Articles | Volume 14, issue 7
Geosci. Model Dev., 14, 4641–4654, 2021
Geosci. Model Dev., 14, 4641–4654, 2021

Model description paper 28 Jul 2021

Model description paper | 28 Jul 2021

Exploring deep learning for air pollutant emission estimation

Lin Huang et al.

Related authors

Improving the representation of HONO chemistry in CMAQ and examining its impact on haze over China
Shuping Zhang, Golam Sarwar, Jia Xing, Biwu Chu, Chaoyang Xue, Arunachalam Sarav, Dian Ding, Haotian Zheng, Yujing Mu, Fengkui Duan, Tao Ma, and Hong He
Atmos. Chem. Phys., 21, 15809–15826,,, 2021
Short summary
Impacts of emission changes in China from 2010 to 2017 on domestic and intercontinental air quality and health effect
Yuqiang Zhang, Drew Shindell, Karl Seltzer, Lu Shen, Jean-Francois Lamarque, Qiang Zhang, Bo Zheng, Jia Xing, Zhe Jiang, and Lei Zhang
Atmos. Chem. Phys. Discuss.,,, 2021
Revised manuscript accepted for ACP
Short summary
Assessment of meteorology vs. control measures in the China fine particular matter trend from 2013 to 2019 by an environmental meteorology index
Sunling Gong, Hongli Liu, Bihui Zhang, Jianjun He, Hengde Zhang, Yaqiang Wang, Shuxiao Wang, Lei Zhang, and Jie Wang
Atmos. Chem. Phys., 21, 2999–3013,,, 2021
Short summary
Rapid increase in summer surface ozone over the North China Plain during 2013–2019: a side effect of particulate matter reduction control?
Xiaodan Ma, Jianping Huang, Tianliang Zhao, Cheng Liu, Kaihui Zhao, Jia Xing, and Wei Xiao
Atmos. Chem. Phys., 21, 1–16,,, 2021
Short summary
Quantifying the emission changes and associated air quality impacts during the COVID-19 pandemic on the North China Plain: a response modeling study
Jia Xing, Siwei Li, Yueqi Jiang, Shuxiao Wang, Dian Ding, Zhaoxin Dong, Yun Zhu, and Jiming Hao
Atmos. Chem. Phys., 20, 14347–14359,,, 2020
Short summary

Related subject area

Atmospheric sciences
FORest Canopy Atmosphere Transfer (FORCAsT) 2.0: model updates and evaluation with observations at a mixed forest site
Dandan Wei, Hariprasad D. Alwe, Dylan B. Millet, Brandon Bottorff, Michelle Lew, Philip S. Stevens, Joshua D. Shutter, Joshua L. Cox, Frank N. Keutsch, Qianwen Shi, Sarah C. Kavassalis, Jennifer G. Murphy, Krystal T. Vasquez, Hannah M. Allen, Eric Praske, John D. Crounse, Paul O. Wennberg, Paul B. Shepson, Alexander A. T. Bui, Henry W. Wallace, Robert J. Griffin, Nathaniel W. May, Megan Connor, Jonathan H. Slade, Kerri A. Pratt, Ezra C. Wood, Mathew Rollings, Benjamin L. Deming, Daniel C. Anderson, and Allison L. Steiner
Geosci. Model Dev., 14, 6309–6329,,, 2021
Short summary
Impact of Infrared Atmospheric Sounding Interferometer (IASI) thermal infrared measurements on global ozone reanalyses
Emanuele Emili and Mohammad El Aabaribaoune
Geosci. Model Dev., 14, 6291–6308,,, 2021
Short summary
Modeling sensitivities of BVOCs to different versions of MEGAN emission schemes in WRF-Chem (v3.6) and its impacts over eastern China
Mingshuai Zhang, Chun Zhao, Yuhan Yang, Qiuyan Du, Yonglin Shen, Shengfu Lin, Dasa Gu, Wenjing Su, and Cheng Liu
Geosci. Model Dev., 14, 6155–6175,,, 2021
Short summary
Influence on the temperature estimation of the planetary boundary layer scheme with different minimum eddy diffusivity in WRF v3.9.1.1
Hongyi Ding, Le Cao, Haimei Jiang, Wenxing Jia, Yong Chen, and Junling An
Geosci. Model Dev., 14, 6135–6153,,, 2021
Short summary
GCAP 2.0: a global 3-D chemical-transport model framework for past, present, and future climate scenarios
Lee T. Murray, Eric M. Leibensperger, Clara Orbe, Loretta J. Mickley, and Melissa Sulprizio
Geosci. Model Dev., 14, 5789–5823,,, 2021
Short summary

Cited articles

Aardenne, J. V. and Pulles, T.: Uncertainty in emission inventories: What do we mean and how could we assess it?, Thesis Wageningen University, 2002. 
Appel, K. W., Pouliot, G. A., Simon, H., Sarwar, G., Pye, H. O. T., Napelenok, S. L., Akhtar, F., and Roselle, S. J.: Evaluation of dust and trace metal estimates from the Community Multiscale Air Quality (CMAQ) model version 5.0, Geosci. Model Dev., 6, 883–899,, 2013. 
Appel, K. W., Napelenok, S., Hogrefe, C., Pouliot, G., Foley, K. M., Roselle, S. J., Pleim, J. E., Bash, J., Pye, H. O. T., and Heath, N.: Overview and Evaluation of the Community Multiscale Air Quality (CMAQ) Modeling System Version 5.2, in: Air Pollution Modeling and its Application XXV, edited by: Mensink, C. and Kallos, G., ITM 2016, Springer Proceedings in Complexity, Springer, Cham, 69–73,, 2018. 
Bottou, L.: Large-Scale Machine Learning with Stochastic Gradient Descent, Physica-Verlag HD, 2010. 
Brioude, J., Angevine, W. M., Ahmadov, R., Kim, S.-W., Evan, S., McKeen, S. A., Hsie, E.-Y., Frost, G. J., Neuman, J. A., Pollack, I. B., Peischl, J., Ryerson, T. B., Holloway, J., Brown, S. S., Nowak, J. B., Roberts, J. M., Wofsy, S. C., Santoni, G. W., Oda, T., and Trainer, M.: Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: assessing anthropogenic emissions of CO, NOx and CO2 and their impacts, Atmos. Chem. Phys., 13, 3661–3677,, 2013. 
Short summary
Accurate estimation of emissions is a prerequisite for effectively controlling air pollution, but current methods lack either sufficient data or a representation of nonlinearity. Here, we proposed a novel deep learning method to model the dual relationship between emissions and pollutant concentrations. Emissions can be updated by back-propagating the gradient of the loss function measuring the deviation between simulations and observations, resulting in better model performance.