Articles | Volume 14, issue 1
Geosci. Model Dev., 14, 543–572, 2021
https://doi.org/10.5194/gmd-14-543-2021

Special issue: Nucleus for European Modelling of the Ocean - NEMO

Geosci. Model Dev., 14, 543–572, 2021
https://doi.org/10.5194/gmd-14-543-2021

Development and technical paper 27 Jan 2021

Development and technical paper | 27 Jan 2021

A simplified atmospheric boundary layer model for an improved representation of air–sea interactions in eddying oceanic models: implementation and first evaluation in NEMO (4.0)

Florian Lemarié et al.

Related authors

Jarzynski equality and Crooks relation for local models of air-sea interaction
Achim Wirth and Florian Lemarié
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2020-82,https://doi.org/10.5194/esd-2020-82, 2020
Revised manuscript under review for ESD
Short summary
A Schwarz iterative method to evaluate ocean- atmosphere coupling schemes. Implementation and diagnostics in IPSL-CM6-SW-VLR
Olivier Marti, Sébastien Nguyen, Pascale Braconnot, Sophie Valcke, Florian Lemarié, and Eric Blayo
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-307,https://doi.org/10.5194/gmd-2020-307, 2020
Revised manuscript under review for GMD
Short summary
Impact of the current feedback on kinetic energy over the North-East Atlantic from a coupled ocean/atmospheric boundary layer model
Théo Brivoal, Guillaume Samson, Hervé Giordani, Romain Bourdallé-Badie, Florian Lemarié, and Gurvan Madec
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-78,https://doi.org/10.5194/os-2020-78, 2020
Preprint under review for OS
Short summary
Development of a two-way-coupled ocean–wave model: assessment on a global NEMO(v3.6)–WW3(v6.02) coupled configuration
Xavier Couvelard, Florian Lemarié, Guillaume Samson, Jean-Luc Redelsperger, Fabrice Ardhuin, Rachid Benshila, and Gurvan Madec
Geosci. Model Dev., 13, 3067–3090, https://doi.org/10.5194/gmd-13-3067-2020,https://doi.org/10.5194/gmd-13-3067-2020, 2020
Short summary
On the numerical stability of surface–atmosphere coupling in weather and climate models
Anton Beljaars, Emanuel Dutra, Gianpaolo Balsamo, and Florian Lemarié
Geosci. Model Dev., 10, 977–989, https://doi.org/10.5194/gmd-10-977-2017,https://doi.org/10.5194/gmd-10-977-2017, 2017
Short summary

Related subject area

Oceanography
The Regional Ice Ocean Prediction System v2: a pan-Canadian ocean analysis system using an online tidal harmonic analysis
Gregory C. Smith, Yimin Liu, Mounir Benkiran, Kamel Chikhar, Dorina Surcel Colan, Audrey-Anne Gauthier, Charles-Emmanuel Testut, Frederic Dupont, Ji Lei, François Roy, Jean-François Lemieux, and Fraser Davidson
Geosci. Model Dev., 14, 1445–1467, https://doi.org/10.5194/gmd-14-1445-2021,https://doi.org/10.5194/gmd-14-1445-2021, 2021
Short summary
Global storm tide modeling with ADCIRC v55: unstructured mesh design and performance
William J. Pringle, Damrongsak Wirasaet, Keith J. Roberts, and Joannes J. Westerink
Geosci. Model Dev., 14, 1125–1145, https://doi.org/10.5194/gmd-14-1125-2021,https://doi.org/10.5194/gmd-14-1125-2021, 2021
Short summary
Development of a MetUM (v 11.1) and NEMO (v 3.6) coupled operational forecast model for the Maritime Continent – Part 1: Evaluation of ocean forecasts
Bijoy Thompson, Claudio Sanchez, Boon Chong Peter Heng, Rajesh Kumar, Jianyu Liu, Xiang-Yu Huang, and Pavel Tkalich
Geosci. Model Dev., 14, 1081–1100, https://doi.org/10.5194/gmd-14-1081-2021,https://doi.org/10.5194/gmd-14-1081-2021, 2021
Short summary
Advanced parallel implementation of the coupled ocean–ice model FEMAO (version 2.0) with load balancing
Pavel Perezhogin, Ilya Chernov, and Nikolay Iakovlev
Geosci. Model Dev., 14, 843–857, https://doi.org/10.5194/gmd-14-843-2021,https://doi.org/10.5194/gmd-14-843-2021, 2021
Short summary
The Meridionally Averaged Model of Eastern Boundary Upwelling Systems (MAMEBUSv1.0)
Jordyn E. Moscoso, Andrew L. Stewart, Daniele Bianchi, and James C. McWilliams
Geosci. Model Dev., 14, 763–794, https://doi.org/10.5194/gmd-14-763-2021,https://doi.org/10.5194/gmd-14-763-2021, 2021
Short summary

Cited articles

Abel, R.: Aspects of air-sea interaction in atmosphere-ocean models, PhD thesis, Kiel University, 2018. a
Andren, A., Brown, A. R., Mason, P. J., Graf, J., Schumann, U., Moeng, C.-H., and Nieuwstadt, F. T. M.: Large-eddy simulation of a neutrally stratified boundary layer: A comparison of four computer codes, Q. J. Roy. Meteor. Soc., 120, 1457–1484, 1994. a, b, c, d
Ayet, A. and Redelsperger, J.-L.: An analytical study of the atmospheric boundary layer flow and divergence over a SST front, Q. J. Roy. Meteor. Soc., 145, 2549–2567, https://doi.org/10.1002/qj.3578, 2019. a, b, c, d
Baklanov, A. A., Grisogono, B., Bornstein, R., Mahrt, L., Zilitinkevich, S. S., Taylor, P., Larsen, S. E., Rotach, M. W., and Fernando, H. J. S.: The Nature, Theory, and Modeling of Atmospheric Planetary Boundary Layers, B. Am. Meteorol. Soc., 92, 123–128, https://doi.org/10.1175/2010BAMS2797.1, 2011. a
Barnier, B., Siefridt, L., and Marchesiello, P.: Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analyses, J. Mar. Res., 6, 363–380, https://doi.org/10.1016/0924-7963(94)00034-9, 1995. a
Download
Short summary
A simplified model of the atmospheric boundary layer (ABL) of intermediate complexity between a bulk parameterization and a full three-dimensional atmospheric model has been developed and integrated to the NEMO ocean model. An objective in the derivation of such a simplified model is to reach an apt representation of ocean-only numerical simulations of some of the key processes associated with air–sea interactions at the characteristic scales of the oceanic mesoscale.