Articles | Volume 14, issue 9
Geosci. Model Dev., 14, 5413–5434, 2021
https://doi.org/10.5194/gmd-14-5413-2021
Geosci. Model Dev., 14, 5413–5434, 2021
https://doi.org/10.5194/gmd-14-5413-2021

Development and technical paper 02 Sep 2021

Development and technical paper | 02 Sep 2021

Vertical grid refinement for stratocumulus clouds in the radiation scheme of the global climate model ECHAM6.3-HAM2.3-P3

Paolo Pelucchi et al.

Related authors

Sensitivity of precipitation formation to secondary ice production in winter orographic mixed-phase clouds
Zane Dedekind, Annika Lauber, Sylvaine Ferrachat, and Ulrike Lohmann
Atmos. Chem. Phys., 21, 15115–15134, https://doi.org/10.5194/acp-21-15115-2021,https://doi.org/10.5194/acp-21-15115-2021, 2021
Short summary
Assessing the potential for simplification in global climate model cloud microphysics
Ulrike Proske, Sylvaine Ferrachat, David Neubauer, Martin Staab, and Ulrike Lohmann
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-801,https://doi.org/10.5194/acp-2021-801, 2021
Preprint under review for ACP
Short summary
Unveiling atmospheric transport and mixing mechanisms of ice nucleating particles over the Alps
Jörg Wieder, Claudia Mignani, Mario Schär, Lucie Roth, Michael Sprenger, Jan Henneberger, Ulrike Lohmann, Cyril Brunner, and Zamin A. Kanji
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-718,https://doi.org/10.5194/acp-2021-718, 2021
Preprint under review for ACP
Short summary
Cirrus cloud thinning using a more physically-based ice microphysics scheme in the ECHAM-HAM GCM
Colin Tully, David Neubauer, Nadja Omanovic, and Ulrike Lohmann
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-685,https://doi.org/10.5194/acp-2021-685, 2021
Preprint under review for ACP
Short summary
On the drivers of droplet variability in alpine mixed-phase clouds
Paraskevi Georgakaki, Aikaterini Bougiatioti, Jörg Wieder, Claudia Mignani, Fabiola Ramelli, Zamin A. Kanji, Jan Henneberger, Maxime Hervo, Alexis Berne, Ulrike Lohmann, and Athanasios Nenes
Atmos. Chem. Phys., 21, 10993–11012, https://doi.org/10.5194/acp-21-10993-2021,https://doi.org/10.5194/acp-21-10993-2021, 2021
Short summary

Related subject area

Climate and Earth system modeling
Decadal climate predictions with the Canadian Earth System Model version 5 (CanESM5)
Reinel Sospedra-Alfonso, William J. Merryfield, George J. Boer, Viatsheslav V. Kharin, Woo-Sung Lee, Christian Seiler, and James R. Christian
Geosci. Model Dev., 14, 6863–6891, https://doi.org/10.5194/gmd-14-6863-2021,https://doi.org/10.5194/gmd-14-6863-2021, 2021
Short summary
The Simplified Chemistry-Dynamical Model (SCDM V1.0)
Hao-Jhe Hong and Thomas Reichler
Geosci. Model Dev., 14, 6647–6660, https://doi.org/10.5194/gmd-14-6647-2021,https://doi.org/10.5194/gmd-14-6647-2021, 2021
Short summary
Iodine chemistry in the chemistry–climate model SOCOL-AERv2-I
Arseniy Karagodin-Doyennel, Eugene Rozanov, Timofei Sukhodolov, Tatiana Egorova, Alfonso Saiz-Lopez, Carlos A. Cuevas, Rafael P. Fernandez, Tomás Sherwen, Rainer Volkamer, Theodore K. Koenig, Tanguy Giroud, and Thomas Peter
Geosci. Model Dev., 14, 6623–6645, https://doi.org/10.5194/gmd-14-6623-2021,https://doi.org/10.5194/gmd-14-6623-2021, 2021
Short summary
Coupling interactive fire with atmospheric composition and climate in the UK Earth System Model
João C. Teixeira, Gerd A. Folberth, Fiona M. O'Connor, Nadine Unger, and Apostolos Voulgarakis
Geosci. Model Dev., 14, 6515–6539, https://doi.org/10.5194/gmd-14-6515-2021,https://doi.org/10.5194/gmd-14-6515-2021, 2021
Short summary
Fast and accurate learned multiresolution dynamical downscaling for precipitation
Jiali Wang, Zhengchun Liu, Ian Foster, Won Chang, Rajkumar Kettimuthu, and V. Rao Kotamarthi
Geosci. Model Dev., 14, 6355–6372, https://doi.org/10.5194/gmd-14-6355-2021,https://doi.org/10.5194/gmd-14-6355-2021, 2021
Short summary

Cited articles

Bony, S. and Chepfer, H.: GCM-Oriented CALIPSO Cloud Product [dataset], available at: https://climserv.ipsl.polytechnique.fr/cfmip-obs/ (last access: 2 May 2021), 2013. a
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013. a
Boutle, I. A. and Morcrette, C. J.: Parametrization of area cloud fraction, Atmos. Sci. Lett., 11, 283–289, https://doi.org/10.1002/asl.293, 2010. a, b, c, d
Bretherton, C. S.: EPIC Stratocumulus Integrated Dataset, available at: https://atmos.washington.edu/~breth/EPIC/EPIC2001_Sc_ID/sc_integ_data_fr.htm (last access: December 2019), 2005. a, b, c
Bretherton, C. S. and Park, S.: A new moist turbulence parameterization in the Community Atmosphere Model, J. Climate, 22, 3422–3448, 2009. a, b
Download
Short summary
Stratocumulus are thin clouds whose cloud cover is underestimated in climate models partly due to overly low vertical resolution. We develop a scheme that locally refines the vertical grid based on a physical constraint for the cloud top. Global simulations show that the scheme, implemented only in the radiation routine, can increase stratocumulus cloud cover. However, this effect is poorly propagated to the simulated cloud cover. The scheme's limitations and possible ways forward are discussed.