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Abstract. Mass loss due to dynamic changes in ice sheets is
a significant contributor to sea level rise, and this contribu-
tion is expected to increase in the future. Numerical codes
simulating the evolution of ice sheets can potentially quan-
tify this future contribution. However, the uncertainty inher-
ent in these models propagates into projections of sea level
rise is and hence crucial to understand. Key variables of ice
sheet models, such as basal drag or ice stiffness, are typically
initialized using inversion methodologies to ensure that mod-
els match present observations. Such inversions often involve
tens or hundreds of thousands of parameters, with unknown
uncertainties and dependencies. The computationally inten-
sive nature of inversions along with their high number of pa-
rameters mean traditional methods such as Monte Carlo are
expensive for uncertainty quantification. Here we develop a
framework to estimate the posterior uncertainty of inversions
and project them onto sea level change projections over the
decadal timescale. The framework treats parametric uncer-
tainty as multivariate Gaussian and exploits the equivalence
between the Hessian of the model and the inverse covariance
of the parameter set. The former is computed efficiently via
algorithmic differentiation, and the posterior covariance is
propagated in time using a time-dependent model adjoint to
produce projection error bars. This work represents an impor-
tant step in quantifying the internal uncertainty of projections
of ice sheet models.

1 Introduction

The dynamics of ice sheets are strongly controlled by a num-
ber of physical properties which are difficult (or intractable)
to observe directly, such as basal traction and ice stiffness
(Arthern et al., 2015). This poses challenges in terms of fu-
ture ice sheet projections, as the behavior of ice sheets of-
ten depends strongly on these (spatially varying) properties.
There are two principal approaches that have been taken
by ice sheet modelers to approach these challenges: control
methods and sampling-based uncertainty quantification. Be-
low, we discuss these approaches in the context of ice sheet
modeling.

Control methods (MacAyeal, 1992), sometimes referred to
simply as “inverse methods” in a glacial flow modeling con-
text, consist of the minimization of a “cost” function involv-
ing some global measure of model–data misfit, as well as
regularization cost terms which penalize nonphysical behav-
ior (e.g., high variability at small scales or strong deviation
from prior knowledge). A strong benefit of control methods
is their ability to estimate hidden properties at the grid scale
through large-scale optimization techniques. Such methods
have been used extensively to calibrate ice sheet models
to observations (e.g., Rommelaere, 1997; Vieli and Payne,
2003; Larour et al., 2005; Sergienko et al., 2008; Morlighem
et al., 2010; Joughin et al., 2010; Fürst et al., 2015; Cornford
et al., 2015).

Uncertainty quantification (UQ) in projections of ice sheet
behavior is a crucial challenge in ice sheet modeling. Studies
of fast-flowing Antarctic glaciers have shown that uncertain-
ties in the parameters controlling ice flow can lead to large
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variability in modeled behavior (Nias et al., 2016). Thus, it
is of great importance to quantify how this parametric un-
certainty translates into uncertainty in projections. In some
cases, this uncertainty may be exogenous to the dynamics
of the ice sheet model (for instance, uncertainty in ocean-
driven ice shelf melt), while a likely important contributor
to ice sheet projection uncertainty (Robel et al., 2019) arises
from incomplete knowledge of the ocean system rather than
the dynamics of the ice model itself. This is in contrast to
parameters that must be constrained via calibration; their un-
certainties derive from observational uncertainty, uncertainty
in model physics, and a priori knowledge.

The uncertainty associated with ice sheet model calibra-
tion can be quantified through Bayesian inference, in which
prior knowledge is “updated” with observational evidence.
Such methods have been applied to continental-scale ice
sheet models and models of coupled ice–ocean interactions
(Gladstone et al., 2012; Ritz et al., 2015; Deconto and Pol-
lard, 2016). In these Bayesian studies, the dimension of the
parameter space is small (i.e., less than ∼ 20). Though the
methods of these studies differ, they share the common fea-
ture of generation of a large ensemble (thousands of runs)
through sampling of a parameter space. Bayesian methods
are then applied in conjunction with observational data to
find likelihood information for the parameters and associated
probability distributions of ice sheet behavior.

Applying such ensemble-based Bayesian methods to
glacial flow models and parameter sets of dimension
∼O(104–106) (a dimension size typical of control meth-
ods) is prohibited by computational expense. Although con-
trol methods might efficiently provide estimates of parame-
ter fields, they do not provide parametric uncertainty. While
it can be shown that such methods provide the most likely
parameter field (often referred to as the maximum a posteri-
ori, or MAP, estimate) (Raymond and Gudmundsson, 2009;
Isaac et al., 2015), the covariance of the joint probability dis-
tribution – necessary for assessing uncertainty in calibrated
model behavior at the MAP point – cannot be inferred.

Thus, there is at present a disconnect between the dual
aims of (i) modeling ice sheets as realistically as possi-
ble, i.e., through the implementation of higher-order stresses
and without making limiting assumptions regarding “hidden”
properties of the ice sheet, and (ii) uncertainty quantification
(UQ) of models by approximate inference by reducing the
dimensionality of the set of parameters.

By augmenting control methods using a Hessian-based
Bayesian approach, it is possible to quantify parametric un-
certainty without sacrificing parameter dimension or model
fidelity. Just as control methods can be interpreted as re-
turning the mode of a joint posterior probability distribu-
tion, it can be shown that, under certain assumptions, the co-
variance of the distribution can be characterized by the in-
verse of the Hessian (the matrix of second derivatives) of
the cost function with respect to the parameters (Thacker,
1989; Kalmikov and Heimbach, 2014; Isaac et al., 2015). For

a nonlinear model, calculating the Hessian involves model
second derivatives with respect to parameters, which can
be challenging for complex models; in many cases, second-
derivative information is ignored and the Hessian is ap-
proximated using first-derivative information only (Kamin-
ski et al., 2015). Such an approximation is referred to as
the Gauss–Newton Hessian (Chen, 2011). Some studies re-
tain second-derivative information, however, using varia-
tional methods (Isaac et al., 2015) or algorithmic differen-
tiation (AD) software (Kalmikov and Heimbach, 2014).

Once determined, the Hessian-based parameter covariance
can then be used to quantify the variance of a scalar quan-
tity of interest (QoI) of the calibrated model (e.g., ice sheet
sea level contribution over a specified period). One approach
to this is projecting the parameter covariance on to a lin-
earized model prediction (e.g., Kalmikov and Heimbach,
2014). Isaac et al. (2015) employ this methodology in a
finite-element ice flow model, but since their model is time-
independent, uncertainty estimates cannot be projected for-
ward in time.

In this study we introduce a framework for time-dependent
ice sheet uncertainty quantification and apply it to an ide-
alized ice sheet flow problem (Pattyn et al., 2008). Begin-
ning with a cost function optimization for sliding parameters
given noisy ice sheet velocity data, we then generate a low-
rank approximation to the posterior covariance of the sliding
parameters through the use of the cost function Hessian. In
our work, the Hessian is calculated through AD using the
“complete” Hessian rather than the Gauss–Newton approx-
imation. We then project the covariance on a linearization
of the time-dependent ice sheet model (again using AD to
generate the linearization) to estimate the growth of QoI un-
certainty over time. We also apply a method of sampling the
posterior distribution and use this to validate our calculation
of time-dependent QoI uncertainty for an idealized problem.

2 Methodology

2.1 Symbolic convention

To facilitate readability of this and subsequent sections we
adopt formatting conventions for different mathematical ob-
jects. Coefficient vectors corresponding to finite-element
functions appear as c, general vectors and vector-valued
functions as d̆ ∈ Rq , and matrices as E.

2.2 Mathematical framework

An ice sheet flow model can be thought of as a (nonlinear)
mapping from a set of input fields, which might be unob-
servable or poorly known (such as bed friction), to a set of
output fields, which might correspond to observable quan-
tities (such as surface velocity). Here, our focus is on the
probability distribution function (PDF) of a hidden field C
conditioned on an observational field U , i.e., p(C|U); our
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aim is to determine properties of this conditional distribution
through Bayes’ theorem:

p(C|U)=
p(U |C)p(C)

p(U)
. (1)

Here, p(U), the unconditional distribution of observations,
is effectively a normalization constant which we do not con-
sider further.

As described in Sect. 3, our ice sheet flow model is a finite-
element model, meaning C can be described by a vector of
finite dimension. We furthermore consider discrete observa-
tions, meaning U can be described by a finite-dimensional
vector as well (in general with different dimension from C).
We assume that observational errors follow a Gaussian distri-
bution. Referring to the vector of observations as ŭobs ∈ Rm,
this is expressed as

−log
(
p(ŭobs)

)
=

1
2
〈ŭobs− ŭtrue, ŭobs− ŭtrue〉0−1

obs

≡
1
2
‖ŭobs− ŭtrue‖

2
0−1

obs
. (2)

Here, 〈ă, b̆〉
0−1

obs
is the Euclidean inner product of ă with

0−1
obsb̆, where 0obs ∈ Sym+(m) (the set of real symmetric

positive definite m×m matrices) is the observational co-
variance matrix, and ‖ă‖

0−1
obs

is the norm associated with its
inverse. If the parameter field is represented by the vector
c ∈ Rn, then the conditional PDF p(U |C) satisfies

−log
(
p(ŭobs|c)

)
=

1
2
‖ŭobs− f̆ (c)‖

2
0−1

obs
, (3)

where f̆ : Rn→ Rm is a function from the space of param-
eter fields to the space of observations, i.e., our ice sheet
flow model. Note that the above construction equates f̆ (c)
with the “truth”; i.e., it assumes zero model error. In general
model error is extremely difficult to constrain, and doing so
is beyond the scope of our study; however, in Sect. 7 we dis-
cuss potential strategies to incorporate model error into our
framework.

The distribution p(C) in Eq. (1) is the prior PDF of c,
which expresses knowledge of C prior to consideration of
ice sheet observations and physics – for instance, the autocor-
relation scale of basal friction, which may be inferred from
proxies such as the presence of basal water inferred from ice-
penetrating radar. If the prior PDF is Gaussian, then the dis-
tribution of c conditioned on ŭobs satisfies

−log
(
p(c|ŭobs)

)
=

1
2
‖ŭobs− f̆ (c)‖

2
0−1

obs

+
1
2
‖c− c0‖

2
0−1

prior
, (4)

where c0 is the prior mean and 0prior ∈ Sym+(n) is the prior
covariance. This conditional distribution is referred to as the

posterior distribution, or ppost. If f̆ is linear, ppost is Gaus-
sian, with mean µ and covariance 0 given by

µpost,lin =0post,lin

((
∂f̆

∂c

)T
0−1

obs(ŭobs− f̆0)+0
−1
post,linc0

)
,

0post,lin =

((
∂f̆

∂c

)T
0−1

obs

(
∂f̆

∂c

)
+0−1

prior

)−1

. (5)

(The above can be derived by minimizing Eq. 4 with respect
to c with f̆ = f̆0+ (∂f̆/∂c0)(c− c0).)

Models of ice sheet dynamics are in general nonlinear,
however, and Eq. (5) does not strictly apply. Instead we use a
quadratic approximation to the negative log posterior (Bui-
Thanh et al., 2013; Isaac et al., 2015; Kalmikov and He-
imbach, 2014). Such an approximation considers a second-
order Taylor expansion of −log(ppost) about the mode of the
posterior or, equivalently, about the maximum a posteriori
(MAP) estimate cMAP. This leads to a Gaussian distribution
with mean cMAP and covariance

0post =

((
∂f̆

∂c

)T
0−1

obs

(
∂f̆

∂c

)

+0−1
prior+

(
∂2f̆

∂c2

)
0−1

obs(ŭobs− f̆ (c))

)−1

. (6)

Equation (6) differs from the covariance given by Eq. (5)
in that derivatives of f̆ depend on cMAP and in the final term
involving second derivatives of f̆ . Essentially, ppost is ap-
proximated by the Gaussian distribution with the local co-
variance at cMAP. While this is insufficient to calculate global
properties of ppost such as skew, it gives insight into the di-
rections in parameter space which are most (and least) con-
strained – information which can be propagated to model
projections.

2.3 Relation to control methods

By contrast with Bayesian methods, the control methods gen-
erally used in glaciological data assimilation (Morlighem
et al., 2010; Joughin et al., 2010; Cornford et al., 2015) find
the parameter set which gives the best fit to observations.
This is done by minimizing a scalar cost function which takes
the general form

J c
= J c

mis+ J
c
reg. (7)

J c
mis, the misfit cost, is the square integral of the misfit be-

tween the surface velocity of the ice model and remotely
sensed observations, normalized by the observational error.
These terms are discretized to implement the control method.
If the ice sheet model is solved via a finite-element scheme,
then the misfit cost can be written as

J c
mis =

1
2
‖ŭobs− ŭ‖

2
D−1
σ MD−1

σ

. (8)
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Here, ŭ and ŭobs are nodal values of the finite-element repre-
sentations of modeled and observed velocities, Dσ is a diag-
onal matrix containing standard errors of the ŭobs measure-
ments, and M is the mass matrix corresponding to the finite-
element basis φi : Mij =

∫
�
φiφjdA, where � is the compu-

tational domain. Jreg, the regularization cost, is imposed to
prevent instabilities and is generally chosen as a Tikhonov
operator which penalizes the square integral of the gradient
of the parameter field (e.g., Morlighem et al., 2010; Cornford
et al., 2015). In other words, regularization imposes smooth-
ness on the control parameter field, which otherwise may ex-
hibit variability at scales not strongly determined by the ob-
servations. Such a term can generally be written as a positive
definite quadratic form of c.
J c is thus a functional with a form similar to Eq. (4), i.e.,

the negative log posterior. In this sense, solving the con-
trol problem is equivalent to finding cMAP. However, there
are important differences between J c

mis and the first term of
Eq. (4). The former is an L2 inner product (which, with stan-
dard continuous finite elements, introduces mesh-dependent
factors in the covariance), while the latter is an inner product
involving values at a fixed set of observation points (which
does not). Identifying J c as a negative log posterior there-
fore implies observational errors that are changed by factors
related to grid cell areas.

Our framework effectively uses a control method – but one
which allows calculation of the posterior covariance after the
MAP point is found. As such we use a fixed set of points, as
described above, in our misfit cost term. Thus, the Hessian
of the cost function of our control method is equal to the in-
verse of the posterior covariance given by Eq. (6). However,
our form of J c

reg does not involve the square integral of the
gradient of c, as Bui-Thanh et al. (2013) note that this can
lead to unbounded prior covariances as the numerical grid is
refined. These authors recommend a discretization of a dif-
ferential operator of the form

L(·)≡ γ∇2(·)− δ(·), (9)

where γ and δ are positive scalars which are in general spa-
tially varying, though in the present study we consider only
constants. The second term on the right-hand side ensures the
operator is invertible; though there are other ways of doing
this (e.g., Keuthen and Ulbrich, 2015), it is a computationally
simple approach. Isaac et al. (2015) use the same definition
for their prior, which we adopt in our study as well. Hence,
our regularization term is

J c
reg =

∫
�

1
2
(L(c))2dA=

1
2
‖c‖2LM−1L, (10)

where L is the operator on the finite-element space such
that φTi Lφj =

∫
�
φiL(φj )dA for all φi and φj . Thus, in the

Bayesian interpretation of the control method optimization,
the prior covariance is given by

0prior = L−1ML−1. (11)

2.4 Low-rank approximation

In the previous section we establish that the posterior covari-
ance is equivalent to the inverse of the Hessian of the (suit-
ably defined) cost function. With a large parameter space,
though, calculating the complete Hessian (and its inverse)
can become computationally intractable. Still, in many cases,
the constraints on parameter space provided by observations
can be described by a subspace of lower dimension. In the
present study, our idealized examples are small enough that
the full Hessian can be calculated, but to provide scalable
code we seek an approximation to the posterior covariance
that exploits this low-rank structure.

The following low-rank approximation follows from Isaac
et al. (2015), and similar approaches are used in Bui-Thanh
et al. (2013) and Petra et al. (2014). We define the term(
∂f̆

∂c

)T
0−1

obs

(
∂f̆

∂c

)
+

(
∂2f̆

∂c2

)
0−1

obs(ŭobs− f̆ (c))

from Eq. (6) as Hmis, the Hessian of the misfit component of
the negative log posterior (or, equivalently, of the misfit cost
term). Equation (6) can be written as

0post =

(
Hmis+0

−1
prior

)−1

. (12)

This can be rearranged as

0post =

(
0priorHmis+ I

)−1

0prior. (13)

The term H̃mis ≡ 0priorHmis is referred to as the “prior-
preconditioned Hessian”, and it has the eigendecomposition

H̃mis = C3C−1, (14)

where 3 is a diagonal matrix of eigenvalues and C contains
the corresponding eigenvectors. H̃mis is not in general sym-
metric positive semidefinite (even though Hmis and 0prior
both are), but Eq. (14) can be written as

0
1
2
priorHmis0

1
2
prior = 0

−
1
2

priorC3C−10
1
2
prior, (15)

i.e., an eigendecomposition of the symmetric matrix

0
1
2
priorHmis0

1
2
prior. Thus, the eigenvalues in 3 are real-valued,

and the eigenvectors C can be chosen to be 0−1
prior-orthogonal,

i.e., such that

CT0−1
priorC= I. (16)

While Hmis could be eigendecomposed directly, decom-
posing H̃mis better informs uncertainty quantification. We as-
sume an ordering of the eigenvalues λi such that λi+1 ≤ λi .
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For an eigenvector ck with eigenvalue λk , the negative log
posterior probability density evaluated at c = ck + cMAP is

〈ck,Hck〉 = 〈ck, (Hmis+0
−1
prior)ck〉

= 〈ck, (0
−1
priorH̃mis+0

−1
prior)ck〉

= λk〈ck,0
−1
priorck〉+ 〈ck,0

−1
priorck〉

= (1+ λk)〈ck,0−1
priorck〉

= (1+ λk). (17)

In other words, the leading eigenmodes of H̃mis correspond
to directions in which the posterior uncertainty is reduced
the most relative to the prior uncertainty in those directions.
Thus, one can truncate the eigendecomposition, neglecting
eigenmodes for which the data provide minimal information.
The Sherman–Morrison–Woodbury matrix inversion lemma
gives

0post = (I−CDC−1)0prior, (18)

where D is a diagonal matrix with entries dkk = λk/(1+λk),
and with Eq. (16) this becomes

0post = 0prior−CDCT . (19)

This can then be approximated by

0post ∼ 0prior−CrDrCTr , (20)

where Cr represents the first r columns of C and similarly
for Dr .

In this study, the problems considered are sufficiently
small that we calculate all eigenvalues; i.e., we do not carry
out a low-rank approximation. In general, though, a strat-
egy for deciding r is needed. Isaac et al. (2015) recommend
choosing r such that λr � 1, which may in some cases re-
sult in a large value for r . A more pragmatic approach would
be to choose r such that in Eq. (22), the QoI variance (see
Sect. 2.5) has negligible change when approximating with
additional eigenvalue–eigenvector pairs.

2.5 Propagation of errors

Often of interest is how the observational data constrain out-
puts of a calibrated model as opposed to how they constrain
the calibrated parameters themselves. (A simple analogy is
an extrapolation using a regression curve, which is generally
of more interest than the regression parameters.) Such an out-
put is termed a quantity of interest (QoI) Q, an example of
which is the loss of ice volume above floatation (VAF), the
volume of ice that can contribute to sea level, at a certain
time horizon. Here we write QT (c) to indicate the value of
Q based on the output of the calibrated model at time horizon
T .

The distribution of QT can be assessed by sampling from
the posterior distribution of c, although such sampling might

be slow to converge. Alternatively, an additional linear as-
sumption can be made. Neglecting higher-order terms, QT

can be expanded around cMAP:

QT =QT (cMAP)+

(
∂QT

∂c

)
(c− cMAP). (21)

As this is an affine transformation of a Gaussian random vari-
able, QT has a mean of QT (cMAP) and a variance of

σ 2(QT )=

(
∂QT

∂c

)T
0post

(
∂QT

∂c

)
. (22)

If ∂QT
∂c

can be found at a number of times T along a model
trajectory, then the growth of uncertainty along this trajectory
arising from parametric uncertainty can be assessed.

Note that the assumption of linearity in Eq. (21) is in gen-
eral false due to the nonlinear momentum and mass balance
equations that define a time-dependent ice sheet model. For
the idealized experiments conducted in this paper, we com-
pare the above estimate for the variance with that derived
from sampling the posterior.

3 Numerical approach

In this study we use a new numerical code, fenics_ice,
which is a Python code that implements the time-dependent
shallow shelf approximation (SSA; MacAyeal, 1989). The
SSA is an approximation to the complete Stokes stress bal-
ance thought to govern ice flow. In the approximation the
vertical stress balance is assumed to be hydrostatic such that
normal stress is in balance with the weight of the ice col-
umn. Additionally, flow is assumed to be depth-independent.
These approximations reduce a three-dimensional saddle-
point problem to a two-dimensional convex elliptic problem,
enabling a more efficient solve. The nonlinear power-law
rheology of the full Stokes problem is retained, however. De-
spite these simplifications, the SSA describes the flow of fast-
flowing ice streams and floating ice shelves well (Gagliardini
et al., 2010; Cornford et al., 2020).

The fenics_ice code makes use of two sophisticated
numerical libraries: FEniCS (Logg et al., 2012; Alnæs
et al., 2015), an automated finite-element method equation
solver, and tlm_adjoint (Maddison et al., 2019), a li-
brary which implements automated differentiation of nu-
merical partial differential equation solvers. FEniCS is a
widely used software library which abstracts the user away
from low-level operations such as element-level operations.
Rather, the weak form of the equation is written in Unified
Form Language (UFL; Alnæs et al., 2014), and FEniCS
generates optimized low-level code which solves the related
finite-element problem with specified parameters (e.g., the
order of the basis functions). The tlm_adjoint library
implements high-level algorithmic differentiation of codes
written with FEniCS or Firedrake.

https://doi.org/10.5194/gmd-14-5843-2021 Geosci. Model Dev., 14, 5843–5861, 2021
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The tlm_adjoint library is used for several of the op-
erations detailed in Sect. 2. It facilitates the minimization
of the model–data misfit cost J c (Sect. 2.3) with respect
to x (which is equivalent to finding the mode of the pos-
terior density of x). The higher-order derivative capabili-
ties of tlm_adjoint furthermore enable efficient com-
putation of the product of the Hessian of J c with arbi-
trary vectors, enabling an iterative eigendecomposition of
the prior-preconditioned Hessian as described in Sect. 2.4.
Finally, tlm_adjoint’s time-dependent capabilities en-
able differentiation of the temporal trajectory of the quan-
tity of interest QT , enabling projections of posterior uncer-
tainty as described in Sect. 2.5. In our experiments in the
present study, our cost function J c is time-independent – but
tlm_adjoint does allow for efficient calculation of Hes-
sian vector products for time-varying functionals (Maddison
et al., 2019, their Sect. 4.2) – meaning time-varying data
constraints can be considered with fenics_ice. Currently
fenics_ice calls SLEPc for the solution of the general-
ized eigenvalue problem

HmisC= 0priorC3, (23)

ensuring real-valued eigenvalues – though in future versions
of fenics_ice randomized algorithms of the type used by
Villa et al. (2018) can be used without loss of generality.

The fenics_ice code solves the shallow shelf approx-
imation by implementing the corresponding variational prin-
ciple (Schoof, 2006; Dukowicz et al., 2010; Shapero et al.,
2021):∫
�

2Hν∇φ : (εu+Tr(εu)I)dA+
∫
�

C2χφ ·udA

+

∫
�

W∇R ·φ−F∇ ·φdA

+

∫
0c

(φ ·n) ·

(
1
2
ρg(H 2

− (ρw/ρ)|z
−

b |
2)−F

)
dA= 0. (24)

Here, φ is a vector-valued test function, and u is the depth-
integrated horizontal velocity vector. εu is the horizontal
strain-rate tensor 1

2 (∇u+u
T ), I is the 2×2 identity tensor,

and “:” represents the Frobenius inner product.H is ice sheet
thickness (the elevation difference between the surface, zs,
and the base, zb), and ν is ice viscosity, which depends on
the strain-rate tensor:

ν =
1
2
Bε

1−n
2n
e ,

εe =ε
2
11+ ε

2
22+ ε

2
12+ ε11ε22.

B is generally referred to as the “stiffness” of ice and is
thought to depend on ice temperature. In all experiments
in this study, B is spatially constant and corresponds to a
temperature of −12.5 ◦C (Cuffey and Paterson, 2010); n is

a measure of the degree of strain weakening of ice, with a
widely accepted value of 3 (Glen, 1955). C is a real-valued,
spatially varying sliding coefficient, and χ is a function that
indicates where ice is grounded according to the hydrostatic
condition:

H > (−ρw/ρ)R ≡Hf , (25)

where ρ and ρw are ice and ocean densities, respectively, and
R is bed elevation (note that zb = R when this condition is
satisfied). In our code C can in general depend locally on
velocity and thickness, though in this study we consider only
a linear sliding law, i.e., one in which C varies only with
location.

F is defined as

F =
{

1
2ρgH

2 H >Hf ,

1
2ρg(ηH

2
+ (1− η)H 2

f otherwise,
(26)

where η = (1− ρ/ρw), and W as

W =
{
ρgH H >Hf ,

ρgHf otherwise.
(27)

0c is defined as the calving boundary, i.e., the boundary
along which the ice sheet terminates in the ocean (or in a
cliff on dry land), and n is the outward normal vector at this
boundary. Finally, |z−b | indicates the negative part of the ice
base; i.e., it is zero when zb = R > 0. The third integral of
Eq. (24) is the weak form of the driving stress of the ice sheet,
τ d = ρgH∇zs. Although in our experiments in this study we
consider only grounded ice, the full weak form is shown for
completeness. The form of the driving stress term used here,
∇F +W∇R, is not standard in glacial flow modeling, but
it is equivalent to the more common form when thickness is
represented by a continuous finite-element function.

In addition to the momentum balance, the continuity equa-
tion is solved:

Ht +∇ · (Hu)= b. (28)

Here, b represents localized changes in mass at the surface
or the base of the ice sheet, i.e., accumulation due to snow-
fall or basal melting of the ice shelf by the ocean (though in
the present study, surface b = 0). The continuity equation is
solved using a first-order upwind scheme, which is implicit
in H and explicit in u. In this study, we do not consider ini-
tializations based on time-varying data (i.e., the misfit cost
function J c

mis does not depend on time-varying fields), so the
continuity function is only involved with finding a quantity
of interest and propagation of initialization uncertainty.

We discretize velocity (u) using first-order continuous La-
grange elements on a triangular mesh. In the present study
thickness (H ) is discretized with first-order continuous La-
grange elements as well – although we point out that for-
mulation (Eqs. 26 and 27), together with an appropriate dis-
cretization for the continuity equation (Eq. 28), will allow for
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discontinuous Galerkin elements (which have been found in
more realistic experiments with fenics_ice to improve
stability of time-dependent simulations). Equation (24) is
solved for u with a Newton iteration, with the Jacobian cal-
culated at the level of the weak equation form using core
FEniCS features. In the early iterations of the Newton solve,
the dependence of ν on u is ignored in the Jacobian. This
“linear” fixed-point iteration (often referred to in glacial
modeling as Picard iteration; Hindmarsh and Payne, 1996)
aids the Newton solver as it has a larger radius of conver-
gence. Once the nonlinear residual has decreased by a spec-
ified amount (a relative tolerance of 10−3 is used for this
study), the full Newton iteration is applied.

To carry out an inversion, a cost function is minimized
using the L-BFGS-B algorithm (Zhu et al., 1997; Morales
and Nocedal, 2011) supplied with SciPy 1.5.2 (although note
that no bounds on the controls are used). SLEPc (Hernandez
et al., 2005) is used to implement the eigendecomposition
described in Sect. 2.4 using a Krylov–Schur method. Rather
than solve the eigenvalue problem (Eq. 14), we solve the gen-
eralized Hermitian eigenvalue problem:

HmisC= 0−1
priorC3, (29)

which guarantees real-valued eigenvalues. (Despite 3 being
real-valued, the application of SLEPc to the non-Hermitian
eigenvalue problem in Eq. 14 represents eigenvectors as
imaginary, effectively doubling the memory requirements.)

4 Numerical experiments

In this study, we aim to do the following.

1. Establish that control method optimizations can be car-
ried out with fenics_ice

2. Calculate eigendecompositions of the prior-
preconditioned model misfit Hessian as described
in Sect. 2.4, examining the impacts of regularization,
resolution, and spatial density and autocorrelation of
observations y̆obs on the reduction of variance in the
posterior

3. Propagate the posterior uncertainty onto a quantity of
interest QT as in Sect. 2.5

4. Establish, through simple Monte Carlo sampling, that
the variance found through Eq. (22) is accurate

Control method optimizations using ice sheet models have
been done extensively with parameter sets of very high di-
mension (e.g., Cornford et al., 2015; Goldberg et al., 2015;
Isaac et al., 2015), so our results regarding point (1) above
simply demonstrate the capabilities of fenics_ice but are
not novel. Isaac et al. (2015) carry out eigendecompositions
of the prior-preconditioned model–misfit Hessian and project

the associated uncertainty onto a quantity of interest – how-
ever, their QoI is time-independent. Importantly, Hessian-
based uncertainty quantification has not been implemented
for a model of ice dynamics using algorithmic differentiation
before. Moreover, a time-dependent QoI has not been con-
sidered, nor has the impact of observational data density on
the posterior uncertainty.

Investigating these and similar factors comprehensively, as
well as validating the assumption of Gaussian statistics that
leads to Eq. (22), requires a model setup that is relatively in-
expensive to run. We therefore choose one of the simplest
frameworks possible for our numerical experiments: that of
the benchmark experiments for higher-order ice sheet mod-
els (ISMIP-HOM) intercomparison (Pattyn et al., 2008). We
adopt the experiment ISMIP-C, a time-independent experi-
ment in which an ice sheet slides across a doubly periodic
domain with constant thickness and a basal frictional factor
that varies sinusoidally in both horizontal dimensions. The
relation between velocity and basal shear stress is linear:

τ b =−C
2(x,y)u, (30)

where C is the factor from the second integral of Eq. (24),
which has the form

C(x,y)=

√
1000+ 1000 sin

(
2πx
Lx

)
sin
(

2πy
Ly

)
, (31)

with units of Pa (m a)−1, where Lx and Ly are experimental
parameters. In this ISMIP-C specification, thickness is con-
stant (H = 1000 m) and a shallow surface slope of 0.1◦ is
imposed. In this ISMIP-HOM intercomparison, SSA mod-
els compared well with Stokes models for Lx and Ly over
∼ 40 km, so this is the value we use in our study. A regular
triangular mesh is used to solve the model. Unless otherwise
stated, the cell diameter of the mesh is 1.33 km.

In our experiments, the momentum balance (Eq. 24) is
solved on a highly refined grid and taken to be the truth.
To generate synthetic observations, values are interpolated to
predefined locations. Observational error is then simulated
by adding Gaussian random noise to these values. (These
synthetic observations correspond to ŭobs in Eq. 2.) In this
study observational points occur at regular intervals, though
our code allows for arbitrary distributions of observation
points. Unless stated otherwise, in this study observational
data points are spaced 2 km apart, with the velocity vector
components coincident, and observational uncertainties are
mutually independent with a standard deviation of 1 m a−1.
The regular spacing of observational points is not realis-
tic and other studies use randomly scattered locations (e.g.,
Isaac et al., 2015); however, this choice is in line with the
idealized nature of our study and furthermore allows com-
prehensive investigation of the effects of observational den-
sity (Sect. 5.4).

Our parameter-to-observable map f̆ is really a composi-
tion of two functions: the first finds the solution to the mo-
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mentum balance (Eq. 24) as a finite-element function, and
the second interpolates the function to discrete locations. If
the misfit cost were to be expressed as the weighted L2 norm
of the model–data misfit as in Eq. (8), then the interpolation
function is replaced by the identity.

An inverse solution c is then found using a control method,
where c is the vector of nodal coefficients of C. Below we re-
fer to C as the sliding parameter. Note that minimization is
with respect to C and not C2. Our cost function J c

IS is com-
posed of a misfit term equal to the negative log density of
observed velocities conditioned on c (see Eq. 2), and the reg-
ularization operator is the discretized form of Eq. (9):

J c
IS =

1
2
‖ŭobs− f̆ (c)‖

2
0−1

u,obs
+

1
2

∫
�

‖L(C−C0)‖
2dA

=
1
2
‖ŭobs− f̆ (c)‖

2
0−1

u,obs
+

1
2
‖c− c0‖

2
LM−1L, (32)

where L is as described in Sect. 2.3. In many studies, the
optimal value for γ , the regularization parameter, is deter-
mined heuristically through an L-curve analysis (e.g., Gillet-
Chaulet et al., 2012) – although there are alternative ap-
proaches (e.g., Waddington et al., 2007; Habermann et al.,
2013). Here we examine, for different values of γ , the de-
gree of uncertainty reduction associated with the cost func-
tion optimization. In other words, we seek the posterior den-
sity of c, the coefficient vector of the finite-element function
C. (We conduct an L-curve analysis, but only as a guide-
line for which values of γ to examine.) In our experiments,
C0, the prior value of C, is uniformly zero – indicating we
have no preconceived notion of its mean value, only its spa-
tial variability (implied by γ ).

ISMIP-C does not prescribe a time-dependent component,
but it is straightforward to evolve the thickness H (which is
initially uniform) according to Eq. (28), where m= 0. We
define a quantity of interest QIS

T as

QIS
T =

∫
�

(H(T )−H0)
4dA. (33)

Unlike volume above floatation, the example given in
Sect. 2.5, QIS

T has no strong physical or societal signifi-
cance. However, it is convenient to calculate and sufficiently
nontrivial and nonlinear that the effects of uncertainty in
C, as well as the strength of the prior covariance, can be
seen. Moreover, volume above floatation is insensitive to
small-scale variability in thickness – but there may be scien-
tific motivation to study quantities of interest which do take
such variability into account (see Sect. 7). Thus, we choose
Eq. (33) as a QoI which is straightforward but also an indi-
cator of thickness variability.

In our error propagation we evolve the ISMIP-C thickness
for 30 years and use the time-dependent adjoint capabilities
of fenics_ice to find ∂QIS

T /∂c for discrete values of T

Figure 1. An L curve showing the trade-off between model misfit
(first and second terms of Eq. 32) and the regularization cost (the
second terms of Eq. 32 divided by γ ). Associated values of the reg-
ularization parameter γ are shown. In all optimizations, δ is equal
to 10−5, and observational points occur at intervals of 2 km.

over this period, and uncertainty at these times is found us-
ing Eq. (22); an uncertainty “trajectory” is then found for
QIS via interpolation. Our results regarding the uncertainty
of QIS and the quadratic approximation inherent in Eq. (22)
are then tested via sampling from the posterior as described
in Sect. 5.3.1.

5 Results

5.1 Parameter uncertainties

5.1.1 Effect of regularization

An L curve for our inversion results (Fig. 1) shows the be-
havior of regularization cost and model–data misfit as γ is
varied over 3 orders of magnitude. In all inversions, c is ini-
tialized assuming a pointwise balance between driving stress
and basal drag arising from interpolated velocity observa-
tions, and J c is lowered from the initial value by a factor
of ∼ 103 (meaning the probability density associated with
C, proportional to e−J

c
, is increased by a factor of approxi-

mately 10400).
While misfit does not vary greatly in a proportional sense,

it suggests γ = 10 as a reasonable trade-off between mis-
fit and regularization. Figure 2 displays results of an inver-
sion with a “strong” level of regularization (γ = 50; referred
to below as the γ50 experiment). The resulting C is rela-
tively smooth (Fig. 2a), and the misfit is generally small
though with some outliers (Fig. 2d). (Misfit is displayed as
a histogram of errors – obtained by interpolating the finite-
element solution to the sampled velocity locations – rather
than as a spatially continuous function to emphasize the dis-
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crete nature of the model–data misfit.) Figure 3 gives equiv-
alent results for a “weak” regularization inversion (γ = 1;
referred to below as the γ1 experiment). The misfit distri-
bution is similar, but the inverted sliding parameter is sig-
nificantly noisier as a result of weaker constraints on these
“noisy” modes by the prior.

The effect of regularization on reduction of uncertainty
can be seen from examining the eigenvalues defined by
Eq. (14). More precisely, the ratio 1/(1+λi), where λi is the
ith leading eigenvalue, is examined. As shown in Sect. 2.4,
this ratio gives the reduction in variance of the associated
eigenvector in the posterior PDF relative to the prior distribu-
tion. In Fig. 4a this quantity is shown for the eigenvalue spec-
tra corresponding to γ = 1, 10, and 50. For all inversions,
uncertainty reduction is several orders of magnitude for the
leading eigenvalues, but the tails of the spectra are quite dif-
ferent. In the case of strong regularization, there is little re-
duction in variance beyond i ∼ 100, while in the weakly reg-
ularized case there is considerable reduction across the entire
spectrum. This discrepancy can be interpreted as the prior
providing so little information in the low-regularization case
that the information provided by the inversion reduces uncer-
tainty across all modes. The comparison of eigenvalue spec-
tra across experiments is only meaningful to the extent that
the corresponding eigenvectors are equivalent. A compari-
son between the four leading eigenvectors in the high- and
low-regularization experiments (Fig. 5) shows they are not
equivalent but have the same overall structure. (Differences
arise due to cMAP but also due to differences in 0prior.)

Approximating the posterior covariance of c, 0post, also al-
lows an estimation of 6C , the pointwise variance of C. This
is done via calculation of the square root of the diagonal en-
tries of 0post, i.e., the standard deviation of the marginal dis-
tributions of the coefficients of c. 6C is shown for the in-
versions discussed above in Figs. 2b and 3b. Pointwise un-
certainties in γ1 are 5–10 times larger than in γ50. For γ50
there is a clear pattern of higher uncertainty where the bed
is weaker (i.e., C is smaller), though for γ1 it is difficult to
discern any pattern.

5.1.2 Effect of resolution

The impacts of grid resolution on eigenvalue spectra are in-
vestigated (Fig. 4b). In Isaac et al. (2015), it was shown that
the leading eigenvalues were independent of the numerical
mesh, implying that the leading eigenvectors – the patterns
for which uncertainties are quantified – are not dependent on
the dimension of the parameter space (which would be an
undesirable property). Our spectra suggest that at 2 km res-
olution, there is mesh dependence, but the spectra for 1.33
and 1 km resolution are in close agreement, suggesting mesh
independence (Isaac et al., 2015). Consistent values of γ and
δ are used for these experiments, meaning the results of the
L curve in Fig. 1 are not dependent on model resolution.

5.2 Propagation of uncertainties

5.3 Linear propagation of uncertainties

The low-rank approximation of the posterior covariance of c
found with Eq. (20) can be used to estimate the uncertainty

ofQIS
T using Eq. (22). To do so, ∂Q

IS
T

∂c
must be found, which is

done using algorithmic differentiation of the time-dependent

model as described in Sect. 4. Figures 2e and 3e show ∂QIS
30

∂c
arising from their respective inversions. There is small-scale
noise in the low-regularization experiment (γ1), but the gen-
eral pattern and magnitude between the two gradients are
similar, with strengthening of weak-bedded areas and weak-
ening of strong-bedded areas both leading to an increase in
the fourth-order moment of thickness. The gradient of QIS

T

with respect to c is found for intermediate values of T over
the 30-year interval, with σ(QIS

T ) calculated at these times –
which can then be linearly interpolated to find a trajectory of
uncertainty. In our experiments we find the gradient of QIS

T

every 6 years. In Fig. 6a these trajectories are shown for the
γ50 and γ1 experiments, plotted as a 1σ error interval around
the calculated trajectory of QIS

T .
The trajectory of uncertainties for γ50 and γ1 can also be

seen in Fig. 6b compared against the trajectories of((
∂QIS

T

∂c

)T
0prior

(
∂QIS

T

∂c

))1/2

, (34)

i.e., the prior uncertainty linearly projected along the trajec-
tory ofQIS

T . This uncertainty measure is not physically mean-
ingful as it depends on the calculated ∂QIS

T /∂c, which in turn
depends on the inversion for c and the related trajectory of
QIS
T – and a random sample from the prior distribution of c

is unlikely to yield such a trajectory. Still, it serves as a mea-
sure of decrease in uncertainty arising from the information
encapsulated in the observations and model physics.
QIS
T is greater in magnitude in the γ = 1 experiment than

in the γ = 50 experiment at all times – and it can be seen
from the uncertainty of the γ1 trajectory that this difference
is statistically significant. The two experiments have differ-
ing (inverse) solutions, with the γ1 inversion favoring a closer
fit to noisy observations at the cost of small-scale variability
in the inverse solution. Our quantity of interest (the fourth-
order moment of thickness) is sensitive to this small-scale
variability, so uniformity of trajectories of QIS

T would not be
expected. At the same time, the level of QoI uncertainty in
the γ1 trajectory relative to that of the γ50 QoI uncertainty
is much smaller than the relative magnitudes of the inver-
sion uncertainties (see Figs. 2b, 3b) would suggest. This can
be rationalized by considering Eq. (22): uncertainty in the
QoI will depend on the extent to which uncertain parameter
modes project onto the gradient of the QoI with respect to the
parameters. While the γ1 inversion results are overall more
uncertain, the leading order modes are still constrained quite
strongly. Thus, while QIS

T is to a degree sensitive to small-
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Figure 2. Results of the control method inversion with γ = 50. (a) The recovered basal traction C2. (b) The pointwise standard deviation
of the sliding parameter C. (c) The surface speed associated with the inverted C. (d) Histogram of model–data velocity misfit (where misfit
is the 2-norm of the difference of observed and modeled velocity). (e) The sensitivity of QIS

30 to the sliding parameter. (f) Thickness after
30 years of time stepping.

Figure 3. Similar to Fig. 2 but with γ = 1. Note the difference in color map with Fig. 2b.

scale variability it may still filter the most uncertain modes of
the γ1 inversion, resulting in a smaller QoI uncertainty than
expected. In fact, it can be seen from Fig. 6b that despite the
large differences in prior distributions between γ50 and γ1,
the projections of the respective prior covariances along the
trajectory of QIS

T are very similar, suggesting that the gradi-
ent of QIS

T does not project strongly on the modes which are
poorly constrained in the γ1 experiment.

5.3.1 Direct sampling of QoI uncertainties

Ideally, the assumptions implicit in the calculation of QoI
uncertainties shown in Fig. 6a would be tested through unbi-

ased sampling from the prior distributions of c, followed by
using the sampled parameters to initialize the time-dependent
model and generating a sample of trajectories of QIS

T and fi-
nally scaling the probability of each member of the ensem-
ble based on the observational likelihood function p(ŭobs|c).
However, given the dimension of the space containing c

(equal to 900 in our idealized experiment but on the order of
104–105 in more realistic experiments), the number of sam-
ples required to ensure non-negligible likelihoods would not
be tractable without a sophisticated sampling strategy such
as Markov chain Monte Carlo (MCMC) methods (Tierney,
1994) (and even then it may require approximations similar
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Figure 4. Uncertainty reduction factor 1/(1+λk) versus eigenvalue index k for a range of experiments. (a) Dependence of reduction spectra
on the regularization parameter γα . (b) Dependence of reduction spectra on model resolution. (c) Dependence of reduction spectra on the
density of observational sample points. (d) Dependence of reduction spectra on the density of observational sample points with nonzero
observational covariance.

Figure 5. (a–d) Leading four eigenvectors of C in the γ50 experiment. (e–g) Leading four eigenvectors of C in the γ1 experiment.

to those described above; Martin et al., 2012; Petra et al.,
2014). However, such approaches are beyond the scope of
this study.

The assumptions in our propagation of observational and
prior uncertainty to the quantity of interest uncertainty are (i)
Gaussianity of the distribution of c and (ii) linearity of the
map from c to QoI. While (i) cannot be tested for the rea-
sons stated above, (ii) can be tested by sampling from the
calculated posterior distribution of c, initializing the time-

dependent model, and finding the ensemble variance and
standard deviation of QIS

T . Our strategy for sampling from
the posterior is described below and is based on the deriva-
tion in Bui-Thanh et al. (2013).

A randomly sampled vector x will have covariance 0post
and mean cMAP if it is generated via

x = cMAP+KN, (35)
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Figure 6. (a) Paths of QIS
T

in the γ50 experiment (blue) and γ1 experiment (green). Shading shows the 1σ uncertainty interval for each
trajectory calculated by projecting the Hessian-based (posterior) uncertainty along the linearized trajectory. (b) Uncertainties in the time-
dependent experiments over time. Dashed lines: prior uncertainties projected along the linearized QIS

T
trajectory. Solid lines: Hessian-based

posterior uncertainties projected along the linearized trajectory. Markers: standard deviation of QIS
T

from sampling the posterior density. In
both panels, green corresponds to γ50 and blue to γ1.

where N is a sample from a multivariate normal distribu-
tion N∼N (0,I) of the same dimension as c, and K is such
that KKT

= 0post. Hence, it is required to find a suitable
K. We restate the generalized eigenvalue problem HmisC=
0−1

priorC3. Since C is orthogonal in the inverse prior covari-
ance (see Eq. 16), the identity matrix I can be spectrally de-
composed in ci (the columns of C):(∑

cic
T
i 0
−1
prior

)
= I. (36)

Rearranging gives
∑
cic

T
i = 0prior, so (see Eq. 20)

0post ∼ 0prior−CrDrCTr

=

n∑
i=1

cic
T
i −

r∑
i=1

cic
T
i

(
λi

1+ λi

)

=

n∑
i=r+1

cic
T
i +

r∑
i=1

cic
T
i

(
1

1+ λi

)
. (37)

We define the matrix B:

B= 0prior+

r∑
i=1

cic
T
i

(
λi

√
1+ λi

− 1
)

=

n∑
i=r+1

cic
T
i +

r∑
i=1

cic
T
i

(
1

√
1+ λi

)
. (38)

And due to the 0−1
prior orthogonality of C,

B0−1
priorB

T
=

n∑
i=r+1

cic
T
i +

r∑
i=1

cic
T
i

(
1

1+ λi

)
= 0post. (39)

Therefore, a suitable K is given by (see Eq. 11)

B0−1/2
prior = BLM−1/2. (40)

The action of the square root of the mass matrix M is found
by a Taylor series approach (Higham, 2008, Eq. 6.38). Fig-
ure 7 shows a result of sampling from the posterior in the γ50
experiment. To the left (panel a), a realization of the prior dis-
tribution, with mean zero and covariance 0prior, is displayed.
(This realization is found similarly to that of the posterior,
with the formulaN01/2

prior.) To the right (panel b), a realization
of the posterior distribution is shown with the mean cMAP re-
moved. (Note that both samples are derived from the same
realization of N.) From comparing the images it can be seen
that variance is greatly reduced, particularly at medium to
large scales. By contrast, when the posterior distribution of
γ1 is sampled, the result is very similar to the prior. Very lit-
tle reduction of variance is visually apparent, especially at
small scales.

Using this method of sampling the posterior, an ensem-
ble of 1000 30-year runs is carried out for both low- and
high-regularization experiments (γ1 and γ50, respectively),
and standard deviations of QIS

T are calculated at discrete
times. Values are plotted in Fig. 6b. (For each such calcu-
lation, the variance quickly converged to the value shown, so

Geosci. Model Dev., 14, 5843–5861, 2021 https://doi.org/10.5194/gmd-14-5843-2021



C. Koziol et al.: Quantifying ice sheet uncertainty 5855

Figure 7. (a) A realization of the prior density of C for the γ50 experiment. (b) A realization of the posterior density of C for the γ50
experiment with mean cMAP removed.

it is unlikely that the quantity of interest is under-sampled.)
In the γ50 experiment there is strong agreement between
the sampled uncertainties and those found via projecting C
uncertainty along the linearized QoI trajectory, suggesting
that the linear approximation inherent in Eq. (22) is appro-
priate. In contrast, there are large discrepancies in the γ1
case. It is likely that the small-scale noise inherent in the
low-regularization samples (see Fig. 8) impacts the quantity
of interest strongly enough that the linear approximation in
Eq. (22) breaks down – despite the fact that this noise does
not strongly affect the cost function J c. As mentioned in
Sect. 5.2, this may be due to the nature of the QoI. In the
γ10 experiment (not shown), the disagreement in uncertain-
ties is on the order of 30 – greater than for the γ50 experiment
but far less than for γ1.

5.4 Observational density and uncertainty

In all results presented to this point, the imposed locations
for observational data ŭobs and v̆obs lie on a regular grid with
a spacing of 2 km. Here we consider the effects of the ob-
servational spatial density on the reduction of uncertainty in
c.

5.4.1 Effect of observation spacing

Eigendecompositions of the prior-preconditioned misfit Hes-
sian (Ĥmis) are carried out for observational spacings of
500 m, 1 km, 2 km, 4 km, and 8 km. (The 2 km case corre-
sponds to the γ10 experiment in Fig. 4a.) In all other respects
the experiments are identical. Results are shown for compar-
ison in Fig. 4c. Increasing spatial density appears to reduce
uncertainty: in the 500 m case, there is considerable uncer-
tainty reduction even in cases in which there is almost no re-
duction in coarser-observation cases. The result is intuitive:
each increase in observational density quadruples the number
of independent constraints, effectively adding more informa-

tion (though a more sophisticated framework is required to
quantify the information increase from a given observation;
e.g., Alexanderian et al., 2014).

Comparison of eigenspectra relies on the corresponding
eigenvectors being the same, or similar, between the exper-
iments. As in the regularization and resolution experiments,
the eigenvectors depend on the exact form of Ĥmis, which in
turn depends on cMAP; this may differ between the experi-
ments due to the differing number of points. However, they
are likely to be of similar patterns (on the basis of the results
of Sect. 5.1.1).

5.4.2 Effect of observational covariance

The results described above imply that posterior uncertainty
could be made arbitrarily small by increasing the spatial den-
sity of observations (although we do not examine observa-
tions more dense than 500 m). However, the decreasing un-
certainty relies on the observations being statistically inde-
pendent, which is unlikely to be the case as observations
become more and more dense. We consider here the impli-
cations of a nonzero spatial covariance. Rather than impos-
ing a realistic observational covariance matrix, we consider
a simplified covariance structure in which correlations de-
cay isotropically. That is, our observational covariance ma-
trix 0u,obs is given by

0u,obs(i,j)= σ
2
u,obse

−
|xi−xj |

2

d2
auto . (41)

Here, σu,obs is the observational uncertainty and xi is the po-
sition of observation i. (By contrast, 0u,obs in all experiments
described above is a diagonal matrix with entries σ 2

u,obs.) A
value of 1 m per year is used for σu,obs, as in all previous ex-
periments, and dauto is set to 750 m. We assert that the obser-
vations of orthogonal velocity components are independent;
i.e., 0u,obs is block-diagonal with each block corresponding
to a velocity component. While velocity component uncer-

https://doi.org/10.5194/gmd-14-5843-2021 Geosci. Model Dev., 14, 5843–5861, 2021



5856 C. Koziol et al.: Quantifying ice sheet uncertainty

Figure 8. (a) A realization of the prior density of C for the γ1 experiment. (b) A realization of the posterior density of C for the γ1 experiment
with mean cMAP removed. Note the difference in color map with Fig. 7.

tainties are likely to correlate, introducing spatial correlation
among the individual components already greatly changes
the effect of observation spacing on uncertainty reduction,
as seen in Fig. 4d. When observational spacing is large com-
pared to dauto, an increase in density has a similar effect as
that seen in the zero-spatial-correlation case (Fig. 4c). But
for observational spacing on the order of dauto, additional ob-
servations have a minimal effect.

6 Gauss–Newton approximation to the Hessian

Section 2.2 introduces the Hessian of the cost function and
gives an expression for the posterior covariance when the
parameter-to-observable map f̆ is linear (Eq. 5). The first
term in brackets on the right-hand side of Eq. (5), which we
write here as(
∂f̆

∂c

)T
0−1

obs

(
∂f̆

∂c

)
, (42)

is the Hessian of the misfit cost function J c
mis under the condi-

tion that f̆ is linear. It is quite often used as an approximation
to the Hessian for the purpose of covariance estimates even
when f̆ is nonlinear (Kaminski et al., 2015; Loose et al.,
2020) and is referred to as the Gauss–Newton approxima-
tion to the Hessian (GNaH). The GNaH has the advantage of
avoiding the complexity of finding second-order derivatives.
It also has the property that the misfit Hessian (or rather, its
approximation) is positive semidefinite – this is not necessar-
ily true of the “full” Hessian even when the cost function J c

is minimized, meaning the eigendecomposition described in
Sect. 2.4 can have negative eigenvalues.

In the context of our idealized experiments we calculate
the GNaH (or rather, its action on a vector) to compare
against the full Hessian. The tlm_adjoint library’s func-
tionality is employed as follows. For a given finite-element

coefficient vector ξ , the GNaH action can be written as(
∂f̆

∂c

)T
0−1

obs

(
∂f̆

∂c

)
ξ =

(
∂f̆

∂c

)T
η̆, (43)

where η̆ is obtained through the action of the tangent linear

model
(
∂f̆/∂c

)
on ξ and the action of the inverse obser-

vational covariance on the result. The GNaH action is then
obtained through the action of the adjoint of the Jacobian of

the parameter-to-observable map,
(
∂f̆/∂c

)T
.

In Fig. 9 we examine the effects of using the GNaH rather
than the Hessian in our Hessian-based UQ framework. This
is done for just a single experiment with 1.33 km elements,
2 km observational spacing, and regularization with γ = 10.
Examining the uncertainty reduction (Fig. 9a), the first ∼ 80
eigenvalues are nearly identical, but after this the uncer-
tainty reduction approaches 1 much faster (or, equivalently,
the eigenvalues decay much faster) with the GNaH. In terms
of posterior QoI uncertainty (Fig. 9b), σ(QIS

T ) is slightly
smaller with the GNaH, but the difference is very small and
only visible at later times.

7 Discussion and conclusions

The inversion of surface velocities for basal conditions is
ubiquitous in ice sheet modeling – but in most studies in
which this is done, the uncertainty of the resulting parameter
fields is not considered, and the implications of this para-
metric uncertainty for projection uncertainty are not quanti-
fied. We introduce fenics_ice, a numerical Python code
which solves the shallow shelf approximation (SSA) for ice
sheet dynamics. The code uses the FEniCS library to fa-
cilitate a finite-element solution of partial differential equa-
tions. Algorithmic differentiation is implemented with the
tlm_adjoint library, allowing for adjoint generation of

Geosci. Model Dev., 14, 5843–5861, 2021 https://doi.org/10.5194/gmd-14-5843-2021



C. Koziol et al.: Quantifying ice sheet uncertainty 5857

Figure 9. (a) Uncertainty reduction factor 1/(1+ λk) versus eigenvalue index k for γ = 10 and observational spacing of 2 km, found with
the full Hessian and Gauss–Newton approximation. (b) Hessian-based posterior uncertainties ofQIS

T
over time based on the full Hessian and

Gauss–Newton approximations.

the time-dependent and time-independent versions of the
SSA. This feature is used to aid inversions of surface veloc-
ity for parameter fields such as the basal sliding parameter. In
addition, the tlm_adjoint library allows efficient second-
order differentiation of the inversion cost function, allowing a
low-rank approximation to the cost function Hessian. We uti-
lize this ability to exploit the connection between the control
method inversions typically carried out with ice sheet models
and a Bayesian characterization of the uncertainty of the in-
verted parameter field. This interpretation allows us to form a
local approximation to the posterior probability density at the
maximum a posteriori (MAP) point. With a time-dependent
quantity of interest (QoI) which depends on the outcome of
the inversion, the adjoint features of fenics_ice allow
linear propagation of parametric uncertainty to QoI uncer-
tainty.

We apply our framework to a simple idealized test case,
Experiment C of the ISMIP-HOM intercomparison protocol,
involving an ice stream sliding across a doubly periodic do-
main with a varying basal friction parameter. An idealized
time-varying QoI is defined, equivalent to the fourth mo-
ment of thickness in the domain, as thickness evolves due to
mass continuity. The posterior probability density is exam-
ined, suggesting mesh independence (provided resolution is
high enough). It is shown that the level of uncertainty reduc-
tion relative to the prior distribution depends on the amount
of information in the prior (or, equivalently, the degree of
regularization). Uncertainty of the QoI is found along its tra-
jectory and is found to increase with time and also found
to be larger with less-constrained priors. However, the dif-
ference in the uncertainty of the QoI is far less than that of
the parametric uncertainty due to insensitivity of the QoI to
high-frequency modes.

Sampling from our posterior allows us to test the linearity
of the parameter-to-QoI mapping, and this approximation is
seen to be accurate with a moderately strong prior. However,

even with the relatively modest problem sizes considered,
testing the validity of our local Gaussian approximation of
the posterior probability density would require sophisticated
sampling methods which are beyond the scope of our study.
It is worth noting, though, that one such method, stochas-
tic Newton MCMC (Martin et al., 2012; Petra et al., 2014),
relies on the framework developed in this study (i.e., char-
acterizing the local behavior of the posterior density through
a Hessian-based approximation). Therefore, it may be a vi-
able approach for non-Gaussian uncertainty quantification in
future iterations.

The sensitivity of QoIs to small-scale variability is signif-
icant because not all glaciologically motivated QoIs are ex-
pected to have such sensitivities. For instance, the QoI con-
sidered by Isaac et al. (2015) was a contour integral of vol-
ume flux over the boundary of the domain, equivalent to a
rate of change in ice volume – and such a quantity might
be less sensitive to velocity gradients and small-scale thick-
ness change in the domain interior. On the other hand, a fore-
cast focused on the impact of evolving surface elevation on
proliferation of surface lakes or on surface fractures might
be very sensitive to such variability. Therefore, when con-
sidering parametric uncertainty, it should also be considered
whether the nature of this uncertainty impacts the uncertainty
of the intended quantity of interest.

A key difference between our approach and the control
method inversions typically undertaken is the Euclidean in-
ner product that appears in the misfit component of the cost
function as opposed to an area integral of velocity misfit. As
discussed in Sect. 2.3, the latter formulation leads to difficul-
ties with a Bayesian interpretation by conflating the observa-
tional error covariance with mesh-dependent factors. In our
study observation locations are imposed on a regular grid.
It is shown that, with statistically independent observations,
posterior uncertainty is continually reduced as the observa-
tional grid becomes more dense. When a spatial correlation

https://doi.org/10.5194/gmd-14-5843-2021 Geosci. Model Dev., 14, 5843–5861, 2021



5858 C. Koziol et al.: Quantifying ice sheet uncertainty

of observations is considered, however, there is little reduc-
tion of uncertainty when adding observations beyond a cer-
tain spatial density. This result is of significance to ice sheet
modeling: most ice sheet model studies which calibrate pa-
rameters to velocity observations (including those mentioned
in the Introduction) do not consider the spatial correlation of
observations. As discussed in Sect. 2.3, these studies express
the model–data misfit as an area integral – meaning that, ef-
fectively, observations in adjacent model grid cells are con-
sidered independent. If grid cells are sufficiently large, this
is likely a suitable approximation – though with higher and
higher resolutions being used in ice sheet modeling studies
(Cornford et al., 2013), it should be considered whether the
spatial covariance of observations is such that it might af-
fect results. Assessing such effects poses an additional chal-
lenge, however, as ice sheet velocity products are not gener-
ally released with spatial error covariance information (Rig-
not et al., 2017).

Our study does not consider “joint” inversions, i.e., in-
versions with two or more parameter fields. With such in-
versions, complications can arise when both parameters af-
fect the same observable, potentially leading to equifinality
and/or ill-posedness. An example of such a pair isC, the slid-
ing coefficient, andB, the ice stiffness in the nonlinear Glen’s
rheology (see Eq. 24), which can both strongly affect ice
speeds in a range of settings. The version of fenics_ice
presented in this study is not capable of joint inversions or
of Hessian vector products with multiple parameter fields;
however, the technical hurdles to implementation are minor.
More importantly, though, Hessian-based Bayesian uncer-
tainty quantification with multiple parameter fields has not,
to our knowledge, been carried out in an ice sheet model-
ing context and may present difficulties due to a larger prob-
lem space or the equifinality issues mentioned above. (In-
stead of performing a joint inversion, Babaniyi et al., 2021,
use a Bayesian approximation error framework, treating the
stiffness parameter as a random variable.) Nonetheless, the
investigation of joint inversions and uncertainty quantifica-
tion is a future research aim for fenics_ice.

Model uncertainty is not accounted for in our character-
ization of parametric uncertainty. In the expression for the
posterior probability density (Eq. 4), the model misfit term
is expressed as the difference between observed and mod-
eled velocity, and the uncertainty is assumed to arise from
the observation platform. In fact, the discrepancy between
modeled and observed velocity is the sum of observation er-
ror, εobs, and model error, εmodel. This second error source
can be considered a random variable, as it arises from in-
complete knowledge about the ice sheet basal environment
and material properties of the ice, as well as the approxima-
tions inherent in the shallow shelf approximation. Character-
izing this uncertainty is challenging as it requires both perfect
knowledge of the basal sliding parameter and observations
with negligible error, and it is beyond the scope of our study.
Future research, however, could involve using a model which

implements the full Stokes solution (e.g., Gagliardini et al.,
2010) to partially characterize this uncertainty or could make
use of a multi-fidelity approach (Khodabakhshi et al., 2021).

A number of Hessian-based uncertainty quantification
studies use the Gauss–Newton approximation to the Hessian
(see Sect. 6), avoiding computation of higher-order deriva-
tives of the model, but few studies have investigated the im-
pact of neglecting these higher-order terms. For our idealized
experiment we have compared uncertainty reduction and QoI
uncertainty with both Gauss–Newton and full Hessian com-
putation. There is negligible difference in terms of QoI un-
certainty, but it remains to be seen if this is the case for more
realistic experiments.

Our study does not consider time-dependent inversions,
i.e., control methods wherein the cost function is time-
dependent. While the majority of cost function inversions are
time-independent, there are a growing number of studies car-
ried out with time-dependent inversions (Larour et al., 2014;
Goldberg et al., 2015), and it is possible that such meth-
ods may provide lower uncertainty in calibration of hidden
parameters (simply by providing additional constraints) and
hence in ice sheet projections. The fenics_ice (or rather
tlm_adjoint) code is capable of eigendecomposition of
Hessian matrices of time-dependent cost functions (Maddi-
son et al., 2019), but time-dependent Hessian vector prod-
ucts are computationally expensive, requiring checkpointing
and recomputation of both forward- and reverse-mode model
information, and it is unlikely that full eigenvalue spectra
can be found for even modestly sized problems. It is hopeful
that for realistic problems of interest only a small fraction of
eigenvalues will need to be found to accurately approximate
the posterior covariance. Alternatively, the Gauss–Newton
approximate Hessian might diminish some of the cost. Cer-
tainly more work is required in this area.

Code availability. The fenics_ice code can be obtained from
https://doi.org/10.5281/zenodo.5153231 (Todd et al., 2021) and is
freely available under the LGPL-3.0 license. The branch contain-
ing the version of the code used for this paper is GMD_branch.
Python scripts for running all experiments and creating all fig-
ures in this paper can be found in the example_cases direc-
tory, and installation instructions for fenics_ice and depen-
dencies can be found in the user_guide folder. The commit tag
of tlm_adjoint used for the experiments in this paper is
79c54c00a3b4b69e19db633896f2b873dd82de4b.
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