Articles | Volume 14, issue 1
https://doi.org/10.5194/gmd-14-543-2021
https://doi.org/10.5194/gmd-14-543-2021
Development and technical paper
 | 
27 Jan 2021
Development and technical paper |  | 27 Jan 2021

A simplified atmospheric boundary layer model for an improved representation of air–sea interactions in eddying oceanic models: implementation and first evaluation in NEMO (4.0)

Florian Lemarié, Guillaume Samson, Jean-Luc Redelsperger, Hervé Giordani, Théo Brivoal, and Gurvan Madec

Related authors

Quantifying Coupling Errors in Atmosphere-Ocean-Sea Ice Models: A Study of Iterative and Non-Iterative Approaches in the EC-Earth AOSCM
Valentina Schüller, Florian Lemarié, Philipp Birken, and Eric Blayo
EGUsphere, https://doi.org/10.5194/egusphere-2025-1342,https://doi.org/10.5194/egusphere-2025-1342, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
wavetrisk-2.1: an adaptive dynamical core for ocean modelling
Nicholas K.-R. Kevlahan and Florian Lemarié
Geosci. Model Dev., 15, 6521–6539, https://doi.org/10.5194/gmd-15-6521-2022,https://doi.org/10.5194/gmd-15-6521-2022, 2022
Short summary
Jarzynski equality and Crooks relation for local models of air–sea interaction
Achim Wirth and Florian Lemarié
Earth Syst. Dynam., 12, 689–708, https://doi.org/10.5194/esd-12-689-2021,https://doi.org/10.5194/esd-12-689-2021, 2021
Short summary
A Schwarz iterative method to evaluate ocean–atmosphere coupling schemes: implementation and diagnostics in IPSL-CM6-SW-VLR
Olivier Marti, Sébastien Nguyen, Pascale Braconnot, Sophie Valcke, Florian Lemarié, and Eric Blayo
Geosci. Model Dev., 14, 2959–2975, https://doi.org/10.5194/gmd-14-2959-2021,https://doi.org/10.5194/gmd-14-2959-2021, 2021
Short summary
Impact of the current feedback on kinetic energy over the North-East Atlantic from a coupled ocean/atmospheric boundary layer model
Théo Brivoal, Guillaume Samson, Hervé Giordani, Romain Bourdallé-Badie, Florian Lemarié, and Gurvan Madec
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-78,https://doi.org/10.5194/os-2020-78, 2020
Preprint withdrawn
Short summary

Related subject area

Oceanography
PIBM 1.0: an individual-based model for simulating phytoplankton acclimation, diversity, and evolution in the ocean
Iria Sala and Bingzhang Chen
Geosci. Model Dev., 18, 4155–4182, https://doi.org/10.5194/gmd-18-4155-2025,https://doi.org/10.5194/gmd-18-4155-2025, 2025
Short summary
An effective communication topology for performance optimization: a case study of the finite-volume wave modeling (FVWAM)
Renbo Pang, Fujiang Yu, Yuanyong Gao, Ye Yuan, Liang Yuan, and Zhiyi Gao
Geosci. Model Dev., 18, 4119–4136, https://doi.org/10.5194/gmd-18-4119-2025,https://doi.org/10.5194/gmd-18-4119-2025, 2025
Short summary
GREAT v1.0: Global Real-time Early Assessment of Tsunamis
Usama Kadri, Ali Abdolali, and Maxim Filimonov
Geosci. Model Dev., 18, 3487–3507, https://doi.org/10.5194/gmd-18-3487-2025,https://doi.org/10.5194/gmd-18-3487-2025, 2025
Short summary
Using automatic calibration to improve the physics behind complex numerical models: an example from a 3D lake model using Delft3D (v6.02.10) and DYNO-PODS (v1.0)
Marina Amadori, Abolfazl Irani Rahaghi, Damien Bouffard, and Marco Toffolon
Geosci. Model Dev., 18, 3473–3486, https://doi.org/10.5194/gmd-18-3473-2025,https://doi.org/10.5194/gmd-18-3473-2025, 2025
Short summary
Improvements to the Met Office's global ocean–sea ice forecasting system including model and data assimilation changes
Davi Mignac, Jennifer Waters, Daniel J. Lea, Matthew J. Martin, James While, Anthony T. Weaver, Arthur Vidard, Catherine Guiavarc'h, Dave Storkey, David Ford, Edward W. Blockley, Jonathan Baker, Keith Haines, Martin R. Price, Michael J. Bell, and Richard Renshaw
Geosci. Model Dev., 18, 3405–3425, https://doi.org/10.5194/gmd-18-3405-2025,https://doi.org/10.5194/gmd-18-3405-2025, 2025
Short summary

Cited articles

Abel, R.: Aspects of air-sea interaction in atmosphere-ocean models, PhD thesis, Kiel University, 2018. a
Andren, A., Brown, A. R., Mason, P. J., Graf, J., Schumann, U., Moeng, C.-H., and Nieuwstadt, F. T. M.: Large-eddy simulation of a neutrally stratified boundary layer: A comparison of four computer codes, Q. J. Roy. Meteor. Soc., 120, 1457–1484, 1994. a, b, c, d
Ayet, A. and Redelsperger, J.-L.: An analytical study of the atmospheric boundary layer flow and divergence over a SST front, Q. J. Roy. Meteor. Soc., 145, 2549–2567, https://doi.org/10.1002/qj.3578, 2019. a, b, c, d
Baklanov, A. A., Grisogono, B., Bornstein, R., Mahrt, L., Zilitinkevich, S. S., Taylor, P., Larsen, S. E., Rotach, M. W., and Fernando, H. J. S.: The Nature, Theory, and Modeling of Atmospheric Planetary Boundary Layers, B. Am. Meteorol. Soc., 92, 123–128, https://doi.org/10.1175/2010BAMS2797.1, 2011. a
Barnier, B., Siefridt, L., and Marchesiello, P.: Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analyses, J. Mar. Res., 6, 363–380, https://doi.org/10.1016/0924-7963(94)00034-9, 1995. a
Download
Short summary
A simplified model of the atmospheric boundary layer (ABL) of intermediate complexity between a bulk parameterization and a full three-dimensional atmospheric model has been developed and integrated to the NEMO ocean model. An objective in the derivation of such a simplified model is to reach an apt representation of ocean-only numerical simulations of some of the key processes associated with air–sea interactions at the characteristic scales of the oceanic mesoscale.
Share