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Abstract. The inaccuracy of anthropogenic emission inven-
tories on a high-resolution scale due to insufficient basic
data is one of the major reasons for the deviation between
air quality model and observation results. A bottom-up ap-
proach, which is a typical emission inventory estimation
method, requires a lot of human labor and material resources,
whereas a top-down approach focuses on individual pollu-
tants that can be measured directly as well as relying heav-
ily on traditional numerical modeling. Lately, the deep neu-
ral network approach has achieved rapid development due to
its high efficiency and nonlinear expression ability. In this
study, we proposed a novel method to model the dual rela-
tionship between an emission inventory and pollution con-
centrations for emission inventory estimation. Specifically,
we utilized a neural-network-based comprehensive chemical
transport model (NN-CTM) to explore the complex corre-
lation between emission and air pollution. We further up-
dated the emission inventory based on back-propagating the
gradient of the loss function measuring the deviation be-
tween NN-CTM and observations from surface monitors.
We first mimicked the CTM model with neural networks
(NNs) and achieved a relatively good representation of the
CTM, with similarity reaching 95 %. To reduce the gap be-
tween the CTM and observations, the NN model suggests
updated emissions of NOx , NH3, SO2, volatile organic com-
pounds (VOCs) and primary PM2.5 changing, on average,

by −1.34 %, −2.65 %, −11.66 %, −19.19 % and 3.51 %, re-
spectively, in China for 2015. Such ratios of NOx and PM2.5
are even higher (∼ 10 %) in regions that suffer from large un-
certainties in original emissions, such as Northwest China.
The updated emission inventory can improve model perfor-
mance and make it closer to observations. The mean absolute
error for NO2, SO2, O3 and PM2.5 concentrations are reduced
significantly (by about 10 %–20 %), indicating the high fea-
sibility of NN-CTM in terms of significantly improving both
the accuracy of the emission inventory and the performance
of the air quality model.

1 Introduction

Clean air policies have been implemented by the Chinese
government since 2010 and have been effectively reducing
pollutant concentrations, such as sulfur dioxide (SO2) and
nitrogen oxides (NOx) (Zheng et al., 2018). Nevertheless,
China still faces challenges in addressing O3 and PM2.5 pol-
lution. In particular, the level of ozone (O3) in China in-
creased by 1.3 % from 2013 to 2017 (Li, 2019); moreover,
concentrations of PM2.5 (particulate matter with an aero-
dynamic diameter less than 2.5 µm) in most Chinese cities
still far exceed the limits (< 10 µg m−3) recommended by
the World Health Organization (WHO), leading to frequent
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heavy-pollution events (Guo et al., 2014; Richter et al., 2005;
Vesilind et al., 1988). Such high pollutant concentrations
may substantially affect human health given that air pollu-
tion has being ranked fifth among global risk factors with
respect to mortality (Health Effects Institute, 2019).

A prerequisite for effectively controlling air pollution lies
in accurate knowledge of the related emission sources. A
well-established emission inventory should summarize the
amount of pollutants emitted into the atmosphere from all
sources in a specific region and during a specific time span
(Health Effects Institute, 2019). A typical bottom-up ap-
proach is adopted to develop the emission inventory through
investigation of emission sources in the Air Benefit and
Cost and Attainment Assessment System Emission Inventory
(ABaCAS-EI; Zheng et al., 2019) and the Multi-resolution
Emission Inventory (MEIC; He, 2012) developed by Ts-
inghua University, wherein the activity rate of each source
is multiplied by an emission factor (Vallero, 2018). Such
technology-oriented bottom-up emission inventories can re-
flect the types of technology operated in China but are limited
with respect to their actual application due to the human la-
bor and material resource requirements, especially in cities
where thorough investigation is are difficult to support (Xing
et al., 2020b). Furthermore, varied assumptions regarding the
activity rate and emission factor from different studies result
in large uncertainties (Aardenne and Pulles, 2002). There-
fore, the development of a method for efficient, low-cost and
sufficiently accurate grid emission information is being con-
sidered.

The top-down method, as another typical emission inven-
tory estimation approach, can be used to constrain emission
estimations by combining observation results from surface
monitors and satellite retrievals. Brioude et al. (2012) esti-
mated the emissions of anthropogenic CO, NOx and CO2
in the Los Angeles Basin using the FLEXible PARTicle dis-
persion model (FLEXPART) Lagrangian particle dispersion
model based on the top-down method. Recently, Yang et al.
(2021) linked the bottom-up China Multi-pollutant Abate-
ment Planning and Long-term benefit Evaluation (China-
MAPLE), model with the top-down computable general
equilibrium (CGE) model to evaluate the comprehensive im-
pacts of deep decarbonization pathways (DDPs) in China.
However, most of the previous studies have merely fo-
cused on individual pollutants that can be measured directly
(Brioude et al., 2012; Xing et al., 2020a; Yang et al., 2021)
and have relied on traditional numerical modeling.

On the contrary, neural networks (NNs), as a more effi-
cient tool, can also model complex nonlinear relations in the
atmospheric system, thereby converting precursor emissions
into ambient concentrations. Due to their end-to-end learn-
ing ability, NNs can automatically extract key features of in-
put data and capture the behavior of target data; thus, they
have recently been widely used in atmospheric science (Fan
et al., 2017; Tao et al., 2019; Wen et al., 2019; Xing et al.,
2020a, c). For example, many studies (Fan et al., 2017; Tao

Figure 1. Framework of this study.

et al., 2019; Wen et al., 2019) have combined recurrent NN
(RNN) and convolutional NN (CNN) to capture spatial and
temporal features in air-pollution-related questions, as RNN
is skillful with respect to mining temporal patterns from time
series data (Cho et al., 2014; Chung et al., 2014; Hochreiter
and Schmidhuber, 1997) and has the ability to handle miss-
ing values efficiently (Fan et al., 2017), and CNN exhibits po-
tential with respect to leveraging spatial dependencies (e.g.,
in meteorological prediction; Krizhevsky et al., 2012). Fur-
thermore, Xing et al. (2020c) applied NN to a response sur-
face model (RSM), thereby significantly enhancing its com-
putational efficiency and demonstrating the utility of deep
learning approaches for capturing the nonlinearity of atmo-
spheric chemistry and physics. The application of deep learn-
ing improves the efficiency of air quality simulation and can
quickly provide data support for the formulation of emission
control policies in order to adapt to the dynamic pollution sit-
uation and international circumstances. However, the use of
deep NN to estimate emission inventories is more complex
than traditional machine learning problems because there are
no precise emission observations that can be used as super-
vision for model training.

To address all of these issues, we proposed a novel method
based on dual learning (He et al., 2016), which leverages
the primal-dual structure of artificial intelligence (AI) tasks
to obtain informative feedback and regularization signals,
thereby enhancing both the learning and inference process.
In terms of emission inventory estimation, if we have a pre-
cise relationship between the emission inventory and pollu-
tion concentrations, we can use the pollution concentrations
as a constraint to obtain an accurate emission inventory. In
particular, we proposed employing a neural-network-based
chemical transport model (NN-CTM) with a delicately de-
signed architecture, which is efficient and differentiable com-
pared with the chemical transport model (CTM). Further-
more, when a well-trained NN-CTM can accurately reflect
the direct and indirect physical and chemical reactions be-
tween the emission inventory and pollutant concentrations,
the emission inventory can be updated by back-propagating
the gradient of the error between observed and NN-CTM-
predicted pollutant concentrations. Figure 1 shows the frame-
work of this study.
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Figure 2. The whole process of emission inventory estimation.

The remainder of this paper is structured as follows: the
method used for this study is described in Sect. 2; Sect. 3 uses
the emission inventory estimation over China as an example
to demonstrate the superiority of our method; in Sect. 4, we
make a conclusion and discuss some possible future work.

2 Method

2.1 Main framework

The task of emission inventory estimation can be naturally
formalized into a typical dual learning framework. Con-
cretely, we denote xt as the data of emission volumes and
meteorological conditions and yt as the corresponding pollu-
tant concentration at time t . In addition, we denote the map-
ping function from emission to pollutant concentration as f

and that from pollutant concentration to emission as g. As
the transformation from emission to pollutant concentration
is a continuous process in time, approximately, we have the
following equations:

yt = f (x[(t − k+ 1) : t]), (1)
xt = g(y[(t − k+ 1) : t]), (2)

where x[i : j ] is defined as
{
xi,xi+1, . . .,xj

}
for conve-

nience, and y[i : j ] represents
{
yi,yi+1, . . .,yj

}
.

The formulas above are based on two assumptions:

1. The pollutant concentration is only dependent on the
emission and meteorological conditions in the past k

time steps (e.g., hours or days).

2. There is a bijective relationship between emission and
pollutant concentration. This is a necessary prerequisite
for the existence of function g.

The first assumption will hold true as long as a sufficiently
large k value is set. The second assumption may not be true
unless we introduce more external constraints on the emis-
sion inventory, as an information loss exists in the emission-
to-pollutant concentration process.

In fact, it is quite difficult to obtain the function g di-
rectly without emission observations as supervision. Hence,
we employ a dual learning framework to obtain the function

g indirectly by leveraging function f . The framework of this
process is illustrated in Fig. 2. In particular, the whole pro-
cess of emission inventory estimation includes the following
steps:

1. use the existing emission inventory which is still not ac-
curate enough as the initial emission data X̂;

2. given X̂, calculate the corresponding predicted pollutant
concentration data Ŷ ;

3. calculate the loss between the observed values of pollu-
tants Y and the predicted pollutant concentrations Ŷ ;

4. adjust the estimated emission inventory X̂ by back-
propagating the gradient of the loss based on function
f ;

5. repeat steps 2–4 until achieving sufficient accuracy for
predicted concentration.

Although the CTM system can handle the transition from
emission to pollutant concentration, it is not differentiable,
which makes it quite hard to update the emission inventory
through the back-propagation algorithm in the dual learning
framework. In order to establish a differentiable CTM, we
propose building a NN-CTM as the system approximation.
More details will be described in the following subsections.

2.2 Deep-neural-network-based chemical transition
model approximation

The pollutant concentration is usually estimated using a
CTM, which employs the emission inventory as input. In the
dual learning framework, this input will, in turn, be updated
based on observed concentrations via the back-propagation
algorithm. This requires the CTM to be differentiable. To
this end, we propose using deep neural networks to approx-
imate the CTM system. Concretely, to train this NN-CTM,
we apply a supervised learning approach that leverages the
training data, whose input is the same as that of CTM and
whose corresponding label is the output of CTM. The whole
architecture is shown in Fig. 3.

The input data for our NN-CTM are similar to that of a
CTM, including emission inventory, meteorology and geo-
graphical data. The first two are time dependent, whereas the
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Figure 3. NN-CTM structure. c represents channel, which consists of the emission inventory and meteorological data. h and w represent the
height and width of input, respectively. ge is geographic information. We employ long short-term memory (LSTM) to capture the temporal
information and U-Net to capture the spatial information. CNN represents the convolution network. P-ReLU (He et al., 2015b) is a nonlinear
activation function. MLP means multiple layers of perceptrons with threshold activation. The model structure is also named LSTM-U-Net.

last one, denoted as ge, is static. In the Eulerian grid-based
CTM system, for each time step t , the dynamic input data xt

is a matrix with the following dimensions: w×h×c. The con-
centration is simulated continuously in a continuous time se-
quence. Unlike CTM, the NN-CTM cannot deal with overly
long data sequences. Thus, we only use the data from past k

time steps (i.e, x[t−k+1 : t]) as input for the pollutant con-
centration estimation yt . At the same time, we add yt−k as
supplementary input data into the network. The output yt of
NN-CTM is a matrix with the dimensions w×h× l, where l

is the number of pollutant species concerned.
The NN-CTM consists of three branches: two CNN

branches for yt−k and ge, and one long short-term mem-
ory (LSTM; Hochreiter and Schmidhuber, 1997) with U-Net
(Ronneberger et al., 2015) branch. The CNN branches are
used to extract features for yt−k and geographical informa-
tion. We employ a parametric rectified linear unit (P-RELU;
He et al., 2015b) as the nonlinear activation function in these
branches to improve model fitting with nearly zero extra
computational cost and little overfitting risk. We adopt the
architecture of combining LSTM and U-Net based on the un-
derstanding of the temporal–spatial relationship in the emis-
sion inventory. In the temporal dimension, pollutants are the
accumulation of historical emissions. In the spatial dimen-
sion, adjacent grids will affect each other because of mete-
orological and diffusion factors. The LSTM layer is used to
aggregate information from time series data x[t − k+ 1 : t].

The aggregated sequence of hidden states ht−k+1. . .,ht will
be concatenated and entered into the U-Net block. U-Net is
a widely adopted pixel-to-pixel model which can effectively
utilize neighbor information. In U-Net, the stacking of con-
volution can get neighbor information with a bigger recep-
tive field (e.g., stacking 5× 5 convolution and 5× 5 con-
volution can get a 9× 9 convolution), the nonlinear func-
tion (P-RELU) is employed to improve model fitting with
nearly zero extra computational cost and little overfitting
risk, and the batch normalization and dropout are employed
to enhance the robustness of the model. We calculate that
the receptive field of our model is a 38× 38 grid. In other
words, the predicted pollutant concentration is related to its
surrounding 38× 38 grid’s information, which represents the
transmission between different grids. Meanwhile, the closer
the distance, the greater the contribution. We employ a two-
layer U-Net (as shown in Fig. 4) to capture the spatial infor-
mation between grids.

In the training process, we take (XCTM,YCTM) as the
training dataset, where XCTM denotes the input data of the
CTM system, and YCTM is the corresponding output. As rel-
ative changes in pollutant concentrations are the metric often
used by policymakers, we adopt an objective function that
measures the relative loss between NN-CTM-predicted and
CTM-simulated pollutant concentrations. We denote the out-
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Figure 4. U-Net structure (two layers). The model structure yields a
u-shaped architecture. 3× 3 conv is a convolution function (Huang
et al., 2016). P-ReLU (Huang et al., 2016) is a nonlinear activation
function. Max pooling is a down sample function. Up convolution
(Zeiler et al., 2010) is a deconvolution function, which is also named
as up sample function.

put of NN-CTM as ŶNN, and have

L
(
ŶNN,YCTM

)
=

1
Nhwl

N∑
n=1

∑
i,j,c

(∣∣∣ŷ(n)
i,j,c− y

(n)
i,j,c

∣∣∣) , (3)

gw =

∂L
(
ŶNN,YCTM

)
∂w

, (4)

where N is the number of samples, i ∈ [1,h], j ∈ [1,w] and
c ∈ [1, l], and y

(n)
i,j,c represents the concentration of the cth

pollutant in the grid with location (i,j ) in the nth sample.
The parameters of NN-CTM will be updated based on the
gradients given by gw, and the adaptive moment (Adam) es-
timation (Kingma and Ba, 2014) is used as the optimizer.

Model robustness

We ensure the robustness of the model from three aspects:

1. model structure – inspired by computer vision tasks, we
adopt batch normalization (Ioffe and Szegedy, 2015),
dropout (Srivastava et al., 2014), L2 regularization
(Zhang et al., 2016) to improve the generalization and
robustness;

2. early stop – when we train the NN-CTM, we split the
data into training and validation datasets, and we stop
the model training when the evaluation in the validation
dataset does not improve within 1000 iterations;

3. data augmentation – during training, we employ the
noise injection, random rescaling, random rotation
method to avoid the overfitting in training dataset.

2.3 Emission inventory estimation based on NN-CTM

Given a well-trained NN-CTM whose approximation accu-
racy is high enough for predicting pollutant concentrations,
the emission inventory can be updated based on the error be-
tween the observed and NN-CTM-predicted pollutant con-
centrations. The observation data will help update the sur-
rounding grids’ emission inventory within the receptive field.
However, in extreme circumstances, if we have no observa-
tion data, our method will not work because we have no more
information to adjust the emission inventory. If the obser-
vation data are denser, the emission inventory estimation is
more accurate because it can consider more observation data.

In particular, we make the relationship between emission
and pollutant concentration more robust by fixing the trained
LSTM-U-Net model parameter. By training NN-CTM pa-
rameter, we then adjust the input emission inventory to mini-
mize the loss between the NN-CTM output and the observa-
tions. Such loss can be formally defined as follows:

L
(
ŶNN,Y ∗obs

)
=

1
Nhwl

N∑
n=1

∑
i,j,c

Mi,j

(∣∣∣ŷ(n)
i,j,c− y

∗(n)
i,j,c

∣∣∣) , (5)

ge =
∂L
(
ŶNN,Y ∗obs

)
∂e

, (6)

where Y ∗obs represents the observed pollutant concentration
(we use an average value in case of multiple observation sta-
tions in a grid), and Mi,j is a binary indicator variable indi-
cating whether or not there is site monitoring equipment in
grid (i,j ). The emission inventory will be updated by back-
propagating the gradient ge. The stochastic gradient descent
(SGD) method (Bottou, 2010) is used as the optimizer.

Meanwhile, aiming at ensuring the reasonableness and ef-
fectiveness of the estimated emission inventory, we set two
constraints. The first is that the update rate of the emission
inventory must be a maximum of 200 % compared with the
prior emission for each grid. Biases exist in meteorological
conditions and chemical mechanism, and this determines that
we cannot attribute all of the errors to the emission inventory.
If the update ratio is very large, the NN-CTM cannot reflect
the correlation of the unseen data well. Furthermore, the prior
emission is accurate to a certain extent in terms of the spatial
and temporal dimensions. The second constraint is that the
updated emission inventory must be positive.

3 Experiments and the analysis of results

In this section, we apply our proposed method to emission
inventory estimation in China in 2015. In the following, we
will first describe the data and CTM configuration. Subse-
quently, we will show the experimental results in terms of the
accuracy of NN-CTM. We will then conduct further analysis

https://doi.org/10.5194/gmd-14-4641-2021 Geosci. Model Dev., 14, 4641–4654, 2021



4646 L. Huang et al.: Exploring deep learning for air pollutant emission estimation

on the prior emission inventory and our emission inventory
estimation results.

3.1 Data and CTM configuration

The prior high spatial and temporal resolution emission in-
ventory ABaCAS-EI is based on the bottom-up method, in-
cluding primary pollutants such as NOx , ammonia (NH3),
SO2, volatile organic compounds (VOCs) and primary
PM2.5. ABaCAS-EI is a grid-unit-based emission inventory
including sources of power, cement, the steel industry and
mobile sources. It also takes technical progress and more
stringent emission standards into consideration (Zheng et al.,
2019). The prior emission inventory is initially used for NN-
CTM training and then updated as per the proposed method
of dual learning.

Geographical data are a fixed attribute of one grid, like
land type, mountains, depressions or elevation, and they are
obtained from the Moderate Resolution Imaging Spectrora-
diometer (MODIS) with a 15 s resolution in this study (Friedl
et al., 2002).

Meteorological conditions are simulated from the Weather
Research and Forecasting (WRF, version 3.7) model. The
WRF configuration includes the Morrison microphysics
scheme (Morrison et al., 2009), the RRGM radiation scheme
(Mlawer et al., 1998, 1997), the Pleim–Xiu land surface
scheme (Pleim and Xiu, 1995; Xiu and Pleim, 2001),
the Asymmetric Convective Model, version 2 (ACM2)
planetary boundary layer (PBL) physics scheme (Pleim,
2007) and the Kain–Fritsch cumulus cloud parameteriza-
tion (Kain, 2004), which matches our previous studies (Ghil
and Malanotte-Rizzoli, 1991; Wikle, 2003). Data assimila-
tion is adopted in WRF simulations based on observation
data for the upper air and surface from the National Cen-
ters for Environmental Prediction (NCEP) datasets. The sim-
ulated temperature, humidity, wind speed and direction show
good agreement with the observations from the National
Climatic Data Center (NCDC, https://www.ncdc.noaa.gov/
data-access/land-based-station-data/, last access: 26 Decem-
ber 2020) (Ding et al., 2019; Liu et al., 2019; Zhao et al.,
2013).

The Community Multiscale Air Quality (CMAQ, ver-
sion 5.2) model configured with the AERO6 aerosol mod-
ule (Appel et al., 2013) and the Carbon Bond 6 (CB6) gas-
phase chemical mechanism (Sarwar et al., 2008) is chosen as
the representative CTM to simulate pollutant concentrations
(Appel et al., 2018; Byun, 1999). Hourly observation data
for air pollution (including SO2, NO2, O3 and PM2.5), which
are used to adjust the emission inventory, are obtained from
the China National Environmental Monitoring Centre (http:
//beijingair.sinaapp.com/, last access: 26 December 2020).

The simulation domain covers mainland China and por-
tions of surrounding countries with a 27 km× 27 km hori-
zontal resolution (with h= 182 and w = 232) and 14 verti-
cal layers from the ground to 100 hPa. Simulations are per-

formed in January, April, July and October 2015 to repre-
sent winter, spring, summer and autumn, respectively. A 5 d
simulation spin-up was performed to minimize the effects of
initial conditions. Pollutant concentrations are analyzed as
monthly averages.

3.2 NN-CTM training and evaluation

Training parameters

The NN-CTM parameters were optimized using the Adam
optimizer with a mini-batch size of eight. A learning rate of
0.001 was used. To reduce the risk of over-fitting, we ap-
plied weight regularization on all trainable parameters dur-
ing training and fine-tuning. The NN-CTM was trained for
30 000 epochs.

Metrics

Model performance was evaluated using the mean absolute
error (MAE), which is calculated using the following equa-
tion:

L
(
ŶNN,YCTM

)
=

1
Nhwl

∑
n,i,j,c

(∣∣∣ŷ(n)
i,j,c− y

(n)
i,j,c

∣∣∣) , (7)

where N , h, w and l are the number of samples, height, width
and the number of observed pollutants in each grid, respec-
tively. Further, n ∈ [1,N ], i ∈ [1,h], j ∈ [1,w] and c ∈ [1, l].

Evaluation

We examined the performance of NN-CTM to check whether
it had learned the relationship between emission and pollu-
tant concentration.

We trained NN-CTM on the data from the first 22 d in Jan-
uary, April, July and October 2015, and we tested it on the
remaining successive 8 d of each month. As listed in Table 1,
NN-CTM (with LSTM-U-Net) can reproduce the spatial and
temporal relation well, with a small MAE of 0.27, 0.17,
1.39 ppbv and 1.46 µg m−3 for NO2, SO2, O3 and PM2.5, re-
spectively, on average for the 4 months. Results suggest that
the NN-CTM can reproduce the CTM well within an accept-
able bias, and thus it can be used for emission adjustment.
Such a bias (< 4 %) is much smaller than that of the simu-
lation compared with the observations, which are normally
more than 10 % or even 20 %.

In order to further verify the superiority of our model
architecture, we employed ResNet (He et al., 2015a), an-
other widely adopted deep NN method in image process-
ing. Compared with ResNet, the performance of NN-CTM
(with LSTM-U-Net) was superior, with an improved MAE of
0.02, 0.02, 0.10 ppbv and 0.02 µg m−3 for NO2, SO2, O3 and
PM2.5, respectively, on average for the 4 months (as listed in
Table 1).
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Table 1. Evaluation of the NN-CTM simulation in China (mean absolute error between CTM and NN-CTM). LSTM-U-Net is our proposed
method. To compare the model performance, we then select another professional deep neural network method – residual network (ResNet;
He et al., 2015a).

Model NN-CTM (with LSTM-U-Net) NN-CTM (with ResNet)

PM2.5 O3 NO2 SO2 PM2.5 O3 NO2 SO2
Variables (µg m−3) (ppbv) (ppbv) (ppbv) (µg m−3) (ppbv) (ppbv) (ppbv)

January 1.65 1.39 0.34 0.25 1.65 1.44 0.36 0.26
April 1.74 1.46 0.25 0.16 1.73 1.64 0.26 0.18
July 1.04 1.38 0.23 0.12 1 1.45 0.25 0.13
October 1.43 1.34 0.27 0.16 1.53 1.44 0.29 0.17

Average 1.46 1.39 0.27 0.17 1.48 1.49 0.29 0.19
Error (%) 3.6 3.9 1.9 2.2 3.7 4.3 2.1 2.5

3.3 Emission inventory updating and analysis

A well-trained NN-CTM is used to update the emission in-
ventory via back-propagation with the stochastic gradient de-
scent (SGD; Bottou, 2010) optimizer with a mini-batch size
of two. The learning rate is 0.1. The optimization of emis-
sions is achieved after 10 000 epochs.

For convenience, we denote the emission inventory from
ABaCAS-EI as prior emissions (P-Emis) and the updated
emission inventory as NN-emissions (N-Emis), which is con-
strained by station observations. Compared with P-Emis, N-
Emis has adjusted emission rates of NOx , NH3, SO2, VOCs
and primary PM2.5 as per the difference between simulated
concentrations and the observed values of pollutants in each
grid, as shown in Fig. 5. Average emission rates of NH3,
SO2 and VOCs in most grids tend to decrease, whereas those
of primary PM2.5 tend to increase except for in the Yangtze
River Basin, which may be related to the excluded dust emis-
sion. Changes in the emission rate of NOx vary a lot by re-
gion, and such changes are concentrated in urban areas. The
distribution of N-Emis for each grid is consistent with P-
Emis, indicating that the deep learning method in this study
can identify the distribution of emission sources and focus on
the calibration in high-emission areas.

Annual anthropogenic emissions in China for NOx , NH3,
SO2, VOCs and primary PM2.5 in P-Emis are 20.44, 10.39,
14.40, 23.05 and 7.19 Mt, respectively (Liu et al., 2020),
whereas they changed by −1.34 %, −2.65 %, −11.66 %,
−19.19 % and 3.51 %, respectively, in N-Emis.

The sensitivity of change ratios to different seasons varies.
Table 2 lists the change ratios of N-Emis compared with
P-Emis for the 4 abovementioned months. As for N-Emis,
NOx increases in January and October by about 3.5 %–4.0 %,
whereas it decreases by more than 10 % in July. The emis-
sion of NH3 increases in January, whereas it decreases in the
other 3 months with the highest decrease registered in Octo-
ber. The emission of SO2 tends to decrease in all 4 months,
with ratios of around 10 %. The emission of VOCs also tends
to decrease but with a larger magnitude of about 20 % com-

Table 2. Change ratios of N-Emis compared with P-Emis for the
4 months (given as a percentage).

Month Variables

NOx NH3 SO2 VOCs PM2.5

January 3.72 1.88 −12.38 −25.36 4.64
April −1.49 −2.56 −8.96 −18.27 4.69
July −11.68 −2.29 −11.42 −12.8 1.8
October 3.6 −4.61 −13.32 −19.03 2.4

Average −1.34 −2.65 −11.66 −19.19 3.51

pared with SO2, which may be related to the overestimation
of O3. The emission of primary PM2.5 tends to increase by
less than 5 % for the 4 months.

Such changes in emissions are based on mathematical al-
gorithms and, thus, cannot be explained by physical and
chemical processes. The NN method tries to provide a solu-
tion to make simulation results of all pollutant species closer
to observations by compensating for the errors in the emis-
sion inventory. For example, concentrations of PM2.5 ob-
tained using P-Emis are generally lower than the observed
level, so the emission of primary PM2.5 will be increased dur-
ing the adjustment. SO2 tends to be overestimated using P-
Emis, so the adjustment tends to decrease. However, because
sulfate is an important component of PM2.5, the adjustment
of SO2 will be restricted by the underestimation of PM2.5.
Concentrations of O3 obtained using P-Emis are generally
higher than the observed level, so it tends to reduce the emis-
sions of NOx and VOCs, which are precursors of O3, during
the adjustment. It is worth noting that the adjustment range of
NOx is much lower than that of VOCs, as only the observed
concentration of NO2 is used as a constraint. Such results are
consistent with our previous study (Xing et al., 2020a).

In order to further analyze the change in emissions at
a regional level, we calculated the 4-month average emis-
sions of P-Emis and change ratios of N-Emis for five emis-
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Figure 5. Emission rates of NOx , NH3, SO2, VOCs and primary PM2.5 in P-Emis and their changes in N-Emis.
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Table 3. Emissions and change ratios in five typical regions for 4 months.

Month Variables Version Regions

BTH YRD PRD SCH NWC

January NOx P-Emis (kt) 68.05 70.56 37.07 43.29 10.26
N-Emis (%) −7.19 6.24 4.55 2.65 8.74

NH3 P-Emis (kt) 28.65 24.42 6.5 24.84 5.52
N-Emis (%) 0.67 0.59 8.3 5.13 8.64

SO2 P-Emis (kt) 90.13 40.16 21.72 150.67 34.06
N-Emis (%) −11.93 −11.38 −13.92 −26.14 −1.5

VOCs P-Emis (Mmol) 0.81 0.99 0.25 0.28 0.05
N-Emis (%) −5.53 −12.73 −37.52 −36.39 2.61

PM2.5 P-Emis (kt) 4.66 2.22 1.14 3.6 0.85
N-Emis (%) 1.27 10.14 15.59 −0.8 9.61

April NOx P-Emis (kt) 52.43 67.17 35.21 39.05 8.72
N-Emis (%) 8.93 −15.05 −5.22 −7.8 14.59

NH3 P-Emis (kt) 85.56 90.34 70.52 192.37 56.06
N-Emis (%) −3.63 −2.6 −0.18 −1.78 −0.43

SO2 P-Emis (kt) 33.93 34.44 20.43 110.74 20.2
N-Emis (%) −28.14 −0.92 −14.17 −22.97 6.77

VOCs P-Emis (Mmol) 0.38 0.85 0.23 0.19 0.05
N-Emis (%) −28.87 13.71 −25.61 −29.06 −2.29

PM2.5 P-Emis (kt) 1.81 1.96 0.94 1.79 0.62
N-Emis (%) −5.12 −3.93 4.34 −8.89 9.54

July NOx P-Emis (kt) 50.51 72.03 36.61 41.35 9.01
N-Emis (%) −10.62 −29.84 −11.46 −11.94 6.86

NH3 P-Emis (kt) 108.78 114.78 89.82 245.68 71.16
N-Emis (%) −5.41 −2.7 −1.1 −0.9 0.08

SO2 P-Emis (kt) 35.65 36.95 21.26 115.74 17.51
N-Emis (%) −38.45 −4.18 −19.26 −19.71 12.71

VOCs P-Emis (Mmol) 0.39 0.92 0.24 0.21 0.05
N-Emis (%) −22.87 23.85 −21.29 −16.47 8.85

PM2.5 P-Emis (kt) 2.34 3.18 1.06 2.27 0.72
N-Emis (%) 0.88 −4.94 4.17 −5.4 6.91

October NOx P-Emis (kt) 54.83 70.11 37.11 40.84 9.96
N-Emis (%) 14.56 −19.99 −9.62 −1.5 25.41

NH3 P-Emis (kt) 50.43 53.4 41.24 110.75 32.28
N-Emis (%) −0.53 −4.52 1.54 −3.79 −2.54

SO2 P-Emis (kt) 35.68 36.08 21.52 116.47 21.74
N-Emis (%) −39.8 −2.73 −19.63 −27.43 −2.39

VOCs P-Emis (Mmol) 0.4 0.89 0.25 0.19 0.06
N-Emis (%) −38.33 27.98 −20.39 −34.42 −16.41

PM2.5 P-Emis (kt) 1.94 1.95 1.15 1.85 1.04
N-Emis (%) 0.26 −4.86 3.8 −13.68 9.32
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Figure 6. Five typical regions of China, the Beijing–Tianjin–Hebei region (denoted as BTH), the Yangtze River Delta (denoted as YRD,
covering Jiangsu, Zhejiang and Shanghai), the Pearl River Delta (denoted as PRD, covering Guangdong), the Sichuan Basin (denoted as
SCH, covering Sichuan and Chongqing) and Northwest China (denoted as NWC, covering Xinjiang), and their monthly average emissions
for 4 months in P-Emis (given in kilotons except for VOCs, which are given in megamoles) and change ratios in N-Emis (given as a
percentage).

sion species in the Beijing–Tianjin–Hebei region (BTH), the
Yangtze River Delta (YRD), the Pearl River Delta (PRD), the
Sichuan Basin (SCH) and Northwest China (NWC), as high-
lighted in Fig. 6. The first four areas were selected because
they are the main population clusters, and NWC was selected
because there are so few observation sites in this area that the
constraints are relatively insufficient.

The adjustment of emission varies greatly by season and
region. Seasonal details are listed in Table 3. The 4-month
average changes in N-Emis in BTH are the highest for SO2
and VOC emissions, reaching about −20 %, whereas those
for NOx , NH3 and primary PM2.5 vary by less than 5 %. In
YRD, NOx and VOC emissions record the highest extent of
changes with−14.73 % for NOx and 12.54 % for VOCs. The
range of changes in other emission species is less than 5 %
(all decrease). The emission of primary PM2.5 in PRD in-
creases by about 7 %, which is the largest change ratio among
the four urban regions. The emission of NH3 in PRD changes
the least compared with other regions. In SCH, the emissions
of SO2 and VOCs decrease the most (change ratio) com-
pared with other emission species (> 20 %). The emission
of primary PM2.5 in SCH, which decreases by 5.95 %, shows
an opposite trend to that in PRD. As for NWC, emissions
of NH3 and VOCs show a small decrease (< 5 %), whereas
emissions of NOx and primary PM2.5 have a large percent-
age increase compared with other regions (10 %), specifically

Figure 7. The MAE of NO2 (ppbv), SO2 (ppbv), O3 (ppbv) and
PM2.5 (µg m−3) concentrations based on P-Emis and N-Emis.

indicating the large inaccuracy in the emission inventory in
NWC.

3.4 Accuracy improvements of the CTM simulation for
pollutants with N-Emis

We use the CTM to evaluate the accuracy of P-Emis and N-
Emis. The configuration of CTM remains constant.

Generally, simulations using P-Emis tend to underestimate
the PM2.5 concentrations and overestimate the O3 concentra-
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Figure 8. The MAE of NO2 (ppbv), SO2 (ppbv), O3 (ppbv) and PM2.5 (µg m−3) concentrations based on P-Emis and N-Emis.

tions in China on average for the 4 months, which is con-
sistent with our previous studies (Ding et al., 2019; Liu et
al., 2019). The underestimation of PM2.5 using P-Emis usu-
ally appears in northern and southeastern China and some-
times occurs in some provinces of the Yangtze River Basin.
The simulations of O3 using P-Emis are generally overes-
timated at observation sites. Such errors can be narrowed
when using N-Emis. We calculated the MAE for each sim-
ulation to compare their performance, considering all obser-
vation sites. After using adjusted emissions (i.e., N-Emis),
the MAE for the NO2, SO2, O3 and PM2.5 concentrations
reduced significantly from 7.39 to 5.91 ppbv (20.03 %), 3.64
to 3.22 ppbv (11.54 %), 14.33 to 11.56 ppbv (19.33 %) and
18.94 to 16.67 µg m−3 (11.99 %), respectively, on average for
total 612 observation stations (as shown in Fig. 7). Such im-
provements prove the advantages of using N-Emis compared
with P-Emis. Spatial distributions of the comparison between
simulations and observations at 612 sites can be found in
Fig. 8. The model performance improved for most stations,
while a small number of stations reported reduced perfor-
mance, which shows the link between compound pollutants.
For example, stations with larger deviations between PM2.5
simulation results and observations tend to have greatly im-
proved O3 performance and vice versa.

The difference in monthly simulations using N-Emis and
P-Emis as input can be utilized to estimate the seasonal im-
pacts of emission changes. Concentrations of O3 and PM2.5

tend to increase in July and decrease in other months on av-
erage in China. Concentrations of NO2 and SO2 tend to de-
crease in the 4 abovementioned months, which is consistent
with the direct trend of emission adjustments.

We also calculated the average concentrations of four pol-
lutants in five typical regions to quantify the degree of im-
provement in pollutant concentrations after adjusting the
emission inventory, as listed in Table 4. Changes in the
NO2 and SO2 concentrations are consistent with adjustments
in emissions but are more sensitive, i.e., a small change
(∼ 10 %) in emission results in a larger proportional change
(∼ 20 %) in concentration. The reduced SO2 emission is an
important reason for the improvement in PM2.5 overestima-
tions in the Yangtze River Basin. PM2.5 concentrations in
NWC show the highest increase (15 %) compared with other
regions. As the emission inventory in NWC has great po-
tential for improvement (subject to production methods and
the acquisition of basic data), the qualitative changes in the
PM2.5 concentrations brought about using the NN method
seem meaningful. The increase and decrease in NOx and
VOC emissions directly control the variance in the O3 con-
centration. The effect of using N-Emis on the O3 concentra-
tion is not obvious, with a change range of less than 5 % in
typical regions. Although the adjustment ratio of the emis-
sions of O3 precursors is considerable, the O3 concentration
does not change by much. This can be linked to the com-
plex relationship of precursor emissions of NOx and VOCs
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Table 4. The 4-month average concentrations of NO2, SO2, O3 and PM2.5 in five typical regions using different emission inventories.

Variables Version Regions

BTH YRD PRD SCH NWC

NO2 (ppbv) P-Emis 15.69 13.31 6.25 4.82 0.31
N-Emis 11.85 10.79 5.29 4.45 0.33

SO2 (ppbv) P-Emis 6.97 4.32 1.89 4.88 0.26
N-Emis 5.77 3.95 1.67 3.2 0.37

O3 (ppbv) P-Emis 34.79 41.63 40.16 41.94 41.42
N-Emis 35.51 39.7 38.43 40.06 41.47

PM2.5 (µg m−3) P-Emis 46.28 44.29 22.6 25.96 2.02
N-Emis 45.28 41.66 22.08 23.71 2.33

which might not change simultaneously or in the same direc-
tion (e.g., an increase NOx and a decrease in VOCs or vice
versa), thereby resulting in only a slight change in the O3
concentration.

4 Conclusion and discussion

In this study, we pioneer the use of machine learning to
reformulate the problem of emission inventory estimation.
It creates a new perspective that the data-driven approach
can be applied to automatically improve the quality of the
emission inventory, avoiding manual intervention and empir-
ical error. We proposed a differential neural-network-based
chemical transport model (NN-CTM), which achieves a rel-
atively good representation of the CTM. We then employed
a back-propagation algorithm to update the emission inven-
tory based on the deviation between observed and NN-CTM-
predicted pollutant concentrations. In terms of method, we
proposed a novel emission inventory estimation approach
based on dual learning that consists of a dual loop: emission-
to-pollution and pollution-to-emission. Results indicate that
our NN-based method with an adjusted emission inventory
performed better than using prior emissions.

Compared with previous studies, our framework employs
a dual learning mechanism in which the simulated concen-
trations are compared to ground observations and the gradi-
ent is back-propagated to update the emission inventory in
each epoch. Results show that new emissions after the ad-
justment can improve the model performance with respect to
simulating concentrations that are close to observations. The
mean absolute error for the NO2, SO2, O3 and PM2.5 con-
centrations decreased significantly (by 10 % to 20 %). This
application uses a constant biogenic emission inventory, so
the potential errors in biogenic emissions are also included
in the training of anthropogenic emissions.

Our method can be naturally extended to other fundamen-
tal problems, such as CO2 and other greenhouse gas emission
inventory estimations, and has broad application prospects,

such as building a real-time emission monitoring system
based on real-time pollutant observation data.

Code and data availability. The codes for machine learning are
available at https://doi.org/10.5281/zenodo.4607127 (Huang et al.,
2021), including the demo case for this study with input data
from Ding et al. (2016) and the China National Environmen-
tal Monitoring Centre (http://beijingair.sinaapp.com/, last access:
26 December 2020). CMAQv5.2 is an open-source and pub-
licly available model developed by the United States Envi-
ronmental Protection Agency, which can be downloaded from
https://doi.org/10.5281/zenodo.1167892 (US EPA Office of Re-
search and Development, 2017; Appel et al., 2018).
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