Articles | Volume 14, issue 9
https://doi.org/10.5194/gmd-14-5413-2021
https://doi.org/10.5194/gmd-14-5413-2021
Development and technical paper
 | 
02 Sep 2021
Development and technical paper |  | 02 Sep 2021

Vertical grid refinement for stratocumulus clouds in the radiation scheme of the global climate model ECHAM6.3-HAM2.3-P3

Paolo Pelucchi, David Neubauer, and Ulrike Lohmann

Related authors

Cirrus formation regimes – data-driven identification and quantification of mineral dust effect
Kai Jeggle, David Neubauer, Hanin Binder, and Ulrike Lohmann
Atmos. Chem. Phys., 25, 7227–7243, https://doi.org/10.5194/acp-25-7227-2025,https://doi.org/10.5194/acp-25-7227-2025, 2025
Short summary
Putting the spotlight on small cloud droplets with SmHOLIMO – a new holographic imager for in situ measurements of clouds
Christopher Fuchs, Fabiola Ramelli, David Schweizer, Ulrike Lohmann, and Jan Henneberger
Atmos. Meas. Tech., 18, 2969–2986, https://doi.org/10.5194/amt-18-2969-2025,https://doi.org/10.5194/amt-18-2969-2025, 2025
Short summary
Ice Nucleating Particle Concentrations over the Eurasian-Arctic seas
Guangyu Li, André Welti, Iris Thurnherr, Ulrike Lohmann, and Zamin A. Kanji
EGUsphere, https://doi.org/10.5194/egusphere-2025-2798,https://doi.org/10.5194/egusphere-2025-2798, 2025
Short summary
Uncertainty in aerosol effective radiative forcing from anthropogenic and natural aerosol parameters in ECHAM6.3-HAM2.3
Yusuf Bhatti, Duncan Watson-Parris, Leighton Regayre, Hailing Jia, David Neubauer, Ulas Im, Carl Svenhag, Nick Schutgens, Athanasios Tsikerdekis, Athanasios Nenes, Irfan Muhammed, Bastiaan van Diedenhoven, Ardit Arifi, Guangliang Fu, and Otto Hasekamp
EGUsphere, https://doi.org/10.5194/egusphere-2025-2848,https://doi.org/10.5194/egusphere-2025-2848, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Quantified ice-nucleating ability of AgI-containing seeding particles in natural clouds
Anna J. Miller, Christopher Fuchs, Fabiola Ramelli, Huiying Zhang, Nadja Omanovic, Robert Spirig, Claudia Marcolli, Zamin A. Kanji, Ulrike Lohmann, and Jan Henneberger
Atmos. Chem. Phys., 25, 5387–5407, https://doi.org/10.5194/acp-25-5387-2025,https://doi.org/10.5194/acp-25-5387-2025, 2025
Short summary

Related subject area

Climate and Earth system modeling
Correction of sea surface biases in the NEMO ocean general circulation model using neural networks
Andrea Storto, Sergey Frolov, Laura Slivinski, and Chunxue Yang
Geosci. Model Dev., 18, 4789–4804, https://doi.org/10.5194/gmd-18-4789-2025,https://doi.org/10.5194/gmd-18-4789-2025, 2025
Short summary
Representing lateral groundwater flow from land to river in Earth system models
Chang Liao, L. Ruby Leung, Yilin Fang, Teklu Tesfa, and Robinson Negron-Juarez
Geosci. Model Dev., 18, 4601–4624, https://doi.org/10.5194/gmd-18-4601-2025,https://doi.org/10.5194/gmd-18-4601-2025, 2025
Short summary
FINAM is not a model (v1.0): a new Python-based model coupling framework
Sebastian Müller, Martin Lange, Thomas Fischer, Sara König, Matthias Kelbling, Jeisson Javier Leal Rojas, and Stephan Thober
Geosci. Model Dev., 18, 4483–4498, https://doi.org/10.5194/gmd-18-4483-2025,https://doi.org/10.5194/gmd-18-4483-2025, 2025
Short summary
The Detection and Attribution Model Intercomparison Project (DAMIP v2.0) contribution to CMIP7
Nathan P. Gillett, Isla R. Simpson, Gabi Hegerl, Reto Knutti, Dann Mitchell, Aurélien Ribes, Hideo Shiogama, Dáithí Stone, Claudia Tebaldi, Piotr Wolski, Wenxia Zhang, and Vivek K. Arora
Geosci. Model Dev., 18, 4399–4416, https://doi.org/10.5194/gmd-18-4399-2025,https://doi.org/10.5194/gmd-18-4399-2025, 2025
Short summary
Enhancing winter climate simulations of the Great Lakes: insights from a new coupled lake–ice–atmosphere (CLIAv1) system on the importance of integrating 3D hydrodynamics with a regional climate model
Pengfei Xue, Chenfu Huang, Yafang Zhong, Michael Notaro, Miraj B. Kayastha, Xing Zhou, Chuyan Zhao, Christa Peters-Lidard, Carlos Cruz, and Eric Kemp
Geosci. Model Dev., 18, 4293–4316, https://doi.org/10.5194/gmd-18-4293-2025,https://doi.org/10.5194/gmd-18-4293-2025, 2025
Short summary

Cited articles

Bony, S. and Chepfer, H.: GCM-Oriented CALIPSO Cloud Product [dataset], available at: https://climserv.ipsl.polytechnique.fr/cfmip-obs/ (last access: 2 May 2021), 2013. a
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013. a
Boutle, I. A. and Morcrette, C. J.: Parametrization of area cloud fraction, Atmos. Sci. Lett., 11, 283–289, https://doi.org/10.1002/asl.293, 2010. a, b, c, d
Bretherton, C. S.: EPIC Stratocumulus Integrated Dataset, available at: https://atmos.washington.edu/~breth/EPIC/EPIC2001_Sc_ID/sc_integ_data_fr.htm (last access: December 2019), 2005. a, b, c
Bretherton, C. S. and Park, S.: A new moist turbulence parameterization in the Community Atmosphere Model, J. Climate, 22, 3422–3448, 2009. a, b
Download
Short summary
Stratocumulus are thin clouds whose cloud cover is underestimated in climate models partly due to overly low vertical resolution. We develop a scheme that locally refines the vertical grid based on a physical constraint for the cloud top. Global simulations show that the scheme, implemented only in the radiation routine, can increase stratocumulus cloud cover. However, this effect is poorly propagated to the simulated cloud cover. The scheme's limitations and possible ways forward are discussed.
Share