Articles | Volume 14, issue 9
https://doi.org/10.5194/gmd-14-5843-2021
https://doi.org/10.5194/gmd-14-5843-2021
Model description paper
 | 
24 Sep 2021
Model description paper |  | 24 Sep 2021

fenics_ice 1.0: a framework for quantifying initialization uncertainty for time-dependent ice sheet models

Conrad P. Koziol, Joe A. Todd, Daniel N. Goldberg, and James R. Maddison

Related authors

Modelling seasonal meltwater forcing of the velocity of land-terminating margins of the Greenland Ice Sheet
Conrad P. Koziol and Neil Arnold
The Cryosphere, 12, 971–991, https://doi.org/10.5194/tc-12-971-2018,https://doi.org/10.5194/tc-12-971-2018, 2018
Short summary
Incorporating modelled subglacial hydrology into inversions for basal drag
Conrad P. Koziol and Neil Arnold
The Cryosphere, 11, 2783–2797, https://doi.org/10.5194/tc-11-2783-2017,https://doi.org/10.5194/tc-11-2783-2017, 2017
Short summary

Related subject area

Cryosphere
A global–land snow scheme (GLASS) v1.0 for the GFDL Earth System Model: formulation and evaluation at instrumented sites
Enrico Zorzetto, Sergey Malyshev, Paul Ginoux, and Elena Shevliakova
Geosci. Model Dev., 17, 7219–7244, https://doi.org/10.5194/gmd-17-7219-2024,https://doi.org/10.5194/gmd-17-7219-2024, 2024
Short summary
Design and performance of ELSA v2.0: an isochronal model for ice-sheet layer tracing
Therese Rieckh, Andreas Born, Alexander Robinson, Robert Law, and Gerrit Gülle
Geosci. Model Dev., 17, 6987–7000, https://doi.org/10.5194/gmd-17-6987-2024,https://doi.org/10.5194/gmd-17-6987-2024, 2024
Short summary
Southern Ocean Ice Prediction System version 1.0 (SOIPS v1.0): description of the system and evaluation of synoptic-scale sea ice forecasts
Fu Zhao, Xi Liang, Zhongxiang Tian, Ming Li, Na Liu, and Chengyan Liu
Geosci. Model Dev., 17, 6867–6886, https://doi.org/10.5194/gmd-17-6867-2024,https://doi.org/10.5194/gmd-17-6867-2024, 2024
Short summary
Lagrangian tracking of sea ice in Community Ice CodE (CICE; version 5)
Chenhui Ning, Shiming Xu, Yan Zhang, Xuantong Wang, Zhihao Fan, and Jiping Liu
Geosci. Model Dev., 17, 6847–6866, https://doi.org/10.5194/gmd-17-6847-2024,https://doi.org/10.5194/gmd-17-6847-2024, 2024
Short summary
openAMUNDSEN v1.0: an open-source snow-hydrological model for mountain regions
Ulrich Strasser, Michael Warscher, Erwin Rottler, and Florian Hanzer
Geosci. Model Dev., 17, 6775–6797, https://doi.org/10.5194/gmd-17-6775-2024,https://doi.org/10.5194/gmd-17-6775-2024, 2024
Short summary

Cited articles

Alexanderian, A., Petra, N., Stadler, G., and Ghattas, O.: A-Optimal Design of Experiments for Infinite-Dimensional Bayesian Linear Inverse Problems with Regularized _0-Sparsification, SIAM J. Sci. Comp., 36, A2122–A2148, https://doi.org/10.1137/130933381, 2014. a
Alnæs, M. S., Logg, A., Ølgaard, K. B., Rognes, M. E., and Wells, G. N.: Unified Form Language: A Domain-Specific Language for Weak Formulations of Partial Differential Equations, ACM T. Math. Softw., 40, 1–37, https://doi.org/10.1145/2566630, 2014. a
Arthern, R. J., Hindmarsh, R. C. A., and Williams, C. R.: Flow speed within the Antarctic ice sheet and its controls inferred from satellite observations, J. Geophys. Res.-Earth, 120, 1171–1188, https://doi.org/10.1002/2014JF003239, 2015. a
Babaniyi, O., Nicholson, R., Villa, U., and Petra, N.: Inferring the basal sliding coefficient field for the Stokes ice sheet model under rheological uncertainty, The Cryosphere, 15, 1731–1750, https://doi.org/10.5194/tc-15-1731-2021, 2021. a
Download
Short summary
Sea level change due to the loss of ice sheets presents great risk for coastal communities. Models are used to forecast ice loss, but their evolution depends strongly on properties which are hidden from observation and must be inferred from satellite observations. Common methods for doing so do not allow for quantification of the uncertainty inherent or how it will affect forecasts. We provide a framework for quantifying how this initialization uncertainty affects ice loss forecasts.