Articles | Volume 14, issue 10
https://doi.org/10.5194/gmd-14-5927-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-5927-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Performance of the Adriatic Sea and Coast (AdriSC) climate component – a COAWST V3.3-based one-way coupled atmosphere–ocean modelling suite: ocean results
Physical Oceanography Laboratory, Institute of Oceanography and Fisheries, Šetalište I.
Meštrovića 63, 21000 Split, Croatia
Cléa Denamiel
Physical Oceanography Laboratory, Institute of Oceanography and Fisheries, Šetalište I.
Meštrovića 63, 21000 Split, Croatia
Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
Ivica Vilibić
Physical Oceanography Laboratory, Institute of Oceanography and Fisheries, Šetalište I.
Meštrovića 63, 21000 Split, Croatia
Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
Related authors
Petra Pranić, Cléa Denamiel, Ivica Janeković, and Ivica Vilibić
Ocean Sci., 19, 649–670, https://doi.org/10.5194/os-19-649-2023, https://doi.org/10.5194/os-19-649-2023, 2023
Short summary
Short summary
In this study, we analyse and compare the results of four different approaches in modelling bora-driven dense-water dynamics in the Adriatic. The study investigated the likely requirements for modelling the ocean circulation in the Adriatic and found that a 31-year run of a fine-resolution Adriatic climate model is able to outperform most aspects of the newest reanalysis product, a short-term hindcast and data-assimilated simulation, in reproducing the dense-water dynamics in the Adriatic Sea.
Cléa Denamiel, Petra Pranić, Damir Ivanković, Iva Tojčić, and Ivica Vilibić
Geosci. Model Dev., 14, 3995–4017, https://doi.org/10.5194/gmd-14-3995-2021, https://doi.org/10.5194/gmd-14-3995-2021, 2021
Short summary
Short summary
The atmospheric results of the Adriatic Sea and Coast (AdriSC) climate simulation (1987–2017) are evaluated against available observational datasets in the Adriatic region. Generally, the AdriSC model performs better than regional climate models that have resolutions that are 4 times more coarse, except concerning summer temperatures, which are systematically underestimated. High-resolution climate models may thus provide new insights about the local impacts of global warming in the Adriatic.
Petra Pranić, Cléa Denamiel, Ivica Janeković, and Ivica Vilibić
Ocean Sci., 19, 649–670, https://doi.org/10.5194/os-19-649-2023, https://doi.org/10.5194/os-19-649-2023, 2023
Short summary
Short summary
In this study, we analyse and compare the results of four different approaches in modelling bora-driven dense-water dynamics in the Adriatic. The study investigated the likely requirements for modelling the ocean circulation in the Adriatic and found that a 31-year run of a fine-resolution Adriatic climate model is able to outperform most aspects of the newest reanalysis product, a short-term hindcast and data-assimilated simulation, in reproducing the dense-water dynamics in the Adriatic Sea.
Cléa Denamiel and Ivica Vilibić
EGUsphere, https://doi.org/10.5194/egusphere-2023-913, https://doi.org/10.5194/egusphere-2023-913, 2023
Short summary
Short summary
We present a new methodology using coupled atmosphere-ocean-wave models and demonstrate the feasibility to provide meter scale assessments of the impact of climate change on storm surge hazards. We show that sea level variations and distributions can be derived at the climate scale in the Adriatic Sea small lagoons and bays. We expect that the newly developed methodology could lead to more targeted adaptation strategies in regions of the world vulnerable to atmospherically driven extreme events.
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Petra Zemunik, Jadranka Šepić, Havu Pellikka, Leon Ćatipović, and Ivica Vilibić
Earth Syst. Sci. Data, 13, 4121–4132, https://doi.org/10.5194/essd-13-4121-2021, https://doi.org/10.5194/essd-13-4121-2021, 2021
Short summary
Short summary
A new global dataset – MISELA (Minute Sea-Level Analysis) – has been developed and contains quality-checked sea-level records from 331 tide gauges worldwide for a period from 2004 to 2019. The dataset is appropriate for research on atmospherically induced high-frequency sea-level oscillations. Research on these oscillations is important, as they can, like all sea-level extremes, seriously threaten coastal zone infrastructure and populations.
Iva Tojčić, Cléa Denamiel, and Ivica Vilibić
Nat. Hazards Earth Syst. Sci., 21, 2427–2446, https://doi.org/10.5194/nhess-21-2427-2021, https://doi.org/10.5194/nhess-21-2427-2021, 2021
Short summary
Short summary
This study quantifies the performance of the Croatian meteotsunami early warning system (CMeEWS) composed of a network of air pressure and sea level observations developed in order to help coastal communities prepare for extreme events. The system would have triggered the warnings for most of the observed events but also set off some false alarms if it was operational during the multi-meteotsunami event of 11–19 May 2020 in the eastern Adriatic. Further development of the system is planned.
Cléa Denamiel, Petra Pranić, Damir Ivanković, Iva Tojčić, and Ivica Vilibić
Geosci. Model Dev., 14, 3995–4017, https://doi.org/10.5194/gmd-14-3995-2021, https://doi.org/10.5194/gmd-14-3995-2021, 2021
Short summary
Short summary
The atmospheric results of the Adriatic Sea and Coast (AdriSC) climate simulation (1987–2017) are evaluated against available observational datasets in the Adriatic region. Generally, the AdriSC model performs better than regional climate models that have resolutions that are 4 times more coarse, except concerning summer temperatures, which are systematically underestimated. High-resolution climate models may thus provide new insights about the local impacts of global warming in the Adriatic.
Ivica Vilibić, Petra Zemunik, Jadranka Šepić, Natalija Dunić, Oussama Marzouk, Hrvoje Mihanović, Clea Denamiel, Robert Precali, and Tamara Djakovac
Ocean Sci., 15, 1351–1362, https://doi.org/10.5194/os-15-1351-2019, https://doi.org/10.5194/os-15-1351-2019, 2019
Ivica Vilibić, Hrvoje Mihanović, Ivica Janeković, Cléa Denamiel, Pierre-Marie Poulain, Mirko Orlić, Natalija Dunić, Vlado Dadić, Mira Pasarić, Stipe Muslim, Riccardo Gerin, Frano Matić, Jadranka Šepić, Elena Mauri, Zoi Kokkini, Martina Tudor, Žarko Kovač, and Tomislav Džoić
Ocean Sci., 14, 237–258, https://doi.org/10.5194/os-14-237-2018, https://doi.org/10.5194/os-14-237-2018, 2018
H. Mihanović, I. Vilibić, S. Carniel, M. Tudor, A. Russo, A. Bergamasco, N. Bubić, Z. Ljubešić, D. Viličić, A. Boldrin, V. Malačič, M. Celio, C. Comici, and F. Raicich
Ocean Sci., 9, 561–572, https://doi.org/10.5194/os-9-561-2013, https://doi.org/10.5194/os-9-561-2013, 2013
S. Pasquet, I. Vilibić, and J. Šepić
Nat. Hazards Earth Syst. Sci., 13, 473–482, https://doi.org/10.5194/nhess-13-473-2013, https://doi.org/10.5194/nhess-13-473-2013, 2013
Related subject area
Climate and Earth system modeling
Hydrological modelling on atmospheric grids: using graphs of sub-grid elements to transport energy and water
The sea level simulator v1.0: a model for integration of mean sea level change and sea level extremes into a joint probabilistic framework
Structural k-means (S k-means) and clustering uncertainty evaluation framework (CUEF) for mining climate data
The emergence of the Gulf Stream and interior western boundary as key regions to constrain the future North Atlantic carbon uptake
Evaluating wind profiles in a numerical weather prediction model with Doppler lidar
Evaluation of bias correction methods for a multivariate drought index: case study of the Upper Jhelum Basin
The impact of lateral boundary forcing in the CORDEX-Africa ensemble over southern Africa
Effects of complex terrain on the shortwave radiative balance: a sub-grid-scale parameterization for the GFDL Earth System Model version 4.1
Understanding AMOC stability: the North Atlantic Hosing Model Intercomparison Project
Assessing methods for representing soil heterogeneity through a flexible approach within the Joint UK Land Environment Simulator (JULES) at version 3.4.1
Nudging allows direct evaluation of coupled climate models with in situ observations: a case study from the MOSAiC expedition
Importance of ice nucleation and precipitation on climate with the Parameterization of Unified Microphysics Across Scales version 1 (PUMASv1)
UKESM1.1: development and evaluation of an updated configuration of the UK Earth System Model
Porting the WAVEWATCH III (v6.07) wave action source terms to GPU
Yeti 1.0: a generalized framework for constructing bottom-up emission inventories from traffic sources at road-link resolutions
Analysis of systematic biases in tropospheric hydrostatic delay models and construction of a correction model
A new precipitation emulator (PREMU v1.0) for lower-complexity models
Simulating marine neodymium isotope distributions using Nd v1.0 coupled to the ocean component of the FAMOUS–MOSES1 climate model: sensitivities to reversible scavenging efficiency and benthic source distributions
CMIP6 simulations with the compact Earth system model OSCAR v3.1
Application of a satellite-retrieved sheltering parameterization (v1.0) for dust event simulation with WRF-Chem v4.1
Various ways of using Empirical Orthogonal Functions for Climate Model evaluation
The pseudo-global-warming (PGW) approach: methodology, software package PGW4ERA5 v1.1, validation, and sensitivity analyses
AttentionFire_v1.0: interpretable machine learning fire model for burned-area predictions over tropics
Cell tracking of convective rainfall: sensitivity of climate-change signal to tracking algorithm and cell definition (Cell-TAO v1.0)
ICON-Sapphire: simulating the components of the Earth system and their interactions at kilometer and subkilometer scales
Ocean Modeling with Adaptive REsolution (OMARE; version 1.0) – refactoring the NEMO model (version 4.0.1) with the parallel computing framework of JASMIN – Part 1: Adaptive grid refinement in an idealized double-gyre case
Monthly-scale extended predictions using the atmospheric model coupled with a slab ocean
stoPET v1.0: a stochastic potential evapotranspiration generator for simulation of climate change impacts
URANOS v1.0 – the Ultra Rapid Adaptable Neutron-Only Simulation for Environmental Research
Combining regional mesh refinement with vertically enhanced physics to target marine stratocumulus biases as demonstrated in the Energy Exascale Earth System Model version 1
Evaluation of native Earth system model output with ESMValTool v2.6.0
WRF–ML v1.0: a bridge between WRF v4.3 and machine learning parameterizations and its application to atmospheric radiative transfer
The Earth system model CLIMBER-X v1.0 – Part 2: The global carbon cycle
The Euro-Mediterranean Center on Climate Change (CMCC) decadal prediction system
LandInG 1.0: A toolbox to derive input datasets for terrestrial ecosystem modelling at variable resolutions from heterogeneous sources
Climate impacts of parameterizing subgrid variation and partitioning of land surface heat fluxes to the atmosphere with the NCAR CESM1.2
Accelerated photosynthesis routine in LPJmL4
C-Coupler3.0: an integrated coupler infrastructure for Earth system modeling
Improving scalability of Earth system models through coarse-grained component concurrency – a case study with the ICON v2.6.5 modelling system
Temperature forecasting by deep learning methods
Pathfinder v1.0.1: a Bayesian-inferred simple carbon–climate model to explore climate change scenarios
Inclusion of a cold hardening scheme to represent frost tolerance is essential to model realistic plant hydraulics in the Arctic–boreal zone in CLM5.0-FATES-Hydro
Implementation of a machine-learned gas optics parameterization in the ECMWF Integrated Forecasting System: RRTMGP-NN 2.0
Description and Evaluation of the JULES-ES setup for ISIMIP2b
Implementation and evaluation of the GEOS-Chem chemistry module version 13.1.2 within the Community Earth System Model v2.1
Assessment of JSBACHv4.30 as a land component of ICON-ESM-V1 in comparison to its predecessor JSBACHv3.2 of MPI-ESM1.2
Conservation of heat and mass in P-SKRIPS version 1: the coupled atmosphere-ice-ocean model of The Ross Sea
Global biomass burning fuel consumption and emissions at 500 m spatial resolution based on the Global Fire Emissions Database (GFED)
Testing the reconstruction of modelled particulate organic carbon from surface ecosystem components using PlankTOM12 and Machine Learning
Impact of increased resolution on the representation of the Canary upwelling system in climate models
Jan Polcher, Anthony Schrapffer, Eliott Dupont, Lucia Rinchiuso, Xudong Zhou, Olivier Boucher, Emmanuel Mouche, Catherine Ottlé, and Jérôme Servonnat
Geosci. Model Dev., 16, 2583–2606, https://doi.org/10.5194/gmd-16-2583-2023, https://doi.org/10.5194/gmd-16-2583-2023, 2023
Short summary
Short summary
The proposed graphs of hydrological sub-grid elements for atmospheric models allow us to integrate the topographical elements needed in land surface models for a realistic representation of horizontal water and energy transport. The study demonstrates the numerical properties of the automatically built graphs and the simulated water flows.
Magnus Hieronymus
Geosci. Model Dev., 16, 2343–2354, https://doi.org/10.5194/gmd-16-2343-2023, https://doi.org/10.5194/gmd-16-2343-2023, 2023
Short summary
Short summary
A statistical model called the sea level simulator is presented and made freely available. The sea level simulator integrates mean sea level rise and sea level extremes into a joint probabilistic framework that is useful for flood risk estimation. These flood risk estimates are contingent on probabilities given to different emission scenarios and the length of the planning period. The model is also useful for uncertainty quantification and in decision and adaptation problems.
Quang-Van Doan, Toshiyuki Amagasa, Thanh-Ha Pham, Takuto Sato, Fei Chen, and Hiroyuki Kusaka
Geosci. Model Dev., 16, 2215–2233, https://doi.org/10.5194/gmd-16-2215-2023, https://doi.org/10.5194/gmd-16-2215-2023, 2023
Short summary
Short summary
This study proposes (i) the structural k-means (S k-means) algorithm for clustering spatiotemporally structured climate data and (ii) the clustering uncertainty evaluation framework (CUEF) based on the mutual-information concept.
Nadine Goris, Klaus Johannsen, and Jerry Tjiputra
Geosci. Model Dev., 16, 2095–2117, https://doi.org/10.5194/gmd-16-2095-2023, https://doi.org/10.5194/gmd-16-2095-2023, 2023
Short summary
Short summary
Climate projections of a high-CO2 future are highly uncertain. A new study provides a novel approach to identifying key regions that dynamically explain the model uncertainty. To yield an accurate estimate of the future North Atlantic carbon uptake, we find that a correct simulation of the upper- and interior-ocean volume transport at 25–30° N is key. However, results indicate that models rarely perform well for both indicators and point towards inconsistencies within the model ensemble.
Pyry Pentikäinen, Ewan J. O'Connor, and Pablo Ortiz-Amezcua
Geosci. Model Dev., 16, 2077–2094, https://doi.org/10.5194/gmd-16-2077-2023, https://doi.org/10.5194/gmd-16-2077-2023, 2023
Short summary
Short summary
We used Doppler lidar to evaluate the wind profiles generated by a weather forecast model. We first compared the Doppler lidar observations with co-located radiosonde profiles, and they agree well. The model performs best over marine and coastal locations. Larger errors were seen in locations where the surface was more complex, especially in the wind direction. Our results show that Doppler lidar is a suitable instrument for evaluating the boundary layer wind profiles in atmospheric models.
Rubina Ansari, Ana Casanueva, Muhammad Usman Liaqat, and Giovanna Grossi
Geosci. Model Dev., 16, 2055–2076, https://doi.org/10.5194/gmd-16-2055-2023, https://doi.org/10.5194/gmd-16-2055-2023, 2023
Short summary
Short summary
Bias correction (BC) has become indispensable to climate model output as a post-processing step to render output more useful for impact assessment studies. The current work presents a comparison of different state-of-the-art BC methods (univariate and multivariate) and BC approaches (direct and component-wise) for climate model simulations from three initiatives (CMIP6, CORDEX, and CORDEX-CORE) for a multivariate drought index (i.e., standardized precipitation evapotranspiration index).
Maria Chara Karypidou, Stefan Pieter Sobolowski, Lorenzo Sangelantoni, Grigory Nikulin, and Eleni Katragkou
Geosci. Model Dev., 16, 1887–1908, https://doi.org/10.5194/gmd-16-1887-2023, https://doi.org/10.5194/gmd-16-1887-2023, 2023
Short summary
Short summary
Southern Africa is listed among the climate change hotspots; hence, accurate climate change information is vital for the optimal preparedness of local communities. In this work we assess the degree to which regional climate models (RCMs) are influenced by the global climate models (GCMs) from which they receive their lateral boundary forcing. We find that although GCMs exert a strong impact on RCMs, RCMs are still able to display substantial improvement relative to the driving GCMs.
Enrico Zorzetto, Sergey Malyshev, Nathaniel Chaney, David Paynter, Raymond Menzel, and Elena Shevliakova
Geosci. Model Dev., 16, 1937–1960, https://doi.org/10.5194/gmd-16-1937-2023, https://doi.org/10.5194/gmd-16-1937-2023, 2023
Short summary
Short summary
In this paper we develop a methodology to model the spatial distribution of solar radiation received by land over mountainous terrain. The approach is designed to be used in Earth system models, where coarse grid cells hinder the description of fine-scale land–atmosphere interactions. We adopt a clustering algorithm to partition the land domain into a set of homogeneous sub-grid
tiles, and for each tile we evaluate solar radiation received by land based on terrain properties.
Laura C. Jackson, Eduardo Alastrué de Asenjo, Katinka Bellomo, Gokhan Danabasoglu, Helmuth Haak, Aixue Hu, Johann Jungclaus, Warren Lee, Virna L. Meccia, Oleg Saenko, Andrew Shao, and Didier Swingedouw
Geosci. Model Dev., 16, 1975–1995, https://doi.org/10.5194/gmd-16-1975-2023, https://doi.org/10.5194/gmd-16-1975-2023, 2023
Short summary
Short summary
The Atlantic meridional overturning circulation (AMOC) has an important impact on the climate. There are theories that freshening of the ocean might cause the AMOC to cross a tipping point (TP) beyond which recovery is difficult; however, it is unclear whether TPs exist in global climate models. Here, we outline a set of experiments designed to explore AMOC tipping points and sensitivity to additional freshwater input as part of the North Atlantic Hosing Model Intercomparison Project (NAHosMIP).
Heather S. Rumbold, Richard J. J. Gilham, and Martin J. Best
Geosci. Model Dev., 16, 1875–1886, https://doi.org/10.5194/gmd-16-1875-2023, https://doi.org/10.5194/gmd-16-1875-2023, 2023
Short summary
Short summary
The Joint UK Land Environment Simulator (JULES) uses a tiled representation of land cover but can only model a single dominant soil type within a grid box; hence there is no representation of sub-grid soil heterogeneity. This paper evaluates a new surface–soil tiling scheme in JULES and demonstrates the impacts of the scheme using several soil tiling approaches. Results show that soil tiling has an impact on the water and energy exchanges due to the way vegetation accesses the soil moisture.
Felix Pithan, Marylou Athanase, Sandro Dahlke, Antonio Sánchez-Benítez, Matthew D. Shupe, Anne Sledd, Jan Streffing, Gunilla Svensson, and Thomas Jung
Geosci. Model Dev., 16, 1857–1873, https://doi.org/10.5194/gmd-16-1857-2023, https://doi.org/10.5194/gmd-16-1857-2023, 2023
Short summary
Short summary
Evaluating climate models usually requires long observational time series, but we present a method that also works for short field campaigns. We compare climate model output to observations from the MOSAiC expedition in the central Arctic Ocean. All models show how the arrival of a warm air mass warms the Arctic in April 2020, but two models do not show the response of snow temperature to the diurnal cycle. One model has too little liquid water and too much ice in clouds during cold days.
Andrew Gettelman, Hugh Morrison, Trude Eidhammer, Katherine Thayer-Calder, Jian Sun, Richard Forbes, Zachary McGraw, Jiang Zhu, Trude Storelvmo, and John Dennis
Geosci. Model Dev., 16, 1735–1754, https://doi.org/10.5194/gmd-16-1735-2023, https://doi.org/10.5194/gmd-16-1735-2023, 2023
Short summary
Short summary
Clouds are a critical part of weather and climate prediction. In this work, we document updates and corrections to the description of clouds used in several Earth system models. These updates include the ability to run the scheme on graphics processing units (GPUs), changes to the numerical description of precipitation, and a correction to the ice number. There are big improvements in the computational performance that can be achieved with GPU acceleration.
Jane P. Mulcahy, Colin G. Jones, Steven T. Rumbold, Till Kuhlbrodt, Andrea J. Dittus, Edward W. Blockley, Andrew Yool, Jeremy Walton, Catherine Hardacre, Timothy Andrews, Alejandro Bodas-Salcedo, Marc Stringer, Lee de Mora, Phil Harris, Richard Hill, Doug Kelley, Eddy Robertson, and Yongming Tang
Geosci. Model Dev., 16, 1569–1600, https://doi.org/10.5194/gmd-16-1569-2023, https://doi.org/10.5194/gmd-16-1569-2023, 2023
Short summary
Short summary
Recent global climate models simulate historical global mean surface temperatures which are too cold, possibly to due to excessive aerosol cooling. This raises questions about the models' ability to simulate important climate processes and reduces confidence in future climate predictions. We present a new version of the UK Earth System Model, which has an improved aerosols simulation and a historical temperature record. Interestingly, the long-term response to CO2 remains largely unchanged.
Olawale James Ikuyajolu, Luke Van Roekel, Steven R. Brus, Erin E. Thomas, Yi Deng, and Sarat Sreepathi
Geosci. Model Dev., 16, 1445–1458, https://doi.org/10.5194/gmd-16-1445-2023, https://doi.org/10.5194/gmd-16-1445-2023, 2023
Short summary
Short summary
Wind-generated waves play an important role in modifying physical processes at the air–sea interface, but they have been traditionally excluded from climate models due to the high computational cost of running spectral wave models for climate simulations. To address this, our work identified and accelerated the computationally intensive section of WAVEWATCH III on GPU using OpenACC. This allows for high-resolution modeling of atmosphere–wave–ocean feedbacks in century-scale climate integrations.
Edward C. Chan, Joana Leitão, Andreas Kerschbaumer, and Timothy M. Butler
Geosci. Model Dev., 16, 1427–1444, https://doi.org/10.5194/gmd-16-1427-2023, https://doi.org/10.5194/gmd-16-1427-2023, 2023
Short summary
Short summary
Yeti is a Handbook Emission Factors for Road Transport-based traffic emission inventory written in the Python 3 scripting language, which adopts a generalized treatment for activity data using traffic information of varying levels of detail introduced in a systematic and consistent manner, with the ability to maximize reusability. Thus, Yeti has been conceived and implemented with a high degree of data and process symmetry, allowing scalable and flexible execution while affording ease of use.
Haopeng Fan, Siran Li, Zhongmiao Sun, Guorui Xiao, Xinxing Li, and Xiaogang Liu
Geosci. Model Dev., 16, 1345–1358, https://doi.org/10.5194/gmd-16-1345-2023, https://doi.org/10.5194/gmd-16-1345-2023, 2023
Short summary
Short summary
The traditional tropospheric zenith hydrostatic delay (ZHD) model's bias is usually thought negligible, yet it still reaches 10 mm sometimes and would lead to millimeter-level position errors for space geodetic observations. Therefore, we analyzed the bias’ characteristics and present a grid model to correct the traditional ZHD formula. When verifying the efficiency based on data from the ECMWF (European Centre for Medium-Range Weather Forecasts), ZHD biases were rectified by ~50 %.
Gang Liu, Shushi Peng, Chris Huntingford, and Yi Xi
Geosci. Model Dev., 16, 1277–1296, https://doi.org/10.5194/gmd-16-1277-2023, https://doi.org/10.5194/gmd-16-1277-2023, 2023
Short summary
Short summary
Due to computational limits, lower-complexity models (LCMs) were developed as a complementary tool for accelerating comprehensive Earth system models (ESMs) but still lack a good precipitation emulator for LCMs. Here, we developed a data-calibrated precipitation emulator (PREMU), a computationally effective way to better estimate historical and simulated precipitation by current ESMs. PREMU has potential applications related to land surface processes and their interactions with climate change.
Suzanne Robinson, Ruza F. Ivanovic, Lauren J. Gregoire, Julia Tindall, Tina van de Flierdt, Yves Plancherel, Frerk Pöppelmeier, Kazuyo Tachikawa, and Paul J. Valdes
Geosci. Model Dev., 16, 1231–1264, https://doi.org/10.5194/gmd-16-1231-2023, https://doi.org/10.5194/gmd-16-1231-2023, 2023
Short summary
Short summary
We present the implementation of neodymium (Nd) isotopes into the ocean model of FAMOUS (Nd v1.0). Nd fluxes from seafloor sediment and incorporation of Nd onto sinking particles represent the major global sources and sinks, respectively. However, model–data mismatch in the North Pacific and northern North Atlantic suggest that certain reactive components of the sediment interact the most with seawater. Our results are important for interpreting Nd isotopes in terms of ocean circulation.
Yann Quilcaille, Thomas Gasser, Philippe Ciais, and Olivier Boucher
Geosci. Model Dev., 16, 1129–1161, https://doi.org/10.5194/gmd-16-1129-2023, https://doi.org/10.5194/gmd-16-1129-2023, 2023
Short summary
Short summary
The model OSCAR is a simple climate model, meaning its representation of the Earth system is simplified but calibrated on models of higher complexity. Here, we diagnose its latest version using a total of 99 experiments in a probabilistic framework and under observational constraints. OSCAR v3.1 shows good agreement with observations, complex Earth system models and emerging properties. Some points for improvements are identified, such as the ocean carbon cycle.
Sandra L. LeGrand, Theodore W. Letcher, Gregory S. Okin, Nicholas P. Webb, Alex R. Gallagher, Saroj Dhital, Taylor S. Hodgdon, Nancy P. Ziegler, and Michelle L. Michaels
Geosci. Model Dev., 16, 1009–1038, https://doi.org/10.5194/gmd-16-1009-2023, https://doi.org/10.5194/gmd-16-1009-2023, 2023
Short summary
Short summary
Ground cover affects dust emissions by reducing wind flow over the immediate soil surface. This study reviews a method for estimating ground cover effects on wind erosion from satellite-detected terrain shadows. We conducted a case study for a US dust event using the Weather Research and Forecasting with Chemistry (WRF-Chem) model. Adding the shadow-based method for ground cover effects markedly improved simulated results and may lead to better dust modeling outcomes in vegetated drylands.
Rasmus E. Benestad, Abdelkader Mezghani, Julia Lutz, Andreas Dobler, Kajsa M. Parding, and Oskar A. Landgren
EGUsphere, https://doi.org/10.5194/egusphere-2022-1385, https://doi.org/10.5194/egusphere-2022-1385, 2023
Short summary
Short summary
A mathematical method known as 'common EOFs' is not widely used within the climate research community, but they offer innovative ways of evaluating climate models. We show how they can be used to evaluate large ensembles of global climate model simulations and distill information about their ability to reproduce salient features of the regional climate. We can say they represent a kind of machine learning (ML) for dealing with "Big data".
Roman Brogli, Christoph Heim, Jonas Mensch, Silje Lund Sørland, and Christoph Schär
Geosci. Model Dev., 16, 907–926, https://doi.org/10.5194/gmd-16-907-2023, https://doi.org/10.5194/gmd-16-907-2023, 2023
Short summary
Short summary
The pseudo-global-warming (PGW) approach is a downscaling methodology that imposes the large-scale GCM-based climate change signal on the boundary conditions of a regional climate simulation. It offers several benefits in comparison to conventional downscaling. We present a detailed description of the methodology, provide companion software to facilitate the preparation of PGW simulations, and present validation and sensitivity studies.
Fa Li, Qing Zhu, William J. Riley, Lei Zhao, Li Xu, Kunxiaojia Yuan, Min Chen, Huayi Wu, Zhipeng Gui, Jianya Gong, and James T. Randerson
Geosci. Model Dev., 16, 869–884, https://doi.org/10.5194/gmd-16-869-2023, https://doi.org/10.5194/gmd-16-869-2023, 2023
Short summary
Short summary
We developed an interpretable machine learning model to predict sub-seasonal and near-future wildfire-burned area over African and South American regions. We found strong time-lagged controls (up to 6–8 months) of local climate wetness on burned areas. A skillful use of such time-lagged controls in machine learning models results in highly accurate predictions of wildfire-burned areas; this will also help develop relevant early-warning and management systems for tropical wildfires.
Edmund P. Meredith, Uwe Ulbrich, and Henning W. Rust
Geosci. Model Dev., 16, 851–867, https://doi.org/10.5194/gmd-16-851-2023, https://doi.org/10.5194/gmd-16-851-2023, 2023
Short summary
Short summary
Cell-tracking algorithms allow for the study of properties of a convective cell across its lifetime and, in particular, how these respond to climate change. We investigated whether the design of the algorithm can affect the magnitude of the climate-change signal. The algorithm's criteria for identifying a cell were found to have a strong impact on the warming response. The sensitivity of the warming response to different algorithm settings and cell types should thus be fully explored.
Cathy Hohenegger, Peter Korn, Leonidas Linardakis, René Redler, Reiner Schnur, Panagiotis Adamidis, Jiawei Bao, Swantje Bastin, Milad Behravesh, Martin Bergemann, Joachim Biercamp, Hendryk Bockelmann, Renate Brokopf, Nils Brüggemann, Lucas Casaroli, Fatemeh Chegini, George Datseris, Monika Esch, Geet George, Marco Giorgetta, Oliver Gutjahr, Helmuth Haak, Moritz Hanke, Tatiana Ilyina, Thomas Jahns, Johann Jungclaus, Marcel Kern, Daniel Klocke, Lukas Kluft, Tobias Kölling, Luis Kornblueh, Sergey Kosukhin, Clarissa Kroll, Junhong Lee, Thorsten Mauritsen, Carolin Mehlmann, Theresa Mieslinger, Ann Kristin Naumann, Laura Paccini, Angel Peinado, Divya Sri Praturi, Dian Putrasahan, Sebastian Rast, Thomas Riddick, Niklas Roeber, Hauke Schmidt, Uwe Schulzweida, Florian Schütte, Hans Segura, Radomyra Shevchenko, Vikram Singh, Mia Specht, Claudia Christine Stephan, Jin-Song von Storch, Raphaela Vogel, Christian Wengel, Marius Winkler, Florian Ziemen, Jochem Marotzke, and Bjorn Stevens
Geosci. Model Dev., 16, 779–811, https://doi.org/10.5194/gmd-16-779-2023, https://doi.org/10.5194/gmd-16-779-2023, 2023
Short summary
Short summary
Models of the Earth system used to understand climate and predict its change typically employ a grid spacing of about 100 km. Yet, many atmospheric and oceanic processes occur on much smaller scales. In this study, we present a new model configuration designed for the simulation of the components of the Earth system and their interactions at kilometer and smaller scales, allowing an explicit representation of the main drivers of the flow of energy and matter by solving the underlying equations.
Yan Zhang, Xuantong Wang, Yuhao Sun, Chenhui Ning, Shiming Xu, Hengbin An, Dehong Tang, Hong Guo, Hao Yang, Ye Pu, Bo Jiang, and Bin Wang
Geosci. Model Dev., 16, 679–704, https://doi.org/10.5194/gmd-16-679-2023, https://doi.org/10.5194/gmd-16-679-2023, 2023
Short summary
Short summary
We construct a new ocean model, OMARE, that can carry out multi-scale ocean simulation with adaptive mesh refinement. OMARE is based on the refactorization of NEMO with a third-party, high-performance piece of middleware. We report the porting process and experiments of an idealized western-boundary current system. The new model simulates turbulent and temporally varying mesoscale and submesoscale processes via adaptive refinement. Related topics and future work with OMARE are also discussed.
Zhenming Wang, Shaoqing Zhang, Yishuai Jin, Yinglai Jia, Yangyang Yu, Yang Gao, Xiaolin Yu, Mingkui Li, Xiaopei Lin, and Lixin Wu
Geosci. Model Dev., 16, 705–717, https://doi.org/10.5194/gmd-16-705-2023, https://doi.org/10.5194/gmd-16-705-2023, 2023
Short summary
Short summary
To improve the numerical model predictability of monthly extended-range scales, we use the simplified slab ocean model (SOM) to restrict the complicated sea surface temperature (SST) bias from a 3-D dynamical ocean model. As for SST prediction, whether in space or time, the WRF-SOM is verified to have better performance than the WRF-ROMS, which has a significant impact on the atmosphere. For extreme weather events such as typhoons, the predictions of WRF-SOM are in good agreement with WRF-ROMS.
Dagmawi Teklu Asfaw, Michael Bliss Singer, Rafael Rosolem, David MacLeod, Mark Cuthbert, Edisson Quichimbo Miguitama, Manuel F. Rios Gaona, and Katerina Michaelides
Geosci. Model Dev., 16, 557–571, https://doi.org/10.5194/gmd-16-557-2023, https://doi.org/10.5194/gmd-16-557-2023, 2023
Short summary
Short summary
stoPET is a new stochastic potential evapotranspiration (PET) generator for the globe at hourly resolution. Many stochastic weather generators are used to generate stochastic rainfall time series; however, no such model exists for stochastically generating plausible PET time series. As such, stoPET represents a significant methodological advance. stoPET generate many realizations of PET to conduct climate studies related to the water balance, agriculture, water resources, and ecology.
Markus Köhli, Martin Schrön, Steffen Zacharias, and Ulrich Schmidt
Geosci. Model Dev., 16, 449–477, https://doi.org/10.5194/gmd-16-449-2023, https://doi.org/10.5194/gmd-16-449-2023, 2023
Short summary
Short summary
In the last decades, Monte Carlo codes were often consulted to study neutrons near the surface. As an alternative for the growing community of CRNS, we developed URANOS. The main model features are tracking of particle histories from creation to detection, detector representations as layers or geometric shapes, a voxel-based geometry model, and material setup based on color codes in ASCII matrices or bitmap images. The entire software is developed in C++ and features a graphical user interface.
Peter A. Bogenschutz, Hsiang-He Lee, Qi Tang, and Takanobu Yamaguchi
Geosci. Model Dev., 16, 335–352, https://doi.org/10.5194/gmd-16-335-2023, https://doi.org/10.5194/gmd-16-335-2023, 2023
Short summary
Short summary
Models that are used to simulate and predict climate often have trouble representing specific cloud types, such as stratocumulus, that are particularly thin in the vertical direction. It has been found that increasing the model resolution can help improve this problem. In this paper, we develop a novel framework that increases the horizontal and vertical resolutions only for areas of the globe that contain stratocumulus, hence reducing the model runtime while providing better results.
Manuel Schlund, Birgit Hassler, Axel Lauer, Bouwe Andela, Patrick Jöckel, Rémi Kazeroni, Saskia Loosveldt Tomas, Brian Medeiros, Valeriu Predoi, Stéphane Sénési, Jérôme Servonnat, Tobias Stacke, Javier Vegas-Regidor, Klaus Zimmermann, and Veronika Eyring
Geosci. Model Dev., 16, 315–333, https://doi.org/10.5194/gmd-16-315-2023, https://doi.org/10.5194/gmd-16-315-2023, 2023
Short summary
Short summary
The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool for routine evaluation of Earth system models. Originally, ESMValTool was designed to process reformatted output provided by large model intercomparison projects like the Coupled Model Intercomparison Project (CMIP). Here, we describe a new extension of ESMValTool that allows for reading and processing native climate model output, i.e., data that have not been reformatted before.
Xiaohui Zhong, Zhijian Ma, Yichen Yao, Lifei Xu, Yuan Wu, and Zhibin Wang
Geosci. Model Dev., 16, 199–209, https://doi.org/10.5194/gmd-16-199-2023, https://doi.org/10.5194/gmd-16-199-2023, 2023
Short summary
Short summary
More and more researchers use deep learning models to replace physics-based parameterizations to accelerate weather simulations. However, embedding the ML models within the weather models is difficult as they are implemented in different languages. This work proposes a coupling framework to allow ML-based parameterizations to be coupled with the Weather Research and Forecasting (WRF) model. We also demonstrate using the coupler to couple the ML-based radiation schemes with the WRF model.
Matteo Willeit, Tatiana Ilyina, Bo Liu, Christoph Heinze, Mahé Perrette, Malte Heinemann, Daniela Dalmonech, Victor Brovkin, Guy Munhoven, Janine Börker, Jens Hartmann, Gibran Romero-Mujalli, and Andrey Ganopolski
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-307, https://doi.org/10.5194/gmd-2022-307, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
In this paper we present the carbon cycle component of the newly developed fast Earth system model CLIMBER-X. The model can be run with interactive atmospheric CO2 to investigate the feedbacks between climate and the carbon cycle on temporal scales ranging from decades to >100,000 years. CLIMBER-X is available as open-source code and is expected to be a useful tool for studying past climate-carbon cycle changes and for the investigation of the long-term future evolution of the Earth system.
Dario Nicolì, Alessio Bellucci, Paolo Ruggieri, Panos J. Athanasiadis, Stefano Materia, Daniele Peano, Giusy Fedele, Riccardo Hénin, and Silvio Gualdi
Geosci. Model Dev., 16, 179–197, https://doi.org/10.5194/gmd-16-179-2023, https://doi.org/10.5194/gmd-16-179-2023, 2023
Short summary
Short summary
Decadal climate predictions, obtained by constraining the initial condition of a dynamical model through a truthful estimate of the observed climate state, provide an accurate assessment of the near-term climate and are useful for informing decision-makers on future climate-related risks. The predictive skill for key variables is assessed from the operational decadal prediction system compared with non-initialized historical simulations so as to quantify the added value of initialization.
Sebastian Ostberg, Christoph Müller, Jens Heinke, and Sibyll Schaphoff
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-291, https://doi.org/10.5194/gmd-2022-291, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
We present a new toolbox for generating input datasets for terrestrial ecosystem models from diverse and partially conflicting data sources. The toolbox documents the sources and processing of data and is designed to make inconsistencies between source datasets transparent, so that users can make their own decisions on how to resolve these, should they not be content with our default assumptions. As an example, we use the toolbox to create input datasets at two different spatial resolutions.
Ming Yin, Yilun Han, Yong Wang, Wenqi Sun, Jianbo Deng, Daoming Wei, Ying Kong, and Bin Wang
Geosci. Model Dev., 16, 135–156, https://doi.org/10.5194/gmd-16-135-2023, https://doi.org/10.5194/gmd-16-135-2023, 2023
Short summary
Short summary
All global climate models (GCMs) use the grid-averaged surface heat fluxes to drive the atmosphere, and thus their horizontal variations within the grid cell are averaged out. In this regard, a novel scheme considering the variation and partitioning of the surface heat fluxes within the grid cell is developed. The scheme reduces the long-standing rainfall biases on the southern and eastern margins of the Tibetan Plateau. The performance of key variables at the global scale is also evaluated.
Jenny Niebsch, Werner von Bloh, Kirsten Thonicke, and Ronny Ramlau
Geosci. Model Dev., 16, 17–33, https://doi.org/10.5194/gmd-16-17-2023, https://doi.org/10.5194/gmd-16-17-2023, 2023
Short summary
Short summary
The impacts of climate change require strategies for climate adaptation. Dynamic global vegetation models (DGVMs) are used to study the effects of multiple processes in the biosphere under climate change. There is a demand for a better computational performance of the models. In this paper, the photosynthesis model in the Lund–Potsdam–Jena managed Land DGVM (4.0.002) was examined. We found a better numerical solution of a nonlinear equation. A significant run time reduction was possible.
Li Liu, Chao Sun, Xinzhu Yu, Hao Yu, Qingu Jiang, Xingliang Li, Ruizhe Li, Bin Wang, Xueshun Shen, and Guangwen Yang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-257, https://doi.org/10.5194/gmd-2022-257, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
C-Coupler3.0 is an integrated coupler infrastructure with new features. i.e., a series of parallel optimization technologies, a common halo-exchange library, a common module-integration framework, a common framework for conveniently developing a weakly coupled ensemble data assimilation system, and a common framework for flexibly inputting and outputting fields in parallel. It is able to handle coupling under much finer resolutions (e.g., more than 100 million horizontal grid cells).
Leonidas Linardakis, Irene Stemmler, Moritz Hanke, Lennart Ramme, Fatemeh Chegini, Tatiana Ilyina, and Peter Korn
Geosci. Model Dev., 15, 9157–9176, https://doi.org/10.5194/gmd-15-9157-2022, https://doi.org/10.5194/gmd-15-9157-2022, 2022
Short summary
Short summary
In Earth system modelling, we are facing the challenge of making efficient use of very large machines, with millions of cores. To meet this challenge we will need to employ multi-level and multi-dimensional parallelism. Component concurrency, being a function parallel technique, offers an additional dimension to the traditional data-parallel approaches. In this paper we examine the behaviour of component concurrency and identify the conditions for its optimal application.
Bing Gong, Michael Langguth, Yan Ji, Amirpasha Mozaffari, Scarlet Stadtler, Karim Mache, and Martin G. Schultz
Geosci. Model Dev., 15, 8931–8956, https://doi.org/10.5194/gmd-15-8931-2022, https://doi.org/10.5194/gmd-15-8931-2022, 2022
Short summary
Short summary
Inspired by the success of deep learning in various domains, we test the applicability of video prediction methods by generative adversarial network (GAN)-based deep learning to predict the 2 m temperature over Europe. Our video prediction models have skill in predicting the diurnal cycle of 2 m temperature up to 12 h ahead. Complemented by probing the relevance of several model parameters, this study confirms the potential of deep learning in meteorological forecasting applications.
Thomas Bossy, Thomas Gasser, and Philippe Ciais
Geosci. Model Dev., 15, 8831–8868, https://doi.org/10.5194/gmd-15-8831-2022, https://doi.org/10.5194/gmd-15-8831-2022, 2022
Short summary
Short summary
We developed a new simple climate model designed to fill a perceived gap within the existing simple climate models by fulfilling three key requirements: calibration using Bayesian inference, the possibility of coupling with integrated assessment models, and the capacity to explore climate scenarios compatible with limiting climate impacts. Here, we describe the model and its calibration using the latest data from complex CMIP6 models and the IPCC AR6, and we assess its performance.
Marius S. A. Lambert, Hui Tang, Kjetil S. Aas, Frode Stordal, Rosie A. Fisher, Yilin Fang, Junyan Ding, and Frans-Jan W. Parmentier
Geosci. Model Dev., 15, 8809–8829, https://doi.org/10.5194/gmd-15-8809-2022, https://doi.org/10.5194/gmd-15-8809-2022, 2022
Short summary
Short summary
In this study, we implement a hardening mortality scheme into CTSM5.0-FATES-Hydro and evaluate how it impacts plant hydraulics and vegetation growth. Our work shows that the hydraulic modifications prescribed by the hardening scheme are necessary to model realistic vegetation growth in cold climates, in contrast to the default model that simulates almost nonexistent and declining vegetation due to abnormally large water loss through the roots.
Peter Ukkonen and Robin Hogan
EGUsphere, https://doi.org/10.5194/egusphere-2022-1047, https://doi.org/10.5194/egusphere-2022-1047, 2022
Short summary
Short summary
Climate and weather models suffer from uncertainties resulting from approximated processes. Solar and thermal radiation is one example, as it’s computationally too costly to simulate precisely. This has led to attempts to replace radiation codes using physical equations with neural networks (NNs), that are faster but highly uncertain. In this paper we use global weather simulations to demonstrate that a middle-ground approach of using NNs to predict optical properties is much more accurate.
Camilla Mathison, Eleanor Burke, Andrew J. Hartley, Douglas I. Kelley, Chantelle Burton, Eddy Robertson, Nicola Gedney, Karina Williams, Andy Wiltshire, Richard J. Ellis, Alistair Sellar, and Chris Jones
EGUsphere, https://doi.org/10.5194/egusphere-2022-1196, https://doi.org/10.5194/egusphere-2022-1196, 2022
Short summary
Short summary
This paper describes and evaluates a new modelling methodology to quantify the impacts of climate change on water, biomes and the carbon cycle. We have created a new configuration and setup for the JULES-ES land surface model, driven by bias-corrected historical and future climate model output provided by the Inter-Sectoral Impacts Model Inter-comparison Project (ISIMIP). This allows us to compare projections of the impacts of climate change across multiple impacts models and multiple sectors.
Thibaud M. Fritz, Sebastian D. Eastham, Louisa K. Emmons, Haipeng Lin, Elizabeth W. Lundgren, Steve Goldhaber, Steven R. H. Barrett, and Daniel J. Jacob
Geosci. Model Dev., 15, 8669–8704, https://doi.org/10.5194/gmd-15-8669-2022, https://doi.org/10.5194/gmd-15-8669-2022, 2022
Short summary
Short summary
We bring the state-of-the-science chemistry module GEOS-Chem into the Community Earth System Model (CESM). We show that some known differences between results from GEOS-Chem and CESM's CAM-chem chemistry module may be due to the configuration of model meteorology rather than inherent differences in the model chemistry. This is a significant step towards a truly modular Earth system model and allows two strong but currently separate research communities to benefit from each other's advances.
Rainer Schneck, Veronika Gayler, Julia E. M. S. Nabel, Thomas Raddatz, Christian H. Reick, and Reiner Schnur
Geosci. Model Dev., 15, 8581–8611, https://doi.org/10.5194/gmd-15-8581-2022, https://doi.org/10.5194/gmd-15-8581-2022, 2022
Short summary
Short summary
The versions of ICON-A and ICON-Land/JSBACHv4 used for this study constitute the first milestone in the development of the new ICON Earth System Model ICON-ESM. JSBACHv4 is the successor of JSBACHv3, and most of the parameterizations of JSBACHv4 are re-implementations from JSBACHv3. We assess and compare the performance of JSBACHv4 and JSBACHv3. Overall, the JSBACHv4 results are as good as JSBACHv3, but both models reveal the same main shortcomings, e.g. the depiction of the leaf area index.
Alena Malyarenko, Alexandra Gossart, Rui Sun, and Mario Krapp
EGUsphere, https://doi.org/10.5194/egusphere-2022-1135, https://doi.org/10.5194/egusphere-2022-1135, 2022
Short summary
Short summary
Simultaneous modelling of ocean, sea ice and atmosphere in coupled models is critical for understanding all of the processes that happen in the Antarctic. Here we have developed a coupled model for the Ross Sea, P-SKRIPS, that conserves heat and mass between the ocean and sea ice model (MITgcm) and the atmosphere model (PWRF). We have shown that our developments reduce the model drift, which is important for long-term simulations. P-SKRIPS shows good results in modelling coastal polynyas.
Dave van Wees, Guido R. van der Werf, James T. Randerson, Brendan M. Rogers, Yang Chen, Sander Veraverbeke, Louis Giglio, and Douglas C. Morton
Geosci. Model Dev., 15, 8411–8437, https://doi.org/10.5194/gmd-15-8411-2022, https://doi.org/10.5194/gmd-15-8411-2022, 2022
Short summary
Short summary
We present a global fire emission model based on the GFED model framework with a spatial resolution of 500 m. The higher resolution allowed for a more detailed representation of spatial heterogeneity in fuels and emissions. Specific modules were developed to model, for example, emissions from fire-related forest loss and belowground burning. Results from the 500 m model were compared to GFED4s, showing that global emissions were relatively similar but that spatial differences were substantial.
Anna Denvil-Sommer, Erik T. Buitenhuis, Rainer Kiko, Fabien Lombard, Lionel Guidi, and Corinne Le Quéré
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-224, https://doi.org/10.5194/gmd-2022-224, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
Using outputs of global biogeochemical ocean model and Machine Learning methods we demonstrate that it will be possible to identify linkages between surface environmental and ecosystem structure and the export of carbon to depth by sinking organic particles using real observations. It will be possible to use this knowledge to improve both our understanding of ecosystem dynamics and of their functional representation within models.
Adama Sylla, Emilia Sanchez Gomez, Juliette Mignot, and Jorge López-Parages
Geosci. Model Dev., 15, 8245–8267, https://doi.org/10.5194/gmd-15-8245-2022, https://doi.org/10.5194/gmd-15-8245-2022, 2022
Short summary
Short summary
Increasing model resolution depends on the subdomain of the Canary upwelling considered. In the Iberian Peninsula, the high-resolution (HR) models do not seem to better simulate the upwelling indices, while in Morocco to the Senegalese coast, the HR models show a clear improvement. Thus increasing the resolution of a global climate model does not necessarily have to be the only way to better represent the climate system. There is still much work to be done in terms of physical parameterizations.
Cited articles
Akhtar, N., Brauch, J., and Ahrens, B.: Climate modeling over the
Mediterranean Sea: impact of resolution and ocean coupling, Clim. Dynam., 51,
933–948, https://doi.org/10.1007/s00382-017-3570-8, 2018.
Amante, C. and Eakins, B. W.: ETOPO1 1 arc-minute global relief model:
procedures, data sources and analysis, in: NOAA Technical Memorandum NESDIS,
NGDC-24, NOAA, Boulder, Colorado, 2009.
Artegiani, A., Bregant, D., Paschini, E., Pinardi, N., Raicich, F., and
Russo, A.: The Adriatic Sea general circulation, part I: air-sea
interactions and water mass structure, J. Phys. Oceanogr., 27, 1492–1514,
https://doi.org/10.1175/1520-0485(1997)027<1492:TASGCP>2.0.CO;2,
1997.
Batistić, M., Garić, R., and Molinero, J. C.: Interannual variations
in Adriatic Sea zooplankton mirror shifts in circulation regimes in the
Ionian Sea, Clim. Res., 61, 231–240, https://doi.org/10.3354/cr01248, 2014.
Beg Paklar, G., Isakov, V., Koračin, D., Kourafalou, V., and Orlić, M.: A case study of bora-driven flow and density changes on the Adriatic shelf (January 1987), Cont. Shelf Res., 21, 1751–1783,
https://doi.org/10.1016/S0278-4343(01)00029-2, 2001.
Benetazzo, A., Bergamasco, A., Bonaldo, D., Falcieri, F. M., Sclavo, M.,
Langone, L., and Carniel, S.: Response of the Adriatic Sea to an intense
cold air outbreak: Dense water dynamics and wave-induced transport, Prog.
Oceanogr., 128, 115–138, https://doi.org/10.1016/j.pocean.2014.08.015, 2014.
Bergamasco, A., Oguz, T., and Malanotte-Rizzoli, P.: Modeling dense water
mass formation and winter circulation in the northern and central Adriatic
Sea, J. Marine Syst., 20, 279–300,
https://doi.org/10.1016/S0924-7963(98)00087-6, 1999.
Boldrin, A., Carniel, S., Giani, M., Marini, M., Bernardi Aubry, F., Campanelli,
A., Grilli, F., and Russo, A.: Effects of bora wind on physical and
biogeochemical properties of stratified waters in the northern Adriatic, J.
Geophys. Res.-Oceans, 114, C08S92, https://doi.org/10.1029/2008JC004837, 2009.
Burrage, D. M., Book, J. W., and Martin, P. J.: Eddies and filaments of the
Western Adriatic Current near Cape Gargano: Analysis and prediction, J. Marine Syst., 78, S205–S226, https://doi.org/10.1016/j.jmarsys.2009.01.024, 2009.
Carniel, S., Benetazzo, A., Bonaldo, D., Falcieri, F. M., Miglietta, M. M.,
Ricchi, A., and Sclavo, M.: Scratching beneath the surface while coupling
atmosphere, ocean and waves: Analysis of a dense water formation event,
Ocean Model., 101, 101–112, https://doi.org/10.1016/j.ocemod.2016.03.007, 2016.
Cavaleri, L. and Bertotti, L.: In search of the correct wind and wave fields
in a minor basin, Mon. Weather Rev., 125, 1964–1975,
https://doi.org/10.1175/1520-0493(1997)125<1964:ISOTCW>2.0.CO;2,
1997.
Cavaleri, L., Bertotti, L., Buizza, R., Buzzi, A., Masato, V., Umgiesser,
G., and Zampieri, M.: Predictability of extreme meteo-oceanographic events
in the Adriatic Sea, Q. J. R. Meteorol. Soc., 136, 400–413,
https://doi.org/10.1002/qj.567, 2010.
Cavaleri, L., Abdalla, S., Benetazzo, A., Bertotti, L., Bidlot, J-R,
Breivik, Ø., Carniel, S., Jensen, R. E., Portilla-Yandun, Rogers, W. E.,
Roland, A., Sanchez-Arcilla, A., Smith, J. M., Staneva, J., Toledo, Y., van
Vledder, G. P., and van der Westhuysen, A. J.: Wave modelling in coastal and
inner seas, Prog. Oceanogr., 167, 164–233,
https://doi.org/10.1016/j.pocean.2018.03.010, 2018.
Chapman, D. C.: Numerical treatment of cross-shelf open boundaries in a
barotropic coastal ocean model, J. Phys. Oceanogr., 15, 1060–1075,
https://doi.org/10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2,
1985.
Cushman-Roisin, B. and Naimie, C. E.: A 3d finite-element model of the
Adriatic tides, J. Mar. Syst., 37, 279–297, https://doi.org/10.1016/S0924-7963(02)00204-X, 2002.
Darmaraki, S., Somot, S., Sevault, F., Nabat, P., Cabos Narvaez, W. D.,
Cavicchia, L., Djurdjevic, V., Li, L., Sannino, G., and Sein, D. V.: Future
evolution of Marine Heatwaves in the Mediterranean Sea, Clim. Dynam., 53,
1371–1392, https://doi.org/10.1007/s00382-019-04661-z, 2019.
Denamiel, C. L.: AdriSC Climate Model: Evaluation Run, OSF [code], https://doi.org/10.17605/OSF.IO/ZB3CM, 2021.
Denamiel, C., Šepić, J., Ivanković, D., and Vilibić, I.: The
Adriatic Sea and Coast modelling suite: Evaluation of the meteotsunami
forecast component, Ocean Model., 135, 71–93,
https://doi.org/10.1016/j.ocemod.2019.02.003, 2019.
Denamiel, C., Pranić, P., Quentin, F., Mihanović, H., and
Vilibić, I.: Pseudo-global warming projections of extreme wave storms in
complex coastal regions: the case of the Adriatic Sea, Clim. Dynam.,
55, 2483–2509, https://doi.org/10.1007/s00382-020-05397-x, 2020a.
Denamiel, C., Tojčić, I., and Vilibić, I.: Far future climate
(2060–2100) of the northern Adriatic air–sea heat transfers associated
with extreme bora events, Clim. Dynam., 55, 3043–3066,
https://doi.org/10.1007/s00382-020-05435-8, 2020b.
Denamiel, C., Tojčić, I., and Vilibić, I.: Balancing accuracy
and efficiency of atmospheric models in the northern Adriatic during severe
bora events, J. Geophys. Res.-Atmos., 126, e2020JD033516,
https://doi.org/10.1029/2020JD033516, 2021a.
Denamiel, C., Pranić, P., Ivanković, D., Tojčić, I., and Vilibić, I.: Performance of the Adriatic Sea and Coast (AdriSC) climate component – a COAWST V3.3-based coupled atmosphere–ocean modelling suite: atmospheric dataset, Geosci. Model Dev., 14, 3995–4017, https://doi.org/10.5194/gmd-14-3995-2021, 2021b.
Di Luca, A., Flaounas, E., Drobinski, P., and Lebeaupin-Brossier, C.: The
atmospheric component of the Mediterranean Sea water budget in a WRF
multi-physics ensemble and observations, Clim. Dynam., 43,
2349–2375, https://doi.org/10.1007/s00382-014-2058-z, 2014.
Dunić, N., Vilibić, I., Šepić, J., Mihanović, H.,
Sevault, F., Somot, S., Waldman, R., Nabat, P., Arsouze, T., Pennel, R.,
Jordà, G., and Precali, R.: Performance of multi-decadal ocean
simulations in the Adriatic Sea, Ocean Model., 134, 84–109,
https://doi.org/10.1016/j.ocemod.2019.01.006, 2019.
Dutour Sikirić, M., Janeković, I., and Kuzmić, M.: A new
approach to bathymetry smoothing in sigma-coordinate ocean models, Ocean
Model., 29, 128–136, https://doi.org/10.1016/j.ocemod.2009.03.009, 2009.
Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse modeling of barotropic
ocean tides, J. Atmos. Ocean. Technol., 19, 183–204,
https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2,
2002.
Egbert, G. D., Bennett, A. F., and Foreman, M. G. G.: Topex/Poseidon tides
estimated using a global inverse model, J. Geophys. Res., 99, 24821–24852,
https://doi.org/10.1029/94JC01894, 1994.
Escudier, R., Clementi, E., Omar, M., Cipollone, A., Pistoia, J., Aydogdu,
A., Drudi, M., Grandi, A., Lyubartsev, V., Lecci, R., Cretí, S.,
Masina, S., Coppini, G., and Pinardi, N.: Mediterranean Sea Physical
Reanalysis (CMEMS MED-Currents) (Version 1), Copernicus
Monitoring Environment Marine Service (CMEMS) [data set],
https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1, 2020.
Flather, R. A.: A tidal model of the north-west European continental shelf,
Mem. Soc. R. Sci Liege, 6, 141–164, 1976.
Gačić, M., Civitarese, G., Miserocchi, S., Cardin, V., Crise, A.,
and Mauri, E.: The open-ocean convection in the Southern Adriatic: A
controlling mechanism of the spring phytoplankton bloom, Cont. Shelf Res.,
22, 1897–1908, https://doi.org/10.1016/S0278-4343(02)00050-X, 2002.
Gačić, M., Borzelli, G. E., Civitarese, G., Cardin, V., and Yari,
S.: Can internal processes sustain reversals of the ocean upper circulation?
The Ionian Sea example, Geophys. Res. Lett., 37, L09608,
https://doi.org/10.1029/2010GL043216, 2010.
Gačić, M., Civitarese, G., Eusebi Borzelli, G. L.,
Kovačević, V., Poulain, P.-M., Theocharis, A., Menna, M., Catucci,
A., and Zarokanellos, N.: On the relationship between the decadal
oscillations of the northern Ionian Sea and the salinity distributions in
the eastern Mediterranean, J. Geophys. Res., 116, C12002,
https://doi.org/10.1029/2011JC007280, 2011.
Gačić, M., Civitarese, G., Kovačević, V., Ursella, L., Bensi, M., Menna, M., Cardin, V., Poulain, P.-M., Cosoli, S., Notarstefano, G., and Pizzi, C.: Extreme winter 2012 in the Adriatic: an example of climatic effect on the BiOS rhythm, Ocean Sci., 10, 513–522, https://doi.org/10.5194/os-10-513-2014, 2014.
Hersbach, H., de Rosnay, P., Bell, B., Schepers, D., Simmons, A., Soci, C.,
Abdalla, S., Alonso-Balmaseda, M., Balsamo, G., Bechtold, P., Berrisford,
P., Bidlot, J.-R., de Boisséson, E., Bonavita, M., Browne, P., Buizza,
R., Dahlgren, P., Dee, D., Dragani, R., Diamantakis, M., Flemming, J.,
Forbes, R., Geer, A.J., Haiden, T., Hólm, E., Haimberger, L., Hogan, R.,
Horányi, A., Janiskova, M., Laloyaux, P., Lopez, P., Munoz-Sabater, J.,
Peubey, C., Radu, R., Richardson, D., Thépaut, J.-N., Vitart, F., Yang,
X., Zsótér, E., and Zuo, H.: Operational global reanalysis:
Progress, future directions and synergies with NWP, ECMWF ERA Report Series No. 27, https://doi.org/10.21957/tkic6g3wm, 2018.
Horak, J., Hofer, M., Gutmann, E., Gohm, A., and Rotach, M. W.: A process-based evaluation of the Intermediate Complexity Atmospheric Research Model (ICAR) 1.0.1, Geosci. Model Dev., 14, 1657–1680, https://doi.org/10.5194/gmd-14-1657-2021, 2021.
Ivanković, D., Denamiel, C., and Jelavić, D.: Web visualization of
data from numerical models and real-time stations network in frame of
Adriatic Sea and Coast (AdriSC) Meteotsunami Forecast, OCEANS 2019 –
Marseille, France, 17-20 June 2019, 1–5, https://doi.org/10.1109/OCEANSE.2019.8867225, 2019.
Janeković, I. and Kuzmić, M.: Numerical simulation of the Adriatic Sea principal tidal constituents, Ann. Geophys., 23, 3207–3218, https://doi.org/10.5194/angeo-23-3207-2005, 2005.
Janeković, I., Mihanović, H., Vilibić, I., and Tudor, M.:
Extreme cooling and dense water formation estimates in open and coastal
regions of the Adriatic Sea during the winter of 2012, J. Geophys. Res.-Oceans, 119, 3200–3218, https://doi.org/10.1002/2014JC009865, 2014.
Janeković, I., Mihanović, H., Vilibić, I., Grčić, B.,
Ivatek-Šahdan, S., Tudor, M., and Djakovac, T.: Multi-platform 4D-Var
data assimilation for improving the Adriatic Sea dynamics, Ocean Model.,
146, 101538, https://doi.org/10.1016/j.ocemod.2019.101538, 2020.
Johnson, N. C., Krishnamurthy, L., Wittenberg, A. T., Xiang, B., Vecchi, G.
A., Kapnick, S. B., and Pascale, S.: The Impact of Sea Surface Temperature
Biases on North American Precipitation in a High-Resolution Climate
Model, J. Climate, 33, 2427–2447, https://doi.org/10.1175/JCLI-D-19-0417.1,
2020.
JPL MUR MEaSUREs Project: GHRSST Level 4 MUR Global Foundation Sea Surface
Temperature Analysis (v4.1), Ver. 4.1. PO.DAAC, CA, USA,
https://doi.org/10.5067/GHGMR-4FJ04, 2015.
Krasakopoulou, E., Souvermezoglou, E., Minas, H.J., and Scoullos, M: Organic
matter stoichiometry based on oxygen consumption—nutrients regeneration
during a stagnation period in Jabuka Pit (middle Adriatic Sea), Cont. Shelf
Res., 25, 127–142, https://doi.org/10.1016/j.csr.2004.07.026, 2005.
Larson, J., Jacob, R., and Ong, E.: The model coupling toolkit: a new
fortran90 toolkit for building multiphysics parallel coupled models,
Int. J. High Perform. Comput. Appl., 19, 277–292, https://doi.org/10.1177/1094342005056115, 2005.
L'Hévéder, B., Li, L., Sevault, F., and Somot, S.: Interannual
variability of deep convection in the Northwestern Mediterranean simulated
with a coupled AORCM, Clim. Dynam., 41,
937–960, https://doi.org/10.1007/s00382-012-1527-5, 2013.
Ličer, M., Smerkol, P., Fettich, A., Ravdas, M., Papapostolou, A., Mantziafou, A., Strajnar, B., Cedilnik, J., Jeromel, M., Jerman, J., Petan, S., Malačič, V., and Sofianos, S.: Modeling the ocean and atmosphere during an extreme bora event in northern Adriatic using one-way and two-way atmosphere–ocean coupling, Ocean Sci., 12, 71–86, https://doi.org/10.5194/os-12-71-2016, 2016.
Lipizer, M., Partescano, E., Rabitti, A., Giorgetti, A., and Crise, A.: Qualified temperature, salinity and dissolved oxygen climatologies in a changing Adriatic Sea, Ocean Sci., 10, 771–797, https://doi.org/10.5194/os-10-771-2014, 2014.
Liu, F., Mikolajewicz, U., and Six, K. D. : Drivers of the decadal variability of the North Ionian Gyre upper layer circulation during 1910–2010: a regional modelling study, Clim. Dynam., https://doi.org/10.1007/s00382-021-05714-y, 2021.
Ljubenkov, I.: Hydrodynamic modeling of stratified estuary: case study of
the Jadro River (Croatia), J. Hydrol. Hydromech., 63, 29–37,
https://doi.org/10.1515/johh-2015-0001, 2015.
Ludwig, W., Dumont, E., Meybeck, M., and Heussner, S.: River discharges of
water and nutrients to the Mediterranean Sea: major drivers for ecosystem
changes during past and future decades?, Prog. Oceanogr., 80, 199–217,
https://doi.org/10.1016/j.pocean.2009.02.001, 2009.
Malačič, V. and Petelin, B.: Climatic circulation in the Gulf of Trieste (northern Adriatic), J. Geophys. Res., 114, C07002, https://doi.org/10.1029/2008JC004904, 2009.
Manca, B. B., Kovačević, V., Gačić, M., and Viezzoli, D.:
Dense water formation in the Southern Adriatic Sea and spreading into the
Ionian Sea in the period 1997–1999, J. Mar. Syst., 33–34, 133–154,
https://doi.org/10.1016/S0924-7963(02)00056-8, 2002.
Mantziafou, A. and Lascaratos, A.: An eddy resolving numerical study of the
general circulation and deep-water formation in the Adriatic Sea, Deep-Sea
Res. I, 51, 251–292, https://doi.org/10.1016/j.dsr.2004.03.006, 2004.
Mantziafou, A. and Lascaratos, A.: Deep-water formation in the Adriatic Sea:
interannual simulations for the years 1979–1999, Deep-Sea Res. I, 55,
1403–1427, https://doi.org/10.1016/j.dsr.2008.06.005, 2008.
Marchesiello, P., McWilliams, J. C., and Shchepetkin, A.: Open boundary
conditions for long-term integration of regional oceanic models, Ocean
Model., 3, 1–20, https://doi.org/10.1016/S1463-5003(00)00013-5, 2001.
Martin, P. J., Book, J. W., Burrage, D. M., Rowley, C. D., and Tudor, M.:
Comparison of model-simulated and observed currents in the central Adriatic
during DART, J. Geophys. Res., 114, C01S05, https://doi.org/10.1029/2008JC004842, 2009.
May, P. W.: Climatological flux estimates in the Mediterranean Sea: Part 1.
Winds and wind stresses, NORDA Report 54, NSTL Station, Mississippi 39529, USA, 1982.
McKiver, W. J., Sannino, G., Braga, F., and Bellafiore, D.: Investigation of model capability in capturing vertical hydrodynamic coastal processes: a case study in the north Adriatic Sea, Ocean Sci., 12, 51–69, https://doi.org/10.5194/os-12-51-2016, 2016.
Mejia, J. F., Koračin, D., and Wilcox, E. M.: Effect of coupled global climate
models sea surface temperature biases on simulated climate of the western
United States, Int. J. Climatol., 38, 5386–5404, https://doi.org/10.1002/joc.5817,
2018.
Mihanović, H., Vilibić, I., Carniel, S., Tudor, M., Russo, A., Bergamasco, A., Bubić, N., Ljubešić, Z., Viličić, D., Boldrin, A., Malačič, V., Celio, M., Comici, C., and Raicich, F.: Exceptional dense water formation on the Adriatic shelf in the winter of 2012, Ocean Sci., 9, 561–572, https://doi.org/10.5194/os-9-561-2013, 2013.
Mihanović, H., Janeković, I., Vilibić, I., Bensi, M., and
Kovačević, V.: Modelling Interannual Changes in Dense Water
Formation on the Northern Adriatic Shelf, Pure Appl.
Geophys., 175, 4065–4081, https://doi.org/10.1007/s00024-018-1935-5, 2018.
National Centers for Environmental Information: Daily L4 Optimally
Interpolated SST (OISST) In situ and AVHRR Analysis, Ver. 2.0. PO.DAAC, CA,
USA, https://doi.org/10.5067/GHAAO-4BC02, 2016.
Oddo, P. and Guarnieri, A.: A study of the hydrographic conditions in the Adriatic Sea from numerical modelling and direct observations (2000–2008), Ocean Sci., 7, 549–567, https://doi.org/10.5194/os-7-549-2011, 2011.
Oddo, P., Pinardi, N., and Zavatarelli, M.: A numerical study of the
interannual variability of the Adriatic Sea (2000–2002), Sci. Total
Environ., 353, 39–56, https://doi.org/10.1016/j.scitotenv.2005.09.061, 2005.
Orlanski, I.: A simple boundary condition for unbounded hyperbolic flows, J.
Comput. Phys., 21, 251–269, https://doi.org/10.1016/0021-9991(76)90023-1, 1976.
Orlić, M., Dadić, V., Grbec, B., Leder, N., Marki, A., Matić,
F., Mihanović, H., Beg Paklar, G., Pasarić, M., Pasarić, Z., and
Vilibić, I.: Wintertime buoyancy forcing, changing seawater properties
and two different circulation systems produced in the Adriatic, J. Geophys.
Res., 112, C03S07, https://doi.org/10.1029/2005JC003271, 2006.
Pano, N. and Abdyli, B.: Maximum floods and their regionalization on the
Albanian hydrographic river network, in: International Conference on Flood
Estimation, 6–8 March 2002, CHR. Report II,17, Bern, Switzerland, 379–388, 2002.
Pano, N., Frasheri, A., and Avdyli, B.: The climatic change impact in water
potential processe on the Albanian hydrographic river network, in:
International Congress on Environmental Modelling and Software, 5–8 July 2010, Ottawa, Ontario, Canada, available at:
https://scholarsarchive.byu.edu/iemssconference/2010/all/266 (last access: 20 September 2021), 2010.
Parras-Berrocal, I. M., Vazquez, R., Cabos, W., Sein, D., Mañanes, R., Perez-Sanz, J., and Izquierdo, A.: The climate change signal in the Mediterranean Sea in a regionally coupled atmosphere–ocean model, Ocean Sci., 16, 743–765, https://doi.org/10.5194/os-16-743-2020, 2020.
Pinardi, N., Allen, I., Demirov, E., De Mey, P., Korres, G., Lascaratos, A., Le Traon, P.-Y., Maillard, C., Manzella, G., and Tziavos, C.: The Mediterranean ocean forecasting system: first phase of implementation (1998–2001), Ann. Geophys., 21, 3–20, https://doi.org/10.5194/angeo-21-3-2003, 2003.
Poli, P., Hersbach, H., Dee, D. P., Berrisford, P., Simmons, A. J., Vitart,
F., Laloyaux, P., Tan, D. G., Peubey, C., Thépaut, J. N., Trémolet,
Y., Hólm, E.V., Bonavita, M., Isaksen, L., and Fisher, M.: ERA-20C: An
atmospheric reanalysis of the twentieth century, J. Climate, 29,
4083–4097, https://doi.org/10.1175/JCLI-D-15-0556.1, 2016.
Pranić, P.: Evaluation of the AdriSC Climate Model: Ocean Part, OSF [data set], https://doi.org/10.17605/OSF.IO/W8F4J, 2021.
Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen,
K., Keller, M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet,
S., Schmidli, J., van Lipzig, N. P. M., and Leung, R.: A review on regional
convection-permitting climate modeling: Demonstrations, prospects and
challenges, Rev. Geophys., 53, 323–361, https://doi.org/10.1002/2014RG000475, 2015.
Pullen, J., Doyle, J., and Signell, R.: Two-way air–sea coupling: a study
of the Adriatic, Mon. Weather Rev., 134, 1465–1483, https://doi.org/10.1175/MWR3137.1,
2006.
Pullen, J., Doyle, J. D., Haack, T., Dorman, C., Signell, R. P., and Lee,
C. M.: Bora event variability and the role of air-sea feedback, J. Geophys.
Res., 112, C03S18, https://doi.org/10.1029/2006JC003726, 2007.
Raicich, F.: Notes on the flow rates of the Adriatic rivers, Technical
Report RF 02/94, CNR, Istituto sperimentale talassografico, Trieste,
Italy, 8 pp., 1994.
Raicich, F.: On the fresh water balance of the Adriatic Sea, J. Mar. Syst.,
9, 305–319, https://doi.org/10.1016/S0924-7963(96)00042-5, 1996.
Ricchi, A., Miglietta, M. M., Falco, P. P., Benetazzo, A., Bonaldo, D.,
Bergamasco, A., Sclavo, M., and Carniel, S.: On the use of a coupled
ocean–atmosphere–wave model during an extreme cold air outbreak over the
Adriatic Sea, Atmos. Res., 172–173, 48–65,
https://doi.org/10.1016/j.atmosres.2015.12.023, 2016.
Schär, C., Frei, C., Luthi, D., and Davies, H. C.: Surrogate
climate-change scenarios for regional climate models, Geophys. Res. Lett.,
23, 669–672, https://doi.org/10.1029/96GL00265, 1996.
Schär, C., Fuhrer, O., Arteaga, A., Ban, N., Charpilloz, C., Di
Girolamo, S., Hentgen, L., Hoefler, T., Lapillonne, X., Leutwyler, D.,
Osterried, K., Panosetti, D., Rüdisühli, S., Schlemmer, L.,
Schulthess, T. C., Sprenger, M., Ubbiali, S., and Wernli, H.:
Kilometer-Scale Climate Models: Prospects and Challenges, B. Am. Meteorol. Soc., 101, E567–E587, https://doi.org/10.1175/BAMS-D-18-0167.1, 2020.
Sevault, F., Somot, S., Alias, A., Dubois, C., Lebeaupin-Brossier, C.,
Nabat, P., Adloff, F., Déqué, M., and Decharme, B.: A fully coupled
Mediterranean regional climate system model: design and evaluation of the
ocean component for the 1980–2012 period, Tellus A, 66, 23967,
https://doi.org/10.3402/tellusa.v66.23967, 2014.
Shchepetkin, A. F. and McWilliams, J. C.: Correction and commentary for “ocean forecasting in terrain-following coordinates: formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al., J. Comput. Phys., 227, pp. 3595–3624, J. Comput. Phys., 228, 8985–9000, https://doi.org/10.1016/j.jcp.2009.09.002, 2009.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Powers, J. G.: A description of the advanced research WRF version 2, NCAR Technical Note, NCAR/TN-468+STR, https://doi.org/10.5065/D6DZ069T, 2005.
Smolarkiewicz, P. K. and Grabowski, W. W.: The multidimensional positive
definite advection transport algorithm: nonoscillatory option, J. Comput.
Phys., 86, 355–375, https://doi.org/10.1016/0021-9991(90)90105-A, 1990.
Somot, S., Sevault, F., and Déqué, M.: Transient climate change
scenario simulation of the Mediterranean Sea for the twenty-first century
using a high-resolution ocean circulation model, Clim. Dynam. 27, 851–879,
https://doi.org/10.1007/s00382-006-0167-z, 2006.
Somot, S., Ruti, P., Ahrens, B., Coppola, E., Jordà, G., Sannino, G.,
and Solmon, F.: Editorial for the Med-CORDEX special issue, Clim. Dynam., 51,
771–777, https://doi.org/10.1007/s00382-018-4325-x, 2018.
Supić, N. and Orlić, M.: Seasonal and interannual variability of the
northern Adriatic surface fluxes, J. Marine Syst. 20, 205–229,
https://doi.org/10.1016/S0924-7963(98)00083-9, 1999.
Taylor, K.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res, 106, 7183–7192, https://doi.org/10.1029/2000JD900719,
2001.
Theocharis, A., Krokos, G., Velaoras, D., and Korres, G.: An internal
mechanism driving the alternation of the Eastern Mediterranean dense/deep
water sources, in: The Mediterranean Sea: Temporal Variability
and Spatial Patterns, Geophysical Monograph Series, edited by: Eusebi Borzelli, G. L., Gačić M., Lionello, P., and Malanotte-Rizzoli, P., AGU, 113–137, https://doi.org/10.1002/9781118847572.ch8, 2014.
Tudor, M., Ivatek-Sahdan, S., Stanešć, A., Horvath, K., and
Bajić, A.: Forecasting weather in Croatia using ALADIN numerical weather
prediction model, in: Climate Change and Regional/Local Responses, edited by:
Zhang, Y. and Ray, P., InTech, Rijeka, Croatia, 59–88, 2013.
Umgiesser, G., Bajo, M., Ferrarin, C., Cucco, A., Lionello, P., Zanchettin, D., Papa, A., Tosoni, A., Ferla, M., Coraci, E., Morucci, S., Crosato, F., Bonometto, A., Valentini, A., Orlić, M., Haigh, I. D., Nielsen, J. W., Bertin, X., Fortunato, A. B., Pérez Gómez, B., Alvarez Fanjul, E., Paradis, D., Jourdan, D., Pasquet, A., Mourre, B., Tintoré, J., and Nicholls, R. J.: The prediction of floods in Venice: methods, models and uncertainty (review article), Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, 2021.
Umlauf, L. and Burchard, H.: A generic length-scale equation for geophysical
turbulence models, J. Mar. Res., 61, 235–265,
https://doi.org/10.1357/002224003322005087, 2003.
Vested, H. J., Berg, P., and Uhrenholdt, T.: Dense water formation in the
northern Adriatic, J. Mar. Syst., 18, 135–160,
https://doi.org/10.1016/S0924-7963(98)00009-8, 1998.
Vilibić, I. and Orlić, M.: Least squares tracer analysis of water
masses in the South Adriatic (1967–1990), Deep-Sea Res. I, 48, 2297–2330,
https://doi.org/10.1016/S0967-0637(01)00014-0, 2001.
Vilibić, I. and Orlić, M.: Adriatic water masses, their rates of
formation and transport through the Otranto Strait, Deep-Sea Res. I,
49, 1321–1340, https://doi.org/10.1016/S0967-0637(02)00028-6, 2002.
Vilibić, I. and Supić, N.: Dense water generation on a shelf: the
case of the Adriatic Sea, Ocean Dyn., 55, 403–415,
https://doi.org/10.1007/s10236-005-0030-5, 2005.
Vilibić, I., Šepić, and Proust, N.: Observational evidence of a
weakening of thermohaline circulation in the Adriatic Sea, Clim. Res., 55,
217–225, https://doi.org/10.3354/cr01128, 2013.
Vilibić, I., Mihanović, H., Janeković, I., and Šepić,
J.: Modelling the formation of dense water in the northern Adriatic:
sensitivity studies, Ocean Model., 101, 17–29,
https://doi.org/10.1016/j.ocemod.2016.03.001, 2016.
Vilibić, I., Mihanović, H., Janeković, I., Denamiel, C., Poulain, P.-M., Orlić, M., Dunić, N., Dadić, V., Pasarić, M., Muslim, S., Gerin, R., Matić, F., Šepić, J., Mauri, E., Kokkini, Z., Tudor, M., Kovač, Ž., and Džoić, T.: Wintertime dynamics in the coastal northeastern Adriatic Sea: the NAdEx 2015 experiment, Ocean Sci., 14, 237–258, https://doi.org/10.5194/os-14-237-2018, 2018.
Vilibić, I., Zemunik, P., Šepić, J., Dunić, N., Marzouk, O., Mihanović, H., Denamiel, C., Precali, R., and Djakovac, T.: Present climate trends and variability in thermohaline properties of the northern Adriatic shelf, Ocean Sci., 15, 1351–1362, https://doi.org/10.5194/os-15-1351-2019, 2019.
Vörösmarty, C., Fakers, B., and Tucker, B.: River discharge database, version 1.0 (RivDIS vLO), volumes 0 through 6, in: A contribution to IHP-V Theme 1, Technical Documents Series, Technical report, UNESCO, Paris, France, 1996.
Warner, J. C., Armstrong, B., He, R., and Zambon, J. B.: Development of a coupled ocean atmosphere-wave-sediment transport (COAWST) modeling system, Ocean Model, 35, 230–244, https://doi.org/10.1016/j.ocemod.2010.07.010, 2010.
Yang, B., Zhang, Y., Qian, Y., Song, F., Leung, L. R., Wu, P., Guo, Z., Lu, Y., and Huang, A.: Better monsoon precipitation in
coupled climate models due to bias compensation, npj Clim. Atmos.
Sci., 2, 43, https://doi.org/10.1038/s41612-019-0100-x, 2019.
Zavatarelli, M. and Pinardi, N.: The Adriatic Sea modelling system: a nested approach, Ann. Geophys., 21, 345–364, https://doi.org/10.5194/angeo-21-345-2003, 2003.
Zavatarelli, M., Pinardi, N., Kourafalou, V. H., and Maggiore, A.: Diagnostic
and prognostic model studies of the Adriatic Sea general circulation:
Seasonal variability, J. Geophys. Res., 107, 3004, https://doi.org/10.1029/2000JC000210,
2002.
Zlotnicki, V., Qu, Z., and Willis, J.: SEA_SURFACE_HEIGHT_ALT_GRIDS_L4_2SATS_5DAY_6THDEG_V_JPL1609, Ver. 1812, PO.DAAC [data set], CA, USA, https://doi.org/10.5067/SLREF-CDRV2, 2019.
Zore-Armanda, M.: Les masses d'eau de la mer Adriatique, Acta Adriat., 10,
5–88, 1963.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(25410 KB) - Full-text XML
- Corrigendum
-
Supplement
(1931 KB) - BibTeX
- EndNote
Short summary
The Adriatic Sea and Coast model was developed due to the need for higher-resolution climate models and longer-term simulations to capture coastal atmospheric and ocean processes at climate scales in the Adriatic Sea. The ocean results of a 31-year-long simulation were compared to the observational data. The evaluation revealed that the model is capable of reproducing the observed physical properties with good accuracy and can be further used to study the dynamics of the Adriatic–Ionian basin.
The Adriatic Sea and Coast model was developed due to the need for higher-resolution climate...