Articles | Volume 14, issue 8
https://doi.org/10.5194/gmd-14-5049-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-5049-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Optical model for the Baltic Sea with an explicit CDOM state variable: a case study with Model ERGOM (version 1.2)
Thomas Neumann
CORRESPONDING AUTHOR
Leibniz Institute for Baltic Sea Research Warnemünde, Seestr. 15, 18119 Rostock, Germany
Sampsa Koponen
The Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
Jenni Attila
The Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
Carsten Brockmann
Brockmann Consult GmbH, Max-Planck-Str. 2, 21502 Geesthacht, Germany
Kari Kallio
The Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
Mikko Kervinen
The Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
Constant Mazeran
SOLVO, 3 rue Saint-Antoine, 06600 Antibes, France
Dagmar Müller
Brockmann Consult GmbH, Max-Planck-Str. 2, 21502 Geesthacht, Germany
Petra Philipson
Brockmann Geomatics Sweden AB, Torshamnsgatan 39, 164 40 Kista, Sweden
Susanne Thulin
Brockmann Geomatics Sweden AB, Torshamnsgatan 39, 164 40 Kista, Sweden
Sakari Väkevä
The Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
Pasi Ylöstalo
The Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
Related authors
Thomas Neumann, Gerald Schernewski, and René Friedland
EGUsphere, https://doi.org/10.5194/egusphere-2024-3734, https://doi.org/10.5194/egusphere-2024-3734, 2025
Short summary
Short summary
We applied a 3D ecosystem model to the Oder Lagoon in the Baltic Sea and found that 30 % of nitrogen and 10 % of phosphorus are retained in the lagoon before entering the Baltic Sea. This is important for coarse-grained models that do not resolve such coastal structures. Moreover, the coastal filter supports the mitigation of eutrophication in the Baltic Sea.
Sven Karsten, Hagen Radtke, Matthias Gröger, Ha T. M. Ho-Hagemann, Hossein Mashayekh, Thomas Neumann, and H. E. Markus Meier
Geosci. Model Dev., 17, 1689–1708, https://doi.org/10.5194/gmd-17-1689-2024, https://doi.org/10.5194/gmd-17-1689-2024, 2024
Short summary
Short summary
This paper describes the development of a regional Earth System Model for the Baltic Sea region. In contrast to conventional coupling approaches, the presented model includes a flux calculator operating on a common exchange grid. This approach automatically ensures a locally consistent treatment of fluxes and simplifies the exchange of model components. The presented model can be used for various scientific questions, such as studies of natural variability and ocean–atmosphere interactions.
Henry C. Bittig, Erik Jacobs, Thomas Neumann, and Gregor Rehder
Earth Syst. Sci. Data, 16, 753–773, https://doi.org/10.5194/essd-16-753-2024, https://doi.org/10.5194/essd-16-753-2024, 2024
Short summary
Short summary
We present a pCO2 climatology of the Baltic Sea using a new approach to extrapolate from individual observations to the entire Baltic Sea. The extrapolation approach uses (a) a model to inform on how data at one location are connected to data at other locations, together with (b) very accurate pCO2 observations from 2003 to 2021 as the base data. The climatology can be used e.g. to assess uptake and release of CO2 or to identify extreme events.
Sarah Piehl, René Friedland, Thomas Neumann, and Gerald Schernewski
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-152, https://doi.org/10.5194/bg-2023-152, 2023
Revised manuscript not accepted
Short summary
Short summary
We integrated observations essential for policy decisions with high-resolution 3D model results to improve the reliability of oxygen assessments. Based on our findings, we suggest merging only high temporal and/or vertical resolution station data with model data to increase confidence in oxygen assessments. While showing the strengths and limitations of our approach we show that model simulations are an useful tool for policy-relevant oxygen assessments.
Matthias Gröger, Manja Placke, H. E. Markus Meier, Florian Börgel, Sandra-Esther Brunnabend, Cyril Dutheil, Ulf Gräwe, Magnus Hieronymus, Thomas Neumann, Hagen Radtke, Semjon Schimanke, Jian Su, and Germo Väli
Geosci. Model Dev., 15, 8613–8638, https://doi.org/10.5194/gmd-15-8613-2022, https://doi.org/10.5194/gmd-15-8613-2022, 2022
Short summary
Short summary
Comparisons of oceanographic climate data from different models often suffer from different model setups, forcing fields, and output of variables. This paper provides a protocol to harmonize these elements to set up multidecadal simulations for the Baltic Sea, a marginal sea in Europe. First results are shown from six different model simulations from four different model platforms. Topical studies for upwelling, marine heat waves, and stratification are also assessed.
Thomas Neumann, Hagen Radtke, Bronwyn Cahill, Martin Schmidt, and Gregor Rehder
Geosci. Model Dev., 15, 8473–8540, https://doi.org/10.5194/gmd-15-8473-2022, https://doi.org/10.5194/gmd-15-8473-2022, 2022
Short summary
Short summary
Marine ecosystem models are usually constrained by the elements nitrogen and phosphorus and consider carbon in organic matter in a fixed ratio. Recent observations show a substantial deviation from the simulated carbon cycle variables. In this study, we present a marine ecosystem model for the Baltic Sea which allows for a flexible uptake ratio for carbon, nitrogen, and phosphorus. With this extension, the model reflects much more reasonable variables of the marine carbon cycle.
Thomas Neumann, Gerald Schernewski, and René Friedland
EGUsphere, https://doi.org/10.5194/egusphere-2024-3734, https://doi.org/10.5194/egusphere-2024-3734, 2025
Short summary
Short summary
We applied a 3D ecosystem model to the Oder Lagoon in the Baltic Sea and found that 30 % of nitrogen and 10 % of phosphorus are retained in the lagoon before entering the Baltic Sea. This is important for coarse-grained models that do not resolve such coastal structures. Moreover, the coastal filter supports the mitigation of eutrophication in the Baltic Sea.
Sven Karsten, Hagen Radtke, Matthias Gröger, Ha T. M. Ho-Hagemann, Hossein Mashayekh, Thomas Neumann, and H. E. Markus Meier
Geosci. Model Dev., 17, 1689–1708, https://doi.org/10.5194/gmd-17-1689-2024, https://doi.org/10.5194/gmd-17-1689-2024, 2024
Short summary
Short summary
This paper describes the development of a regional Earth System Model for the Baltic Sea region. In contrast to conventional coupling approaches, the presented model includes a flux calculator operating on a common exchange grid. This approach automatically ensures a locally consistent treatment of fluxes and simplifies the exchange of model components. The presented model can be used for various scientific questions, such as studies of natural variability and ocean–atmosphere interactions.
Henry C. Bittig, Erik Jacobs, Thomas Neumann, and Gregor Rehder
Earth Syst. Sci. Data, 16, 753–773, https://doi.org/10.5194/essd-16-753-2024, https://doi.org/10.5194/essd-16-753-2024, 2024
Short summary
Short summary
We present a pCO2 climatology of the Baltic Sea using a new approach to extrapolate from individual observations to the entire Baltic Sea. The extrapolation approach uses (a) a model to inform on how data at one location are connected to data at other locations, together with (b) very accurate pCO2 observations from 2003 to 2021 as the base data. The climatology can be used e.g. to assess uptake and release of CO2 or to identify extreme events.
Sarah Piehl, René Friedland, Thomas Neumann, and Gerald Schernewski
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-152, https://doi.org/10.5194/bg-2023-152, 2023
Revised manuscript not accepted
Short summary
Short summary
We integrated observations essential for policy decisions with high-resolution 3D model results to improve the reliability of oxygen assessments. Based on our findings, we suggest merging only high temporal and/or vertical resolution station data with model data to increase confidence in oxygen assessments. While showing the strengths and limitations of our approach we show that model simulations are an useful tool for policy-relevant oxygen assessments.
Kandice L. Harper, Céline Lamarche, Andrew Hartley, Philippe Peylin, Catherine Ottlé, Vladislav Bastrikov, Rodrigo San Martín, Sylvia I. Bohnenstengel, Grit Kirches, Martin Boettcher, Roman Shevchuk, Carsten Brockmann, and Pierre Defourny
Earth Syst. Sci. Data, 15, 1465–1499, https://doi.org/10.5194/essd-15-1465-2023, https://doi.org/10.5194/essd-15-1465-2023, 2023
Short summary
Short summary
We built a spatially explicit annual plant-functional-type (PFT) dataset for 1992–2020 exhibiting intra-class spatial variability in PFT fractional cover at 300 m. For each year, 14 maps of percentage cover are produced: bare soil, water, permanent snow/ice, built, managed grasses, natural grasses, and trees and shrubs, each split into leaf type and seasonality. Model simulations indicate significant differences in simulated carbon, water, and energy fluxes in some regions using this new set.
Matthias Gröger, Manja Placke, H. E. Markus Meier, Florian Börgel, Sandra-Esther Brunnabend, Cyril Dutheil, Ulf Gräwe, Magnus Hieronymus, Thomas Neumann, Hagen Radtke, Semjon Schimanke, Jian Su, and Germo Väli
Geosci. Model Dev., 15, 8613–8638, https://doi.org/10.5194/gmd-15-8613-2022, https://doi.org/10.5194/gmd-15-8613-2022, 2022
Short summary
Short summary
Comparisons of oceanographic climate data from different models often suffer from different model setups, forcing fields, and output of variables. This paper provides a protocol to harmonize these elements to set up multidecadal simulations for the Baltic Sea, a marginal sea in Europe. First results are shown from six different model simulations from four different model platforms. Topical studies for upwelling, marine heat waves, and stratification are also assessed.
Thomas Neumann, Hagen Radtke, Bronwyn Cahill, Martin Schmidt, and Gregor Rehder
Geosci. Model Dev., 15, 8473–8540, https://doi.org/10.5194/gmd-15-8473-2022, https://doi.org/10.5194/gmd-15-8473-2022, 2022
Short summary
Short summary
Marine ecosystem models are usually constrained by the elements nitrogen and phosphorus and consider carbon in organic matter in a fixed ratio. Recent observations show a substantial deviation from the simulated carbon cycle variables. In this study, we present a marine ecosystem model for the Baltic Sea which allows for a flexible uptake ratio for carbon, nitrogen, and phosphorus. With this extension, the model reflects much more reasonable variables of the marine carbon cycle.
Martti Honkanen, Jens Daniel Müller, Jukka Seppälä, Gregor Rehder, Sami Kielosto, Pasi Ylöstalo, Timo Mäkelä, Juha Hatakka, and Lauri Laakso
Ocean Sci., 17, 1657–1675, https://doi.org/10.5194/os-17-1657-2021, https://doi.org/10.5194/os-17-1657-2021, 2021
Short summary
Short summary
The exchange of carbon dioxide (CO2) between the sea and the atmosphere is regulated by the gradient of CO2 partial pressure (pCO2) between the sea and the air. The daily variation of the seawater pCO2 recorded at the fixed station Utö in the Baltic Sea was found to be mainly biologically driven. Calculation of the annual net exchange of CO2 between the sea and atmosphere based on daily measurements of pCO2 carried out using the same sampling time every day could introduce a bias of up to 12 %.
Cited articles
Asmala, E., Autio, R., Kaartokallio, H., Pitkänen, L., Stedmon, C. A., and Thomas, D. N.: Bioavailability of riverine dissolved organic matter in three Baltic Sea estuaries and the effect of catchment land use, Biogeosciences, 10, 6969–6986, https://doi.org/10.5194/bg-10-6969-2013, 2013. a
Attila, J., Koponen, S., Kallio, K., Lindfors, A., Kaitala, S., and Ylöstalo, P.: MERIS Case II water processor comparison on coastal sites of the northern Baltic Sea, Remote Sens. Environ., 128, 138–149, https://doi.org/10.1016/j.rse.2012.07.009, 2013. a
Brockmann, C., Doerffer, R.,
Peters, M., Stelzer, K., Embacher, S., and Ruescas, A.: Evolution of the C2RCC
neural network for Sentinel 2 and 3 for the retrieval of ocean colour products
in normal and extreme optically complex waters, website, available at: http://step.esa.int/docs/extra/Evolution%20of%20the%20C2RCC_LPS16.pdf (last access: 7 July 2020), 2016. a
Cahill, B., Schofield, O., Chant, R., Wilkin, J., Hunter, E., Glenn, S., and Bissett, P.: Dynamics of turbid buoyant plumes and the feedbacks on near-shore biogeochemistry and physics, Geophys. Res. Lett., 35, L10605, https://doi.org/10.1029/2008GL033595, 2008. a
Dutkiewicz, S., Hickman, A. E., Jahn, O., Gregg, W. W., Mouw, C. B., and Follows, M. J.: Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model, Biogeosciences, 12, 4447–4481, https://doi.org/10.5194/bg-12-4447-2015, 2015. a, b, c
Geyer, B. and
Rockel, B.: coastDat-2 COSMO-CLM Atmospheric Reconstruction, World Data Center for Climate (WDCC) at DKRZ,
https://doi.org/10.1594/WDCC/coastDat-2_COSMO-CLM, 2013. a
Gnanadesikan, A., Kim, G. E., and Pradal, M.-A. S.: Impact of Colored Dissolved Materials on the Annual Cycle of Sea Surface Temperature: Potential Implications for Extreme Ocean Temperatures, Geophys. Res. Lett., 46, 861–869, https://doi.org/10.1029/2018GL080695, 2019. a
Gustafsson, B. G., Schenk, F., Blenckner, T., Eilola, K., Meier, H. E. M., Müller-Karulis, B., Neumann, T., Ruoho-Airola, T., Savchuk, O. P., and Zorita, E.: Reconstructing the Development of Baltic Sea Eutrophication 1850–2006, AMBIO, 41, 534–548, https://doi.org/10.1007/s13280-012-0318-x, G02023, 2012. a
Harvey, E. T., Kratzer, S., and Andersson, A.: Relationships between colored dissolved organic matter and dissolved organic carbon in different coastal gradients of the Baltic Sea, AMBIO, 44, 392–401, https://doi.org/10.1007/s13280-015-0658-4, 2015. a, b
Jerlov, N. (Eds.): Marine Optics, vol. 14
of Elsevier Oceanography Series, Elsevier,
https://doi.org/10.1016/S0422-9894(08)70789-X, 1976. a
Jolliff, J. K. and Smith, T. A.: Biological modulation of upper ocean physics: Simulating the biothermal feedback effect in Monterey Bay, California, J. Geophys. Res.-Biogeo., 119, 703–721, https://doi.org/10.1002/2013JG002522, 2014. a
Koponen, S., Attila, J., Pulliainen, J., Kallio, K., Pyhälahti, T., Lindfors, A., Rasmus, K., and Hallikainen, M.: A case study of airborne and satellite remote sensing of a spring bloom event in the Gulf of Finland, Cont. Shelf Res., 27, 228–244, https://doi.org/10.1016/j.csr.2006.10.006, 2007. a
Kowalczuk, P., Stedmon, C. A., and Markager, S.: Modeling absorption by CDOM in the Baltic Sea from season, salinity and chlorophyll, Mar. Chem., 101, 1–11, https://doi.org/10.1016/j.marchem.2005.12.005, 2006. a, b
Kowalczuk, P., Zabłocka, M., Sagan, S., and Kuliński, K.: Fluorescence measured in situ as a proxy of CDOM absorption and DOC concentration in the Baltic Sea, Oceanologia, 52, 431–471, 2010. a
Kratzer, S. and Moore, G.: Inherent Optical Properties of the Baltic Sea in Comparison to Other Seas and Oceans, Remote Sens.-Basel, 10, 418, https://doi.org/10.3390/rs10030418, 2018. a
Kuznetsov, I. and Neumann, T.: Simulation of carbon dynamics in the Baltic Sea with a 3D model, J. Marine Syst., 111–112, 167–174, https://doi.org/10.1016/j.jmarsys.2012.10.011, 2013. a
Leibniz
Institute for Baltic Sea Research: ERGOM: Ecological ReGional Ocean Model,
available at: http://www.ergom.net (last access: 27 July 2020), 2015. a
Lindfors, A., Rasmus, K., and Strömbeck, N.: Point or pointless – quality of ground data, Int. Remote Sens., 26, 415–423, https://doi.org/10.1080/01431160410001720261, 2005. a
Moran, M. A., Sheldon Jr., W. M., and Zepp, R. G.: Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter, Limnol. Oceanogr., 45, 1254–1264, https://doi.org/10.4319/lo.2000.45.6.1254, 2000. a, b
Nelson, N. B. and Siegel, D. A.: Chapter 11 – Chromophoric DOM in the Open Ocean, in: Biogeochemistry of Marine Dissolved Organic Matter, edited by: Hansell, D. A. and Carlson, C. A., pp. 547–578, Academic Press, San Diego, https://doi.org/10.1016/B978-012323841-2/50013-0, 2002. a, b
Neumann, T.: Climate-change effects on the Baltic Sea ecosystem: A model study, J. Marine Syst., 81, 213–224, https://doi.org/10.1016/j.jmarsys.2009.12.001, 2010. a
Neumann, T.: Model code and boundary data for “Radiation model for the Baltic Sea with an explicit CDOM state variable: a case study with Model ERGOM (version 1.2)” paper [code], Zenodo, https://doi.org/10.5281/zenodo.4299873, 2020. a
Neumann, T.: BONUS+ SeaLaBio Model Experiments [data set], available at: https://thredds-iow.io-warnemuende.de/thredds/catalogs/projects/SeaLaBio/catalog_sealabio.html, last access: 6 August 2021. a
Neumann, T., Siegel, H., Moros, M., Gerth, M., Kniebusch, M., and Heydebreck, D.: Ventilation of the northern Baltic Sea, Ocean Sci., 16, 767–780, https://doi.org/10.5194/os-16-767-2020, 2020.
a
Pefanis, V., Losa, S. N., Losch, M., Janout, M. A., and Bracher, A.: Amplified Arctic Surface Warming and Sea Ice Loss Due to Phytoplankton and Colored Dissolved Material, Geophys. Res. Lett., 47, e2020GL088795, https://doi.org/10.1029/2020GL088795, 2020. a
Radtke, H., Lipka, M., Bunke, D., Morys, C., Woelfel, J., Cahill, B., Böttcher, M. E., Forster, S., Leipe, T., Rehder, G., and Neumann, T.: Ecological ReGional Ocean Model with vertically resolved sediments (ERGOM SED 1.0): coupling benthic and pelagic biogeochemistry of the south-western Baltic Sea, Geosci. Model Dev., 12, 275–320, https://doi.org/10.5194/gmd-12-275-2019, 2019. a
Skoog, A., Wedborg, M., and Fogelqvist, E.: Decoupling of total organic carbon concentrations and humic substance fluorescence in a an extended temperate estuary, Mar. Chem., 124, 68–77, https://doi.org/10.1016/j.marchem.2010.12.003, 2011. a, b
Stedmon, C. and Markager, S.: Behaviour of the optical properties of coloured dissolved organic matter under conservative mixing, Estuarine, Coastal and Shelf Science, 57, 973–979, https://doi.org/10.1016/S0272-7714(03)00003-9, 2003. a
Stedmon, C. A., Osburn, C. L., and
Kragh, T.: Tracing water mass mixing in the Baltic–North Sea transition zone
using the optical properties of coloured dissolved organic matter, Estuar.
Coast. Shelf S., 87, 156–162, https://doi.org/10.1016/j.ecss.2009.12.022, 2010. a
Stigebrandt, A. and Wulff, F.: A model for the dynamics of nutrients and oxygen in the Baltic proper, J. Mar. Res., 45, 729–759, 1987. a
Väkevä, S., Kallio, K., Koponen, S., Neumann, T., Attila, J., Brockmann, C., Kervinen, M., Mazeran, C., Müller, D., Philipson, P., Thulin, S., and Ylöstalo, P.: Baltic SeaLaBio Web Accessible Folder [data set], available at: http://eo.ymparisto.fi/data/water/Baltic_SeaLaBio/, last access: 6 August 2021a. a
Väkevä, S., Koponen, S., Kervinen, M., Neumann, T., Attila, J., Brockmann, C., Kallio, K., Mazeran, C., Müller, D., Philipson, P., Thulin, S., and Ylöstalo, P.: Baltic SeaLaBio CDOM input to ERGOM [data set], available at: http://eo.ymparisto.fi/data/water/Baltic_SeaLaBio/CDOM_input_to_ERGOM/, last access: 6 August, 2021b. a
Winton, M.: A Reformulated Three-Layer Sea Ice Model, J. Atmos. Ocean. Tech., 17, 525–531, https://doi.org/10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2, 2000. a
Short summary
The Baltic Sea is heavily impacted by surrounding land. Therefore, the concentration of colored dissolved organic matter (CDOM) of terrestrial origin is relatively high and impacts the light penetration depth. Estimating a correct light climate is essential for ecosystem models. In this study, a method is developed to derive riverine CDOM from Earth observation methods. The data are used as boundary conditions for an ecosystem model, and the advantage over former approaches is shown.
The Baltic Sea is heavily impacted by surrounding land. Therefore, the concentration of colored...