report Series No. 27, https://doi.org/10.21957/tkic6g3wm, 2018.
Horak, J., Hofer, M., Gutmann, E., Gohm, A., and Rotach, M. W.: A process-based evaluation of the Intermediate Complexity Atmospheric Research Model (ICAR) 1.0.1, Geosci. Model Dev., 14, 1657–1680, https://doi.org/10.5194/gmd-14-1657-2021, 2021.
Ivanković, D., Denamiel, C., and Jelavić, D.: Web visualization of
data from numerical models and real-time stations network in frame of
Adriatic Sea and Coast (AdriSC) Meteotsunami Forecast, OCEANS 2019 –
Marseille, France, 17-20 June 2019, 1–5, https://doi.org/10.1109/OCEANSE.2019.8867225, 2019.
Janeković, I. and Kuzmić, M.: Numerical simulation of the Adriatic Sea principal tidal constituents, Ann. Geophys., 23, 3207–3218, https://doi.org/10.5194/angeo-23-3207-2005, 2005.
Janeković, I., Mihanović, H., Vilibić, I., and Tudor, M.:
Extreme cooling and dense water formation estimates in open and coastal
regions of the Adriatic Sea during the winter of 2012, J. Geophys. Res.-Oceans, 119, 3200–3218, https://doi.org/10.1002/2014JC009865, 2014.
Janeković, I., Mihanović, H., Vilibić, I., Grčić, B.,
Ivatek-Šahdan, S., Tudor, M., and Djakovac, T.: Multi-platform 4D-Var
data assimilation for improving the Adriatic Sea dynamics, Ocean Model.,
146, 101538, https://doi.org/10.1016/j.ocemod.2019.101538, 2020.
Johnson, N. C., Krishnamurthy, L., Wittenberg, A. T., Xiang, B., Vecchi, G.
A., Kapnick, S. B., and Pascale, S.: The Impact of Sea Surface Temperature
Biases on North American Precipitation in a High-Resolution Climate
Model, J. Climate, 33, 2427–2447, https://doi.org/10.1175/JCLI-D-19-0417.1,
2020.
JPL MUR MEaSUREs Project: GHRSST Level 4 MUR Global Foundation Sea Surface
Temperature Analysis (v4.1), Ver. 4.1. PO.DAAC, CA, USA,
https://doi.org/10.5067/GHGMR-4FJ04, 2015.
Krasakopoulou, E., Souvermezoglou, E., Minas, H.J., and Scoullos, M: Organic
matter stoichiometry based on oxygen consumption—nutrients regeneration
during a stagnation period in Jabuka Pit (middle Adriatic Sea), Cont. Shelf
Res., 25, 127–142, https://doi.org/10.1016/j.csr.2004.07.026, 2005.
Larson, J., Jacob, R., and Ong, E.: The model coupling toolkit: a new
fortran90 toolkit for building multiphysics parallel coupled models,
Int. J. High Perform. Comput. Appl., 19, 277–292, https://doi.org/10.1177/1094342005056115, 2005.
L'Hévéder, B., Li, L., Sevault, F., and Somot, S.: Interannual
variability of deep convection in the Northwestern Mediterranean simulated
with a coupled AORCM, Clim. Dynam., 41,
937–960, https://doi.org/10.1007/s00382-012-1527-5, 2013.
Ličer, M., Smerkol, P., Fettich, A., Ravdas, M., Papapostolou, A., Mantziafou, A., Strajnar, B., Cedilnik, J., Jeromel, M., Jerman, J., Petan, S., Malačič, V., and Sofianos, S.: Modeling the ocean and atmosphere during an extreme bora event in northern Adriatic using one-way and two-way atmosphere–ocean coupling, Ocean Sci., 12, 71–86, https://doi.org/10.5194/os-12-71-2016, 2016.
Lipizer, M., Partescano, E., Rabitti, A., Giorgetti, A., and Crise, A.: Qualified temperature, salinity and dissolved oxygen climatologies in a changing Adriatic Sea, Ocean Sci., 10, 771–797, https://doi.org/10.5194/os-10-771-2014, 2014.
Liu, F., Mikolajewicz, U., and Six, K. D. : Drivers of the decadal variability of the North Ionian Gyre upper layer circulation during 1910–2010: a regional modelling study, Clim. Dynam., https://doi.org/10.1007/s00382-021-05714-y, 2021.
Ljubenkov, I.: Hydrodynamic modeling of stratified estuary: case study of
the Jadro River (Croatia), J. Hydrol. Hydromech., 63, 29–37,
https://doi.org/10.1515/johh-2015-0001, 2015.
Ludwig, W., Dumont, E., Meybeck, M., and Heussner, S.: River discharges of
water and nutrients to the Mediterranean Sea: major drivers for ecosystem
changes during past and future decades?, Prog. Oceanogr., 80, 199–217,
https://doi.org/10.1016/j.pocean.2009.02.001, 2009.
Malačič, V. and Petelin, B.: Climatic circulation in the Gulf of Trieste (northern Adriatic), J. Geophys. Res., 114, C07002, https://doi.org/10.1029/2008JC004904, 2009.
Manca, B. B., Kovačević, V., Gačić, M., and Viezzoli, D.:
Dense water formation in the Southern Adriatic Sea and spreading into the
Ionian Sea in the period 1997–1999, J. Mar. Syst., 33–34, 133–154,
https://doi.org/10.1016/S0924-7963(02)00056-8, 2002.
Mantziafou, A. and Lascaratos, A.: An eddy resolving numerical study of the
general circulation and deep-water formation in the Adriatic Sea, Deep-Sea
Res. I, 51, 251–292, https://doi.org/10.1016/j.dsr.2004.03.006, 2004.
Mantziafou, A. and Lascaratos, A.: Deep-water formation in the Adriatic Sea:
interannual simulations for the years 1979–1999, Deep-Sea Res. I, 55,
1403–1427, https://doi.org/10.1016/j.dsr.2008.06.005, 2008.
Marchesiello, P., McWilliams, J. C., and Shchepetkin, A.: Open boundary
conditions for long-term integration of regional oceanic models, Ocean
Model., 3, 1–20, https://doi.org/10.1016/S1463-5003(00)00013-5, 2001.
Martin, P. J., Book, J. W., Burrage, D. M., Rowley, C. D., and Tudor, M.:
Comparison of model-simulated and observed currents in the central Adriatic
during DART, J. Geophys. Res., 114, C01S05, https://doi.org/10.1029/2008JC004842, 2009.
May, P. W.: Climatological flux estimates in the Mediterranean Sea: Part 1.
Winds and wind stresses, NORDA Report 54, NSTL Station, Mississippi 39529, USA, 1982.
McKiver, W. J., Sannino, G., Braga, F., and Bellafiore, D.: Investigation of model capability in capturing vertical hydrodynamic coastal processes: a case study in the north Adriatic Sea, Ocean Sci., 12, 51–69, https://doi.org/10.5194/os-12-51-2016, 2016.
Mejia, J. F., Koračin, D., and Wilcox, E. M.: Effect of coupled global climate
models sea surface temperature biases on simulated climate of the western
United States, Int. J. Climatol., 38, 5386–5404, https://doi.org/10.1002/joc.5817,
2018.
Mihanović, H., Vilibić, I., Carniel, S., Tudor, M., Russo, A., Bergamasco, A., Bubić, N., Ljubešić, Z., Viličić, D., Boldrin, A., Malačič, V., Celio, M., Comici, C., and Raicich, F.: Exceptional dense water formation on the Adriatic shelf in the winter of 2012, Ocean Sci., 9, 561–572, https://doi.org/10.5194/os-9-561-2013, 2013.
Mihanović, H., Janeković, I., Vilibić, I., Bensi, M., and
Kovačević, V.: Modelling Interannual Changes in Dense Water
Formation on the Northern Adriatic Shelf, Pure Appl.
Geophys., 175, 4065–4081, https://doi.org/10.1007/s00024-018-1935-5, 2018.
National Centers for Environmental Information: Daily L4 Optimally
Interpolated SST (OISST) In situ and AVHRR Analysis, Ver. 2.0. PO.DAAC, CA,
USA, https://doi.org/10.5067/GHAAO-4BC02, 2016.
Oddo, P. and Guarnieri, A.: A study of the hydrographic conditions in the Adriatic Sea from numerical modelling and direct observations (2000–2008), Ocean Sci., 7, 549–567, https://doi.org/10.5194/os-7-549-2011, 2011.
Oddo, P., Pinardi, N., and Zavatarelli, M.: A numerical study of the
interannual variability of the Adriatic Sea (2000–2002), Sci. Total
Environ., 353, 39–56, https://doi.org/10.1016/j.scitotenv.2005.09.061, 2005.
Orlanski, I.: A simple boundary condition for unbounded hyperbolic flows, J.
Comput. Phys., 21, 251–269, https://doi.org/10.1016/0021-9991(76)90023-1, 1976.
Orlić, M., Dadić, V., Grbec, B., Leder, N., Marki, A., Matić,
F., Mihanović, H., Beg Paklar, G., Pasarić, M., Pasarić, Z., and
Vilibić, I.: Wintertime buoyancy forcing, changing seawater properties
and two different circulation systems produced in the Adriatic, J. Geophys.
Res., 112, C03S07, https://doi.org/10.1029/2005JC003271, 2006.
Pano, N. and Abdyli, B.: Maximum floods and their regionalization on the
Albanian hydrographic river network, in: International Conference on Flood
Estimation, 6–8 March 2002, CHR. Report II,17, Bern, Switzerland, 379–388, 2002.
Pano, N., Frasheri, A., and Avdyli, B.: The climatic change impact in water
potential processe on the Albanian hydrographic river network, in:
International Congress on Environmental Modelling and Software, 5–8 July 2010, Ottawa, Ontario, Canada, available at:
https://scholarsarchive.byu.edu/iemssconference/2010/all/266 (last access: 20 September 2021), 2010.
Parras-Berrocal, I. M., Vazquez, R., Cabos, W., Sein, D., Mañanes, R., Perez-Sanz, J., and Izquierdo, A.: The climate change signal in the Mediterranean Sea in a regionally coupled atmosphere–ocean model, Ocean Sci., 16, 743–765, https://doi.org/10.5194/os-16-743-2020, 2020.
Pinardi, N., Allen, I., Demirov, E., De Mey, P., Korres, G., Lascaratos, A., Le Traon, P.-Y., Maillard, C., Manzella, G., and Tziavos, C.: The Mediterranean ocean forecasting system: first phase of implementation (1998–2001), Ann. Geophys., 21, 3–20, https://doi.org/10.5194/angeo-21-3-2003, 2003.
Poli, P., Hersbach, H., Dee, D. P., Berrisford, P., Simmons, A. J., Vitart,
F., Laloyaux, P., Tan, D. G., Peubey, C., Thépaut, J. N., Trémolet,
Y., Hólm, E.V., Bonavita, M., Isaksen, L., and Fisher, M.: ERA-20C: An
atmospheric reanalysis of the twentieth century, J. Climate, 29,
4083–4097, https://doi.org/10.1175/JCLI-D-15-0556.1, 2016.
Pranić, P.: Evaluation of the AdriSC Climate Model: Ocean Part, OSF [data set], https://doi.org/10.17605/OSF.IO/W8F4J, 2021.
Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen,
K., Keller, M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet,
S., Schmidli, J., van Lipzig, N. P. M., and Leung, R.: A review on regional
convection-permitting climate modeling: Demonstrations, prospects and
challenges, Rev. Geophys., 53, 323–361, https://doi.org/10.1002/2014RG000475, 2015.
Pullen, J., Doyle, J., and Signell, R.: Two-way air–sea coupling: a study
of the Adriatic, Mon. Weather Rev., 134, 1465–1483, https://doi.org/10.1175/MWR3137.1,
2006.
Pullen, J., Doyle, J. D., Haack, T., Dorman, C., Signell, R. P., and Lee,
C. M.: Bora event variability and the role of air-sea feedback, J. Geophys.
Res., 112, C03S18, https://doi.org/10.1029/2006JC003726, 2007.
Raicich, F.: Notes on the flow rates of the Adriatic rivers, Technical
Report RF 02/94, CNR, Istituto sperimentale talassografico, Trieste,
Italy, 8 pp., 1994.
Raicich, F.: On the fresh water balance of the Adriatic Sea, J. Mar. Syst.,
9, 305–319, https://doi.org/10.1016/S0924-7963(96)00042-5, 1996.
Ricchi, A., Miglietta, M. M., Falco, P. P., Benetazzo, A., Bonaldo, D.,
Bergamasco, A., Sclavo, M., and Carniel, S.: On the use of a coupled
ocean–atmosphere–wave model during an extreme cold air outbreak over the
Adriatic Sea, Atmos. Res., 172–173, 48–65,
https://doi.org/10.1016/j.atmosres.2015.12.023, 2016.
Schär, C., Frei, C., Luthi, D., and Davies, H. C.: Surrogate
climate-change scenarios for regional climate models, Geophys. Res. Lett.,
23, 669–672, https://doi.org/10.1029/96GL00265, 1996.
Schär, C., Fuhrer, O., Arteaga, A., Ban, N., Charpilloz, C., Di
Girolamo, S., Hentgen, L., Hoefler, T., Lapillonne, X., Leutwyler, D.,
Osterried, K., Panosetti, D., Rüdisühli, S., Schlemmer, L.,
Schulthess, T. C., Sprenger, M., Ubbiali, S., and Wernli, H.:
Kilometer-Scale Climate Models: Prospects and Challenges, B. Am. Meteorol. Soc., 101, E567–E587, https://doi.org/10.1175/BAMS-D-18-0167.1, 2020.
Sevault, F., Somot, S., Alias, A., Dubois, C., Lebeaupin-Brossier, C.,
Nabat, P., Adloff, F., Déqué, M., and Decharme, B.: A fully coupled
Mediterranean regional climate system model: design and evaluation of the
ocean component for the 1980–2012 period, Tellus A, 66, 23967,
https://doi.org/10.3402/tellusa.v66.23967, 2014.
Shchepetkin, A. F. and McWilliams, J. C.: Correction and commentary for “ocean forecasting in terrain-following coordinates: formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al., J. Comput. Phys., 227, pp. 3595–3624, J. Comput. Phys., 228, 8985–9000, https://doi.org/10.1016/j.jcp.2009.09.002, 2009.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Powers, J. G.: A description of the advanced research WRF version 2, NCAR Technical Note, NCAR/TN-468+STR, https://doi.org/10.5065/D6DZ069T, 2005.
Smolarkiewicz, P. K. and Grabowski, W. W.: The multidimensional positive
definite advection transport algorithm: nonoscillatory option, J. Comput.
Phys., 86, 355–375, https://doi.org/10.1016/0021-9991(90)90105-A, 1990.
Somot, S., Sevault, F., and Déqué, M.: Transient climate change
scenario simulation of the Mediterranean Sea for the twenty-first century
using a high-resolution ocean circulation model, Clim. Dynam. 27, 851–879,
https://doi.org/10.1007/s00382-006-0167-z, 2006.
Somot, S., Ruti, P., Ahrens, B., Coppola, E., Jordà, G., Sannino, G.,
and Solmon, F.: Editorial for the Med-CORDEX special issue, Clim. Dynam., 51,
771–777, https://doi.org/10.1007/s00382-018-4325-x, 2018.
Supić, N. and Orlić, M.: Seasonal and interannual variability of the
northern Adriatic surface fluxes, J. Marine Syst. 20, 205–229,
https://doi.org/10.1016/S0924-7963(98)00083-9, 1999.
Taylor, K.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res, 106, 7183–7192, https://doi.org/10.1029/2000JD900719,
2001.
Theocharis, A., Krokos, G., Velaoras, D., and Korres, G.: An internal
mechanism driving the alternation of the Eastern Mediterranean dense/deep
water sources, in: The Mediterranean Sea: Temporal Variability
and Spatial Patterns, Geophysical Monograph Series, edited by: Eusebi Borzelli, G. L., Gačić M., Lionello, P., and Malanotte-Rizzoli, P., AGU, 113–137, https://doi.org/10.1002/9781118847572.ch8, 2014.
Tudor, M., Ivatek-Sahdan, S., Stanešć, A., Horvath, K., and
Bajić, A.: Forecasting weather in Croatia using ALADIN numerical weather
prediction model, in: Climate Change and Regional/Local Responses, edited by:
Zhang, Y. and Ray, P., InTech, Rijeka, Croatia, 59–88, 2013.
Umgiesser, G., Bajo, M., Ferrarin, C., Cucco, A., Lionello, P., Zanchettin, D., Papa, A., Tosoni, A., Ferla, M., Coraci, E., Morucci, S., Crosato, F., Bonometto, A., Valentini, A., Orlić, M., Haigh, I. D., Nielsen, J. W., Bertin, X., Fortunato, A. B., Pérez Gómez, B., Alvarez Fanjul, E., Paradis, D., Jourdan, D., Pasquet, A., Mourre, B., Tintoré, J., and Nicholls, R. J.: The prediction of floods in Venice: methods, models and uncertainty (review article), Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, 2021.
Umlauf, L. and Burchard, H.: A generic length-scale equation for geophysical
turbulence models, J. Mar. Res., 61, 235–265,
https://doi.org/10.1357/002224003322005087, 2003.
Vested, H. J., Berg, P., and Uhrenholdt, T.: Dense water formation in the
northern Adriatic, J. Mar. Syst., 18, 135–160,
https://doi.org/10.1016/S0924-7963(98)00009-8, 1998.
Vilibić, I. and Orlić, M.: Least squares tracer analysis of water
masses in the South Adriatic (1967–1990), Deep-Sea Res. I, 48, 2297–2330,
https://doi.org/10.1016/S0967-0637(01)00014-0, 2001.
Vilibić, I. and Orlić, M.: Adriatic water masses, their rates of
formation and transport through the Otranto Strait, Deep-Sea Res. I,
49, 1321–1340, https://doi.org/10.1016/S0967-0637(02)00028-6, 2002.
Vilibić, I. and Supić, N.: Dense water generation on a shelf: the
case of the Adriatic Sea, Ocean Dyn., 55, 403–415,
https://doi.org/10.1007/s10236-005-0030-5, 2005.
Vilibić, I., Šepić, and Proust, N.: Observational evidence of a
weakening of thermohaline circulation in the Adriatic Sea, Clim. Res., 55,
217–225, https://doi.org/10.3354/cr01128, 2013.
Vilibić, I., Mihanović, H., Janeković, I., and Šepić,
J.: Modelling the formation of dense water in the northern Adriatic:
sensitivity studies, Ocean Model., 101, 17–29,
https://doi.org/10.1016/j.ocemod.2016.03.001, 2016.
Vilibić, I., Mihanović, H., Janeković, I., Denamiel, C., Poulain, P.-M., Orlić, M., Dunić, N., Dadić, V., Pasarić, M., Muslim, S., Gerin, R., Matić, F., Šepić, J., Mauri, E., Kokkini, Z., Tudor, M., Kovač, Ž., and Džoić, T.: Wintertime dynamics in the coastal northeastern Adriatic Sea: the NAdEx 2015 experiment, Ocean Sci., 14, 237–258, https://doi.org/10.5194/os-14-237-2018, 2018.
Vilibić, I., Zemunik, P., Šepić, J., Dunić, N., Marzouk, O., Mihanović, H., Denamiel, C., Precali, R., and Djakovac, T.: Present climate trends and variability in thermohaline properties of the northern Adriatic shelf, Ocean Sci., 15, 1351–1362, https://doi.org/10.5194/os-15-1351-2019, 2019.
Vörösmarty, C., Fakers, B., and Tucker, B.: River discharge database, version 1.0 (RivDIS vLO), volumes 0 through 6, in: A contribution to IHP-V Theme 1, Technical Documents Series, Technical report, UNESCO, Paris, France, 1996.
Warner, J. C., Armstrong, B., He, R., and Zambon, J. B.: Development of a coupled ocean atmosphere-wave-sediment transport (COAWST) modeling system, Ocean Model, 35, 230–244, https://doi.org/10.1016/j.ocemod.2010.07.010, 2010.
Yang, B., Zhang, Y., Qian, Y., Song, F., Leung, L. R., Wu, P., Guo, Z., Lu, Y., and Huang, A.: Better monsoon precipitation in
coupled climate models due to bias compensation, npj Clim. Atmos.
Sci., 2, 43, https://doi.org/10.1038/s41612-019-0100-x, 2019.
Zavatarelli, M. and Pinardi, N.: The Adriatic Sea modelling system: a nested approach, Ann. Geophys., 21, 345–364, https://doi.org/10.5194/angeo-21-345-2003, 2003.
Zavatarelli, M., Pinardi, N., Kourafalou, V. H., and Maggiore, A.: Diagnostic
and prognostic model studies of the Adriatic Sea general circulation:
Seasonal variability, J. Geophys. Res., 107, 3004, https://doi.org/10.1029/2000JC000210,
2002.
Zlotnicki, V., Qu, Z., and Willis, J.: SEA_SURFACE_HEIGHT_ALT_GRIDS_L4_2SATS_5DAY_6THDEG_V_JPL1609, Ver. 1812, PO.DAAC [data set], CA, USA, https://doi.org/10.5067/SLREF-CDRV2, 2019.
Zore-Armanda, M.: Les masses d'eau de la mer Adriatique, Acta Adriat., 10,
5–88, 1963.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(25410 KB) - Full-text XML
- Corrigendum
-
Supplement
(1931 KB) - BibTeX
- EndNote
Short summary
The Adriatic Sea and Coast model was developed due to the need for higher-resolution climate models and longer-term simulations to capture coastal atmospheric and ocean processes at climate scales in the Adriatic Sea. The ocean results of a 31-year-long simulation were compared to the observational data. The evaluation revealed that the model is capable of reproducing the observed physical properties with good accuracy and can be further used to study the dynamics of the Adriatic–Ionian basin.
The Adriatic Sea and Coast model was developed due to the need for higher-resolution climate...