Articles | Volume 14, issue 7
https://doi.org/10.5194/gmd-14-4617-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-4617-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Model intercomparison of COSMO 5.0 and IFS 45r1 at kilometer-scale grid spacing
Christian Zeman
CORRESPONDING AUTHOR
Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
Nils P. Wedi
European Centre for Medium-Range Weather Forecasts, Reading, UK
Peter D. Dueben
European Centre for Medium-Range Weather Forecasts, Reading, UK
Nikolina Ban
Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
Christoph Schär
Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
Related authors
Hugo Banderier, Christian Zeman, David Leutwyler, Stefan Rüdisühli, and Christoph Schär
Geosci. Model Dev., 17, 5573–5586, https://doi.org/10.5194/gmd-17-5573-2024, https://doi.org/10.5194/gmd-17-5573-2024, 2024
Short summary
Short summary
We investigate the effects of reduced-precision arithmetic in a state-of-the-art regional climate model by studying the results of 10-year-long simulations. After this time, the results of the reduced precision and the standard implementation are hardly different. This should encourage the use of reduced precision in climate models to exploit the speedup and memory savings it brings. The methodology used in this work can help researchers verify reduced-precision implementations of their model.
Qinggang Gao, Christian Zeman, Jesus Vergara-Temprado, Daniela C. A. Lima, Peter Molnar, and Christoph Schär
Weather Clim. Dynam., 4, 189–211, https://doi.org/10.5194/wcd-4-189-2023, https://doi.org/10.5194/wcd-4-189-2023, 2023
Short summary
Short summary
We developed a vortex identification algorithm for realistic atmospheric simulations. The algorithm enabled us to obtain a climatology of vortex shedding from Madeira Island for a 10-year simulation period. This first objective climatological analysis of vortex streets shows consistency with observed atmospheric conditions. The analysis shows a pronounced annual cycle with an increasing vortex shedding rate from April to August and a sudden decrease in September.
Christian Zeman and Christoph Schär
Geosci. Model Dev., 15, 3183–3203, https://doi.org/10.5194/gmd-15-3183-2022, https://doi.org/10.5194/gmd-15-3183-2022, 2022
Short summary
Short summary
Our atmosphere is a chaotic system, where even a tiny change can have a big impact. This makes it difficult to assess if small changes, such as the move to a new hardware architecture, will significantly affect a weather and climate model. We present a methodology that allows to objectively verify this. The methodology is applied to several test cases, showing a high sensitivity. Results also show that a major system update of the underlying supercomputer did not significantly affect our model.
Francisco J. Doblas-Reyes, Jenni Kontkanen, Irina Sandu, Mario Acosta, Mohammed Hussam Al Turjmam, Ivan Alsina-Ferrer, Miguel Andrés-Martínez, Leo Arriola, Marvin Axness, Marc Batlle Martín, Peter Bauer, Tobias Becker, Daniel Beltrán, Sebastian Beyer, Hendryk Bockelmann, Pierre-Antoine Bretonnière, Sebastien Cabaniols, Silvia Caprioli, Miguel Castrillo, Aparna Chandrasekar, Suvarchal Cheedela, Victor Correal, Emanuele Danovaro, Paolo Davini, Jussi Enkovaara, Claudia Frauen, Barbara Früh, Aina Gaya Àvila, Paolo Ghinassi, Rohit Ghosh, Supriyo Ghosh, Iker González, Katherine Grayson, Matthew Griffith, Ioan Hadade, Christopher Haine, Carl Hartick, Utz-Uwe Haus, Shane Hearne, Heikki Järvinen, Bernat Jiménez, Amal John, Marlin Juchem, Thomas Jung, Jessica Kegel, Matthias Kelbling, Kai Keller, Bruno Kinoshita, Theresa Kiszler, Daniel Klocke, Lukas Kluft, Nikolay Koldunov, Tobias Kölling, Joonas Kolstela, Luis Kornblueh, Sergey Kosukhin, Aleksander Lacima-Nadolnik, Jeisson Javier Leal Rojas, Jonni Lehtiranta, Tuomas Lunttila, Anna Luoma, Pekka Manninen, Alexey Medvedev, Sebastian Milinski, Ali Omar Abdelazim Mohammed, Sebastian Müller, Devaraju Naryanappa, Natalia Nazarova, Sami Niemelä, Bimochan Niraula, Henrik Nortamo, Aleksi Nummelin, Matteo Nurisso, Pablo Ortega, Stella Paronuzzi, Xabier Pedruzo Bagazgoitia, Charles Pelletier, Carlos Peña, Suraj Polade, Himansu Pradhan, Rommel Quintanilla, Tiago Quintino, Thomas Rackow, Jouni Räisänen, Maqsood Mubarak Rajput, René Redler, Balthasar Reuter, Nuno Rocha Monteiro, Francesc Roura-Adserias, Silva Ruppert, Susan Sayed, Reiner Schnur, Tanvi Sharma, Dmitry Sidorenko, Outi Sievi-Korte, Albert Soret, Christian Steger, Bjorn Stevens, Jan Streffing, Jaleena Sunny, Luiggi Tenorio, Stephan Thober, Ulf Tigerstedt, Oriol Tinto, Juha Tonttila, Heikki Tuomenvirta, Lauri Tuppi, Ginka Van Thielen, Emanuele Vitali, Jost von Hardenberg, Ingo Wagner, Nils Wedi, Jan Wehner, Sven Willner, Xavier Yepes-Arbós, Florian Ziemen, and Janos Zimmermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2198, https://doi.org/10.5194/egusphere-2025-2198, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Climate Change Adaptation Digital Twin (Climate DT) pioneers the operationalisation of climate projections. The system produces global simulations with local granularity for adaptation decision-making. Applications are embedded to generate tailored indicators. A unified workflow orchestrates all components in several supercomputers. Data management ensures consistency and streaming enables real-time use. It is a complementary innovation to initiatives like CMIP, CORDEX, and climate services.
R. Phani Murali Krishna, Siddharth Kumar, A. Gopinathan Prajeesh, Peter Bechtold, Nils Wedi, Kumar Roy, Malay Ganai, B. Revanth Reddy, Snehlata Tirkey, Tanmoy Goswami, Radhika Kanase, Sahadat Sarkar, Medha Deshpande, and Parthasarathi Mukhopadhyay
Geosci. Model Dev., 18, 1879–1894, https://doi.org/10.5194/gmd-18-1879-2025, https://doi.org/10.5194/gmd-18-1879-2025, 2025
Short summary
Short summary
The High-Resolution Global Forecast Model (HGFM) is an advanced iteration of the operational Global Forecast System (GFS) model. HGFM can produce forecasts at a spatial scale of ~6 km in tropics. It demonstrates improved accuracy in short- to medium-range weather prediction over the Indian region, with notable success in predicting extreme events. Further, the model will be entrusted to operational forecasting agencies after validation and testing.
Geert Lenderink, Nikolina Ban, Erwan Brisson, Ségolène Berthou, Virginia Edith Cortés-Hernández, Elizabeth Kendon, Hayley J. Fowler, and Hylke de Vries
Hydrol. Earth Syst. Sci., 29, 1201–1220, https://doi.org/10.5194/hess-29-1201-2025, https://doi.org/10.5194/hess-29-1201-2025, 2025
Short summary
Short summary
Future extreme rainfall events are influenced by changes in both absolute and relative humidity. The impact of increasing absolute humidity is reasonably well understood, but the role of relative humidity decreases over land remains largely unknown. Using hourly observations from France and the Netherlands, we find that lower relative humidity generally leads to more intense rainfall extremes. This relation is only captured well in recently developed convection-permitting climate models.
Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K. Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J. Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K. Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U. Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A.-M. Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H. Jungclaus, Noel S. Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2025-509, https://doi.org/10.5194/egusphere-2025-509, 2025
Short summary
Short summary
The nextGEMS project developed two Earth system models that resolve processes of the order of 10 km, giving more fidelity to the representation of local phenomena, globally. In its fourth cycle, nextGEMS performed simulations with coupled ocean, land, and atmosphere over the 2020–2049 period under the SSP3-7.0 scenario. Here, we provide an overview of nextGEMS, insights into the model development, and the realism of multi-decadal, kilometer-scale simulations.
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025, https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary
Short summary
We explore a high-level programming model for porting numerical weather prediction (NWP) model codes to graphics processing units (GPUs). We present a Python rewrite with the domain-specific library GT4Py (GridTools for Python) of two renowned cloud microphysics schemes and the associated tangent-linear and adjoint algorithms. We find excellent portability, competitive GPU performance, robust execution on diverse computing architectures, and enhanced code maintainability and user productivity.
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025, https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary
Short summary
Detailed global climate model simulations have been created based on a numerical weather prediction model, offering more accurate spatial detail down to the scale of individual cities ("kilometre-scale") and a better understanding of climate phenomena such as atmospheric storms, whirls in the ocean, and cracks in sea ice. The new model aims to provide globally consistent information on local climate change with greater precision, benefiting environmental planning and local impact modelling.
Hugo Banderier, Christian Zeman, David Leutwyler, Stefan Rüdisühli, and Christoph Schär
Geosci. Model Dev., 17, 5573–5586, https://doi.org/10.5194/gmd-17-5573-2024, https://doi.org/10.5194/gmd-17-5573-2024, 2024
Short summary
Short summary
We investigate the effects of reduced-precision arithmetic in a state-of-the-art regional climate model by studying the results of 10-year-long simulations. After this time, the results of the reduced precision and the standard implementation are hardly different. This should encourage the use of reduced precision in climate models to exploit the speedup and memory savings it brings. The methodology used in this work can help researchers verify reduced-precision implementations of their model.
Tom Kimpson, Margarita Choulga, Matthew Chantry, Gianpaolo Balsamo, Souhail Boussetta, Peter Dueben, and Tim Palmer
Hydrol. Earth Syst. Sci., 27, 4661–4685, https://doi.org/10.5194/hess-27-4661-2023, https://doi.org/10.5194/hess-27-4661-2023, 2023
Short summary
Short summary
Lakes play an important role when we try to explain and predict the weather. More accurate and up-to-date description of lakes all around the world for numerical models is a continuous task. However, it is difficult to assess the impact of updated lake description within a weather prediction system. In this work, we develop a method to quickly and automatically define how, where, and when updated lake description affects weather prediction.
Ruoyi Cui, Nikolina Ban, Marie-Estelle Demory, Raffael Aellig, Oliver Fuhrer, Jonas Jucker, Xavier Lapillonne, and Christoph Schär
Weather Clim. Dynam., 4, 905–926, https://doi.org/10.5194/wcd-4-905-2023, https://doi.org/10.5194/wcd-4-905-2023, 2023
Short summary
Short summary
Our study focuses on severe convective storms that occur over the Alpine-Adriatic region. By running simulations for eight real cases and evaluating them against available observations, we found our models did a good job of simulating total precipitation, hail, and lightning. Overall, this research identified important meteorological factors for hail and lightning, and the results indicate that both HAILCAST and LPI diagnostics are promising candidates for future climate research.
Eleonora Dallan, Francesco Marra, Giorgia Fosser, Marco Marani, Giuseppe Formetta, Christoph Schär, and Marco Borga
Hydrol. Earth Syst. Sci., 27, 1133–1149, https://doi.org/10.5194/hess-27-1133-2023, https://doi.org/10.5194/hess-27-1133-2023, 2023
Short summary
Short summary
Convection-permitting climate models could represent future changes in extreme short-duration precipitation, which is critical for risk management. We use a non-asymptotic statistical method to estimate extremes from 10 years of simulations in an orographically complex area. Despite overall good agreement with rain gauges, the observed decrease of hourly extremes with elevation is not fully represented by the model. Climate model adjustment methods should consider the role of orography.
Roman Brogli, Christoph Heim, Jonas Mensch, Silje Lund Sørland, and Christoph Schär
Geosci. Model Dev., 16, 907–926, https://doi.org/10.5194/gmd-16-907-2023, https://doi.org/10.5194/gmd-16-907-2023, 2023
Short summary
Short summary
The pseudo-global-warming (PGW) approach is a downscaling methodology that imposes the large-scale GCM-based climate change signal on the boundary conditions of a regional climate simulation. It offers several benefits in comparison to conventional downscaling. We present a detailed description of the methodology, provide companion software to facilitate the preparation of PGW simulations, and present validation and sensitivity studies.
Qinggang Gao, Christian Zeman, Jesus Vergara-Temprado, Daniela C. A. Lima, Peter Molnar, and Christoph Schär
Weather Clim. Dynam., 4, 189–211, https://doi.org/10.5194/wcd-4-189-2023, https://doi.org/10.5194/wcd-4-189-2023, 2023
Short summary
Short summary
We developed a vortex identification algorithm for realistic atmospheric simulations. The algorithm enabled us to obtain a climatology of vortex shedding from Madeira Island for a 10-year simulation period. This first objective climatological analysis of vortex streets shows consistency with observed atmospheric conditions. The analysis shows a pronounced annual cycle with an increasing vortex shedding rate from April to August and a sudden decrease in September.
Christian R. Steger, Benjamin Steger, and Christoph Schär
Geosci. Model Dev., 15, 6817–6840, https://doi.org/10.5194/gmd-15-6817-2022, https://doi.org/10.5194/gmd-15-6817-2022, 2022
Short summary
Short summary
Terrain horizon and sky view factor are crucial quantities for many geoscientific applications; e.g. they are used to account for effects of terrain on surface radiation in climate and land surface models. Because typical terrain horizon algorithms are inefficient for high-resolution (< 30 m) elevation data, we developed a new algorithm based on a ray-tracing library. A comparison with two conventional methods revealed both its high performance and its accuracy for complex terrain.
Christian Zeman and Christoph Schär
Geosci. Model Dev., 15, 3183–3203, https://doi.org/10.5194/gmd-15-3183-2022, https://doi.org/10.5194/gmd-15-3183-2022, 2022
Short summary
Short summary
Our atmosphere is a chaotic system, where even a tiny change can have a big impact. This makes it difficult to assess if small changes, such as the move to a new hardware architecture, will significantly affect a weather and climate model. We present a methodology that allows to objectively verify this. The methodology is applied to several test cases, showing a high sensitivity. Results also show that a major system update of the underlying supercomputer did not significantly affect our model.
Beatriz M. Monge-Sanz, Alessio Bozzo, Nicholas Byrne, Martyn P. Chipperfield, Michail Diamantakis, Johannes Flemming, Lesley J. Gray, Robin J. Hogan, Luke Jones, Linus Magnusson, Inna Polichtchouk, Theodore G. Shepherd, Nils Wedi, and Antje Weisheimer
Atmos. Chem. Phys., 22, 4277–4302, https://doi.org/10.5194/acp-22-4277-2022, https://doi.org/10.5194/acp-22-4277-2022, 2022
Short summary
Short summary
The stratosphere is emerging as one of the keys to improve tropospheric weather and climate predictions. This study provides evidence of the role the stratospheric ozone layer plays in improving weather predictions at different timescales. Using a new ozone modelling approach suitable for high-resolution global models that provide operational forecasts from days to seasons, we find significant improvements in stratospheric meteorological fields and stratosphere–troposphere coupling.
Roman Brogli, Silje Lund Sørland, Nico Kröner, and Christoph Schär
Weather Clim. Dynam., 2, 1093–1110, https://doi.org/10.5194/wcd-2-1093-2021, https://doi.org/10.5194/wcd-2-1093-2021, 2021
Short summary
Short summary
In a warmer future climate, climate simulations predict that some land areas will experience excessive warming during summer. We show that the excessive summer warming is related to the vertical distribution of warming within the atmosphere. In regions characterized by excessive warming, much of the warming occurs close to the surface. In other regions, most of the warming is redistributed to higher levels in the atmosphere, which weakens the surface warming.
Daniel Regenass, Linda Schlemmer, Elena Jahr, and Christoph Schär
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-426, https://doi.org/10.5194/hess-2021-426, 2021
Manuscript not accepted for further review
Short summary
Short summary
Weather and climate models need to represent the water cycle on land in order to provide accurate estimates of moisture and energy exchange between the land and the atmosphere. Infiltration of water into the soil is often modeled with an equation describing water transport in porous media. Here, we point out some challenges arising in the numerical solution of this equation and show the consequences for the representation of the water cycle in modern weather and climate models.
Silje Lund Sørland, Roman Brogli, Praveen Kumar Pothapakula, Emmanuele Russo, Jonas Van de Walle, Bodo Ahrens, Ivonne Anders, Edoardo Bucchignani, Edouard L. Davin, Marie-Estelle Demory, Alessandro Dosio, Hendrik Feldmann, Barbara Früh, Beate Geyer, Klaus Keuler, Donghyun Lee, Delei Li, Nicole P. M. van Lipzig, Seung-Ki Min, Hans-Jürgen Panitz, Burkhardt Rockel, Christoph Schär, Christian Steger, and Wim Thiery
Geosci. Model Dev., 14, 5125–5154, https://doi.org/10.5194/gmd-14-5125-2021, https://doi.org/10.5194/gmd-14-5125-2021, 2021
Short summary
Short summary
We review the contribution from the CLM-Community to regional climate projections following the CORDEX framework over Europe, South Asia, East Asia, Australasia, and Africa. How the model configuration, horizontal and vertical resolutions, and choice of driving data influence the model results for the five domains is assessed, with the purpose of aiding the planning and design of regional climate simulations in the future.
Jérôme Barré, Ilse Aben, Anna Agustí-Panareda, Gianpaolo Balsamo, Nicolas Bousserez, Peter Dueben, Richard Engelen, Antje Inness, Alba Lorente, Joe McNorton, Vincent-Henri Peuch, Gabor Radnoti, and Roberto Ribas
Atmos. Chem. Phys., 21, 5117–5136, https://doi.org/10.5194/acp-21-5117-2021, https://doi.org/10.5194/acp-21-5117-2021, 2021
Short summary
Short summary
This study presents a new approach to the systematic global detection of anomalous local CH4 concentration anomalies caused by rapid changes in anthropogenic emission levels. The approach utilises both satellite measurements and model simulations, and applies novel data analysis techniques (such as filtering and classification) to automatically detect anomalous emissions from point sources and small areas, such as oil and gas drilling sites, pipelines and facility leaks.
Jun-Ichi Yano and Nils P. Wedi
Atmos. Chem. Phys., 21, 4759–4778, https://doi.org/10.5194/acp-21-4759-2021, https://doi.org/10.5194/acp-21-4759-2021, 2021
Short summary
Short summary
Sensitivities of forecasts of the Madden–Julian oscillation (MJO) to various different configurations of the physics are examined with the global model of ECMWF's Integrated Forecasting System (IFS). The motivation for the study was to simulate the MJO as a nonlinear free wave. To emulate free dynamics in the IFS,
various momentum dissipation terms (
friction) as well as diabatic heating were selectively turned off over the tropics for the range of the latitudes from 20° S to 20° N.
Marie-Estelle Demory, Ségolène Berthou, Jesús Fernández, Silje L. Sørland, Roman Brogli, Malcolm J. Roberts, Urs Beyerle, Jon Seddon, Rein Haarsma, Christoph Schär, Erasmo Buonomo, Ole B. Christensen, James M. Ciarlo ̀, Rowan Fealy, Grigory Nikulin, Daniele Peano, Dian Putrasahan, Christopher D. Roberts, Retish Senan, Christian Steger, Claas Teichmann, and Robert Vautard
Geosci. Model Dev., 13, 5485–5506, https://doi.org/10.5194/gmd-13-5485-2020, https://doi.org/10.5194/gmd-13-5485-2020, 2020
Short summary
Short summary
Now that global climate models (GCMs) can run at similar resolutions to regional climate models (RCMs), one may wonder whether GCMs and RCMs provide similar regional climate information. We perform an evaluation for daily precipitation distribution in PRIMAVERA GCMs (25–50 km resolution) and CORDEX RCMs (12–50 km resolution) over Europe. We show that PRIMAVERA and CORDEX simulate similar distributions. Considering both datasets at such a resolution results in large benefits for impact studies.
Stefan Rüdisühli, Michael Sprenger, David Leutwyler, Christoph Schär, and Heini Wernli
Weather Clim. Dynam., 1, 675–699, https://doi.org/10.5194/wcd-1-675-2020, https://doi.org/10.5194/wcd-1-675-2020, 2020
Short summary
Short summary
Most precipitation over Europe is linked to low-pressure systems, cold fronts, warm fronts, or high-pressure systems. Based on a massive computer simulation able to resolve thunderstorms, we quantify in detail how much precipitation these weather systems produced during 2000–2008. We find distinct seasonal and regional differences, such as fronts precipitating a lot in fall and winter over the North Atlantic but high-pressure systems mostly in summer over the continent by way of thunderstorms.
Cited articles
Bacmeister, J. T., Eckermann, S. D., Newman, P. A., Lait, L., Chan, R. K.,
Loewenstein, M., Proffitt, M. H., and Gary, B. L.: Stratospheric horizontal
wavenumber spectra of winds, potential temperature, and atmospheric tracers
observed by high-altitude aircraft, J. Geophys. Res.-Atmos., 101, 9441–9470, https://doi.org/10.1029/95JD03835, 1996. a
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M.,
and Reinhardt, T.: Operational Convective-Scale Numerical Weather Prediction
with the COSMO Model: Description and Sensitivities, Mon. Weather Rev.,
139, 3887–3905, https://doi.org/10.1175/MWR-D-10-05013.1, 2011. a, b
Balsamo, G., Pappenberger, F., Dutra, E., Viterbo, P., and van den Hurk, B.: A
revised land hydrology in the ECMWF model: a step towards daily water flux
prediction in a fully-closed water cycle, Hydrol. Process., 25,
1046–1054, https://doi.org/10.1002/hyp.7808, 2011. a
Ban, N., Schmidli, J., and Schär, C.: Evaluation of the
convection-resolving regional climate modeling approach in decade-long
simulations, J. Geophys. Res.-Atmos., 119, 7889–7907,
https://doi.org/10.1002/2014JD021478, 2014. a, b, c, d
Barker, H. W., Cole, J. N. S., Morcrette, J.-J., Pincus, R.,
Räisänen, P., von Salzen, K., and Vaillancourt, P. A.: The Monte
Carlo Independent Column Approximation: an assessment using several global
atmospheric models, Q. J. Roy. Meteor. Soc.,
134, 1463–1478, https://doi.org/10.1002/qj.303, 2008. a
Barrett, A. I., Wellmann, C., Seifert, A., Hoose, C., Vogel, B., and Kunz, M.:
One Step at a Time: How Model Time Step Significantly Affects
Convection-Permitting Simulations, J. Adv. Model. Earth
Sy., 11, 641–658, https://doi.org/10.1029/2018MS001418, 2019. a, b, c
Bartels, H., Weigl, E., Reich, T., Lang, P., Wagner, A., Kohler, O., Gerlach,
N., and MeteoSolutions GmbH: Projekt RADOLAN – Routineverfahren zur
Online-Aneichung der Radarniederschlagsdaten mit Hilfe von automatischen
Bodenniederschlagsstationen (Ombrometer), Tech. rep., Deutscher
Wetterdienst, Hydrometeorologie,
available at: https://www.dwd.de/DE/leistungen/radolan/radolan_info/abschlussbericht_pdf.pdf?__blob=publicationFile&v=2 (last access: 13 July 2021),
2004. a
Bechtold, P., Köhler, M., Jung, T., Doblas-Reyes, F., Leutbecher, M.,
Rodwell, M. J., Vitart, F., and Balsamo, G.: Advances in simulating
atmospheric variability with the ECMWF model: From synoptic to decadal
time-scales, Q. J. Roy. Meteor. Soc., 134,
1337–1351, https://doi.org/10.1002/qj.289, 2008. a
Bechtold, P., Semane, N., Lopez, P., Chaboureau, J. P., Beljaars, A., and
Bormann, N.: Representing equilibrium and nonequilibrium convection in
large-scale models, J. Atmos. Sci., 71, 734–753,
https://doi.org/10.1175/JAS-D-13-0163.1, 2014. a, b, c
Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm, K., Schneider, U., and Ziese, M.: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present, Earth Syst. Sci. Data, 5, 71–99, https://doi.org/10.5194/essd-5-71-2013, 2013. a
Bénard, P., Vivoda, J., Mascaronek, J., Smolíková, P.,
Yessad, K., Smith, C., Brožková, R., and Geleyn, J. F.:
Dynamical kernel of the Aladin-NH spectral limited-area model: Revised
formulation and sensitivity experiments, Q. J. Roy. Meteor. Soc., 136, 155–169, https://doi.org/10.1002/qj.522, 2010. a
Betts, A. K. and Jakob, C.: Study of diurnal cycle of convective precipitation
over Amazonia using a single column model, J. Geophys. Res.-Atmos., 107, ACL 25-1–ACL 25-13, https://doi.org/10.1029/2002JD002264, 2002. a
Bonaventura, L.: An introduction to semi-Lagrangian methods for geophysical
scale flows, Lecture Notes, ERCOFTAC Leonhard Euler Lectures, SAM-ETH
Zurich, Zurich, 2004. a
Bryan, G. H., Wyngaard, J. C., and Fritsch, J. M.: Resolution Requirements for
the Simulation of Deep Moist Convection, Mon. Weather Rev., 131,
2394–2416, https://doi.org/10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2, 2003. a
Bubnová, R., Hello, G., Bénard, P., and Geleyn, J.-F.: Integration
of the Fully Elastic Equations Cast in the Hydrostatic Pressure
Terrain-Following Coordinate in the Framework of the ARPEGE/Aladin NWP
System, Mon. Weather Rev., 123, 515–535,
https://doi.org/10.1175/1520-0493(1995)123<0515:IOTFEE>2.0.CO;2, 1995. a
Callies, J., Bühler, O., and Ferrari, R.: The dynamics of mesoscale
winds in the upper troposphere and lower stratosphere, J.
Atmos. Sci., 73, 4853–4872, https://doi.org/10.1175/JAS-D-16-0108.1, 2016. a
Cho, J. Y., Zhu, Y., Newell, R. E., Anderson, B. E., Barrick, J. D., Gregory,
G. L., Sachse, G. W., Carroll, M. A., and Albercook, G. M.: Horizontal
wavenumber spectra of winds, temperature, and trace gases during the Pacific
Exploratory Missions: 1. Climatology, J. Geophys. Res.-Atmos., 104, 5697–5716, https://doi.org/10.1029/98JD01825, 1999a. a
Cho, J. Y. N., Newell, R. E., and Barrick, J. D.: Horizontal wavenumber
spectra of winds, temperature, and trace gases during the Pacific Exploratory
Missions: 2. Gravity waves, quasi‐two‐dimensional turbulence, and
vortical modes, J. Geophys. Res., 104, 16297–16308,
https://doi.org/10.1029/1999JD900068, 1999b. a
Courant, R., Friedrichs, K., and Lewy, H.: Über die partiellen
Differenzengleichungen der mathematischen Physik, Mathematische Annalen,
100, 32–74, https://doi.org/10.1007/BF01448839, 1928. a
Dai, A. and Trenberth, K. E.: The diurnal cycle and its depiction in the
community climate system model, J. Climate, 17, 930–951,
https://doi.org/10.1175/1520-0442(2004)017<0930:TDCAID>2.0.CO;2, 2004. a, b
Daley, R.: The normal modes of the spherical non-hydrostatic equations with
applications to the filtering of acoustic modes normal modes of the spherical
non-hydrostatic equations with applications to the filterin, Tellus A, 40, 96–106,
https://doi.org/10.3402/tellusa.v40i2.11785, 1988. a
Dirmeyer, P. A., Cash, B. A., Kinter, J. L., Jung, T., Marx, L., Satoh, M.,
Stan, C., Tomita, H., Towers, P., Wedi, N., Achuthavarier, D., Adams, J. M.,
Altshuler, E. L., Huang, B., Jin, E. K., and Manganello, J.: Simulating the
diurnal cycle of rainfall in global climate models: Resolution versus
parameterization, Clim. Dynam., 39, 399–418,
https://doi.org/10.1007/s00382-011-1127-9, 2012. a
Doms, G. and Baldauf, M.: A Description of the Nonhydrostatic Regional
COSMO-Model Part I : Dynamics and Numerics,
https://doi.org/10.5676/DWD_pub/nwv/cosmo-doc_5.05_I, 2018. a, b
Done, J., Davis, C. A., and Weisman, M.: The next generation of NWP: Explicit
forecasts of convection using the weather research and forecasting (WRF)
model, Atmos. Sci. Lett., 5, 110–117, https://doi.org/10.1002/asl.72, 2004. a
Dudhia, J.: A nonhydrostatic version of the Penn State-NCAR mesoscale model:
validation tests and simulation of an Atlantic cyclone and cold front,
Mon. Weather Rev., 121, 1493–1513,
https://doi.org/10.1175/1520-0493(1993)121<1493:ANVOTP>2.0.CO;2, 1993. a
ECMWF: Part IV : Physical processes, in: IFS Documentation CY45R1, ECMWF, 4,
https://doi.org/10.21957/4whwo8jw0, 2018. a
Fosser, G., Khodayar, S., and Berg, P.: Benefit of convection permitting
climate model simulations in the representation of convective precipitation,
Clim. Dynam., 44, 45–60, https://doi.org/10.1007/s00382-014-2242-1, 2014. a
Fuhrer, O., Osuna, C., Lapillonne, X., Gysi, T., Bianco, M., Arteaga, A., and
Schulthess, T. C.: Towards a performance portable, architecture agnostic
implementation strategy for weather and climate models, Supercomputing
Frontiers and Innovations, 1, 44–61, https://doi.org/10.14529/jsfi140103, 2014. a
Fuhrer, O., Chadha, T., Hoefler, T., Kwasniewski, G., Lapillonne, X., Leutwyler, D., Lüthi, D., Osuna, C., Schär, C., Schulthess, T. C., and Vogt, H.: Near-global climate simulation at 1 km resolution: establishing a performance baseline on 4888 GPUs with COSMO 5.0, Geosci. Model Dev., 11, 1665–1681, https://doi.org/10.5194/gmd-11-1665-2018, 2018. a, b
Gao, X. and Meriwether, J. W.: Mesoscale spectral analysis of in situ
horizontal and vertical wind measurements at 6 km, J. Geophys. Res.-Atmos., 103, 6397–6404, https://doi.org/10.1029/97JD03074, 1998. a
Gelb, A. and Gleeson, J. P.: Spectral Viscosity for Shallow Water Equations in
Spherical Geometry, Mon. Weather Rev., 129, 2346–2360,
https://doi.org/10.1175/1520-0493(2001)129<2346:SVFSWE>2.0.CO;2, 2001. a
Guichard, F., Petch, J. C., Redelsperger, J. L., Bechtold, P., Chaboureau,
J. P., Cheinet, S., Grabowski, W., Grenier, H., Jones, C. G., Köhler,
M., Piriou, J. M., Tailleux, R., and Tomasini, M.: Modelling the diurnal
cycle of deep precipitating convection over land with cloud-resolving models
and single-column models, Q. J. Roy. Meteor. Soc., 130 C, 3139–3172, https://doi.org/10.1256/qj.03.145, 2004. a
Held, I. M. and Soden, B. J.: Robust responses of the Hydrological Cycle to
Global Warming, J. Climate, 19, 5686–5699,
https://doi.org/10.1175/JCLI3990.1, 2006. a
Hogan, R., Ahlgrimm, M., Balsamo, G., Beljaars, A., Berrisford, P., Bozzo, A.,
Giuseppe, F. D., Forbes, R. M., Haiden, T., Lang, S., Mayer, M.,
Polichtchouk, I., Sandu, I., Vitart, F., and Wedi, N.: Radiation in
numerical weather prediction, ECMWF Technical Memoranda, 816, 1–49,
https://doi.org/10.21957/2bd5dkj8x, 2017. a
Hohenegger, C., Brockhaus, P., and Schär, C.: Towards climate
simulations at cloud-resolving scales, Meteorol. Z., 17,
383–394, https://doi.org/10.1127/0941-2948/2008/0303, 2008. a, b
Houze, R. A. and Betts, A. K.: Convection in GATE, Rev. Geophys.
Space Phys., 19, 541–576,
https://doi.org/10.1029/RG019i004p00541, 1981. a
Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R., Kidd, C.,
Nelkin, E. J., Sorooshian, S., Tan, J., and Xie, P.: NASA Global
Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM
(IMERG), Algorithm Theoretical Basis Document (ATBD) Version 06,
available at: https://gpm.nasa.gov/sites/default/files/2019-05/IMERG_ATBD_V06.pdf (last access: 13 July 2021),
2019a. a
Huffman, G. J., Stocker, E. F., Bolvin, D. T., Nelkin, E. J., and Jackson, T.:
GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree × 0.1 degree V06,
https://doi.org/10.5067/GPM/IMERG/3B-HH/06, 2019b. a
IDAWEB: IDAWEB, available at: https://gate.meteoswiss.ch/idaweb, last access: 15 January 2021. a
Jablonowski, C. and Williamson, D. L.: The Pros and Cons of Diffusion, Filters
and Fixers in Atmospheric General Circulation Models BT – Numerical
Techniques for Global Atmospheric Models, in: Numerical Techniques for
Global Atmospheric Models, edited by: Lauritzen, P., Jablonowski, C., Taylor,
M., and Nair, R., Springer Berlin Heidelberg, Berlin,
Heidelberg, 381–493, https://doi.org/10.1007/978-3-642-11640-7_13, 2011. a
Jeevanjee, N.: Vertical Velocity in the Gray Zone, J. Adv.
Model. Earth Syst., 9, 2304–2316, https://doi.org/10.1002/2017MS001059, 2017. a, b, c
Jung, T., Miller, M. J., Palmer, T. N., Towers, P., Wedi, N., Achuthavarier,
D., Adams, J. M., Altshuler, E. L., Cash, B. A., Kinter III, J. L., Marx, L.,
Stan, C., and Hodges, K. I.: High-Resolution Global Climate Simulations with
the ECMWF Model in Project Athena: Experimental Design, Model Climate, and
Seasonal Forecast Skill, J. Climate, 25, 3155–3172,
https://doi.org/10.1175/JCLI-D-11-00265.1, 2012. a
Kato, T.: Hydrostatic and Non-hydrostatic Simulations of the 6 August 1993
Kagoshima Torrential Rain, J. Meteorol. Soc. Japan
Ser. II, 74, 355–363, https://doi.org/10.2151/jmsj1965.74.3_355, 1996. a
Kato, T.: Hydrostatic and non-hydrostatic simulations of moist convection:
Review and further study, Meteorol. Atmos. Phys., 63, 39–51,
https://doi.org/10.1007/BF01025363, 1997. a, b, c
Kato, T. and Saito, K.: Hydrostatic and Non-Hydrostatic Simulations of Moist
Convection: Applicability of the Hydrostatic Approximation to a
High-Resolution Model, J. Meteorol. Soc. Japan, 73,
59–77, https://doi.org/10.2151/jmsj1965.73.1_59, 1995. a, b
Kendon, E. J., Roberts, N. M., Senior, C. A., and Roberts, M. J.: Realism of
rainfall in a very high-resolution regional climate model, J.
Climate, 25, 5791–5806, https://doi.org/10.1175/JCLI-D-11-00562.1, 2012. a
Kendon, E. J., Stratton, R. A., Tucker, S., Marsham, J. H., Berthou, S.,
Rowell, D. P., and Senior, C. A.: Enhanced future changes in wet and dry
extremes over Africa at convection-permitting scale, Nat. Commun.,
10, 1794, https://doi.org/10.1038/s41467-019-09776-9, 2019. a
Kühnlein, C., Deconinck, W., Klein, R., Malardel, S., Piotrowski, Z. P., Smolarkiewicz, P. K., Szmelter, J., and Wedi, N. P.: FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS, Geosci. Model Dev., 12, 651–676, https://doi.org/10.5194/gmd-12-651-2019, 2019. a, b
Lafore, J. P., Stein, J., Asencio, N., Bougeault, P., Ducrocq, V., Duron, J., Fischer, C., Héreil, P., Mascart, P., Masson, V., Pinty, J. P., Redelsperger, J. L., Richard, E., and Vilà-Guerau de Arellano, J.: The Meso-NH Atmospheric Simulation System. Part I: adiabatic formulation and control simulations, Ann. Geophys., 16, 90–109, https://doi.org/10.1007/s00585-997-0090-6, 1998. a
Langhans, W., Schmidli, J., and Schär, C.: Bulk Convergence of
Cloud-Resolving Simulations of Moist Convection over Complex Terrain,
J. Atmos. Sci., 69, 2207–2228,
https://doi.org/10.1175/JAS-D-11-0252.1, 2012. a
Lauritzen, P. H., Jablonowski, C., Taylor, M. A., and Nair, R. D.: Numerical
techniques for global atmospheric models, vol. 80, Springer Science &
Business Media, 2011. a
Lebo, Z. J. and Morrison, H.: Effects of horizontal and vertical grid spacing
on mixing in simulated squall lines and implications for convective strength
and structure, Mon. Weather Rev., 143, 4355–4375,
https://doi.org/10.1175/MWR-D-15-0154.1, 2015. a
Legates, D. R. and Willmott, C. J.: Mean seasonal and spatial variability in
gauge‐corrected, global precipitation, Int. J.
Climatol., 10, 111–127, https://doi.org/10.1002/joc.3370100202,
1990. a, b
Leutwyler, D., Lüthi, D., Ban, N., Fuhrer, O., and Schär, C.:
Evaluation of the convection-resolving climate modeling approach on
continental scales, J. Geophys. Res., 122, 5237–5258,
https://doi.org/10.1002/2016JD026013, 2017. a, b, c
Lindborg, E.: Can the atmospheric kinetic energy spectrum be explained by
two-dimensional turbulence?, J. Fluid Mech., 388, 259–288,
https://doi.org/10.1017/S0022112099004851, 1999. a
Liu, H.-L.: Quantifying gravity wave forcing using scale invariance, Nat.
Commun., 10, 2605, https://doi.org/10.1038/s41467-019-10527-z, 2019. a
Lott, F. and Miller, M. J.: A new subgrid-scale orographic drag
parametrization: Its formulation and testing, Q. J. Roy.
Meteor. Soc., 123, 101–127, https://doi.org/10.1256/smsqj.53703, 1997. a
Malardel, S. and Ricard, D.: An alternative cell-averaged departure point
reconstruction for pointwise semi-Lagrangian transport schemes, Q. J. Roy. Meteor. Soc., 141, 2114–2126,
https://doi.org/10.1002/qj.2509, 2015. a, b, c
Malardel, S. and Wedi, N. P.: How does subgrid-scale parametrization influence
nonlinear spectral energy fluxes in global NWP models?, J.
Geophys. Res.-Atmos., 121, 5395–5410,
https://doi.org/10.1002/2015JD023970, 2016. a, b
Malardel, S., Wedi, N., Deconinck, W., Diamantakis, M., Kühnlein, C.,
Mozdzynski, G., Hamrud, M., and Smolarkiewicz, P.: A new grid for the IFS,
ECMWF Newsletter, 146, 23–28, https://doi.org/10.21957/zwdu9u5i, 2016. a
Manabe, S., Smagorinky, J., and Strickler, R. F.: Simulated Climatology of a
General Circulation Model With a Hydrologic Cycle 1, Mon. Weather Rev.,
93, 769–798, https://doi.org/10.1175/1520-0493(1965)093<0769:scoagc>2.3.co;2, 1965. a
Mishra, S. K. and Sahany, S.: Effects of time step size on the simulation of
tropical climate in NCAR-CAM3, Clim. Dynam., 37, 689–704,
https://doi.org/10.1007/s00382-011-0994-4, 2011. a
Miyamoto, Y., Kajikawa, Y., Yoshida, R., Yamaura, T., Yashiro, H., and Tomita,
H.: Deep moist atmospheric convection in a subkilometer global simulation,
Geophys. Res. Lett., 40, 4922–4926, https://doi.org/10.1002/grl.50944, 2013. a
Nastrom, G. D. and Gage, K. S.: A Climatology of Atmospheric Wavenumber
Spectra of Wind and Temperature Observed by Commercial Aircraft, J. Atmos. Sci., 42, 950–960,
https://doi.org/10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2, 1985. a
Neumann, P., Düben, P., Adamidis, P., Bauer, P., Brück, M.,
Kornblueh, L., Klocke, D., Stevens, B., Wedi, N., and Biercamp, J.:
Assessing the scales in numerical weather and climate predictions: Will
exascale be the rescue?, Philos. T. Roy. Soc. A, 377, 20180148,
https://doi.org/10.1098/rsta.2018.0148, 2019. a
Orlanski, I.: The quasi-hydrostatic approximation., J.
Atmos. Sci., 38, 572–582,
https://doi.org/10.1175/1520-0469(1981)038<0572:TQHA>2.0.CO;2, 1981. a
Panosetti, D., Schlemmer, L., and Schär, C.: Bulk convergence behavior
of convection-resolving simulations of summertime deep convection over land,
Clim. Dynam., 55, 215–234, https://doi.org/10.1007/s00382-018-4229-9, 2018. a
Paulat, M., Frei, C., Hagen, M., and Wernli, H.: A gridded dataset of hourly
precipitation in Germany: Its construction, climatology and application,
Meteorol. Z., 17, 719–732, https://doi.org/10.1127/0941-2948/2008/0332,
2008. a
Pearson, K. J., Lister, G. M., Birch, C. E., Allan, R. P., Hogan, R. J., and
Woolnough, S. J.: Modelling the diurnal cycle of tropical convection across
the “grey zone”, Q. J. Roy. Meteor. Soc., 140,
491–499, https://doi.org/10.1002/qj.2145, 2014. a
Prein, A. F., Gobiet, A., Suklitsch, M., Truhetz, H., Awan, N. K., Keuler, K.,
and Georgievski, G.: Added value of convection permitting seasonal
simulations, Clim. Dynam., 41, 2655–2677,
https://doi.org/10.1007/s00382-013-1744-6, 2013. a, b
Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K.,
Keller, M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet, S.,
Schmidli, J., Van Lipzig, N. P., and Leung, R.: A review on regional
convection-permitting climate modeling: Demonstrations, prospects, and
challenges, Rev. Geophys., 53, 323–361, https://doi.org/10.1002/2014RG000475,
2015. a
Pudykiewicz, J., Benoit, R., and Staniforth, A.: Preliminary results from a
partial lrtap model based on an existing meteorological forecast model,
Atmos.-Ocean, 23, 267–303, https://doi.org/10.1080/07055900.1985.9649229, 1985. a
Ramsauer, T., Weiß, T., and Marzahn, P.: Comparison of the GPM IMERG final
precipitation product to RADOLAN weather radar data over the topographically
and climatically diverse Germany, Remote Sensing, 10,
https://doi.org/10.3390/rs10122029, 2018. a, b
Raschendorfer, M.: The new turbulence parameterization of LM, COSMO
Newsletter, 1, 89–97,
2001. a
Reinhardt, T. and Seifert, A.: A three-category ice scheme for LMK, COSMO
Newsletter, 6, 115–120, 2006. a
Ricard, D., Lac, C., Riette, S., Legrand, R., and Mary, A.: Kinetic energy
spectra characteristics of two convection-permitting limited-area models
AROME and meso-NH, Q. J. Roy. Meteor. Soc.,
139, 1327–1341, https://doi.org/10.1002/qj.2025, 2013. a, b
Richter, D.: Ergebnisse methodischer Untersuchungen zur Korrektur des
systematischen Meßfehlers des Hellmann-Niederschlagmessers, 194,
Selbstverlag des Deutschen Wetterdienstes, Offenbach am Main, 1995. a
Ritter, B. and Geleyn, J.-F.: A Comprehensive Radiation Scheme for Numerical
Weather Prediction Models with Potential Applications in Climate
Simulations, Mon. Weather Rev., 120, 303–325, https://doi.org/10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2, 1992. a
Rockel, B., Will, A., and Hense, A.: The regional climate model COSMO-CLM
(CCLM), Meteorol. Z., 17, 347–348,
https://doi.org/10.1127/0941-2948/2008/0309, 2008. a
Romero, R., Doswell, C. A., and Riosalido, R.: Observations and fine-grid
simulations of a convective outbreak in Northeastern Spain: Importance of
diurnal forcing and convective cold pools, Mon. Weather Rev., 129,
2157–2182, https://doi.org/10.1175/1520-0493(2001)129<2157:OAFGSO>2.0.CO;2, 2001. a
Ross, B. B. and Orlanski, I.: The Circulation Associated with a Cold Front.
Part II: Moist Case, J. Atmos. Sci., 35, 445–465,
https://doi.org/10.1175/1520-0469(1978)035<0445:tcawac>2.0.co;2, 1978. a
Schär, C., Fuhrer, O., Arteaga, A., Ban, N., Charpilloz, C., Girolamo,
S. D., Hentgen, L., Hoefler, T., Lapillonne, X., Leutwyler, D., Osterried,
K., Panosetti, D., Rüdisühli, S., Schlemmer, L., Schulthess,
T. C., Sprenger, M., Ubbiali, S., and Wernli, H.: Kilometer-Scale Climate
Models, B. Am. Meteorol. Soc., 101, E567–E587,
https://doi.org/10.1175/BAMS-D-18-0167.1, 2020. a, b
Schlemmer, L., Schär, C., Lüthi, D., and Strebel, L.: A
Groundwater and Runoff Formulation for Weather and Climate Models, J. Adv. Model. Earth Syst., 10, 1809–1832,
https://doi.org/10.1029/2017MS001260, 2018. a, b
Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., and Ziese, M.:
GPCC Monitoring Product: Near Real-Time Monthly Land-Surface Precipitation
from Rain-Gauges based on SYNOP and CLIMAT data, Deutscher Wetterdienst,
https://doi.org/10.5676/DWD_GPCC/MP_M_V6_100, 2018. a
Schulthess, T. C., Bauer, P., Wedi, N., Fuhrer, O., Hoefler, T., and
Schär, C.: Reflecting on the Goal and Baseline for Exascale Computing:
A Roadmap Based on Weather and Climate Simulations, Comput. Sci.
Eng., 21, 30–41, https://doi.org/10.1109/MCSE.2018.2888788, 2019. a, b
Schumann, U.: The horizontal spectrum of vertical velocities near the
tropopause from global to gravity wave scales, J. Atmos.
Sci., 76, 3847–3862, https://doi.org/10.1175/JAS-D-19-0160.1, 2019. a
Sevruk, B.: Systematischer Niederschlagsmessfehler in der Schweiz, in: Der
Niederschlag in der Schweiz, no. 31 in Beiträge zur Geologie der
Schweiz-Hydrologie, chap. 3.1, pp. 65–75, Schweizerische Geotechnische
Kommission, Zürich, 1985. a
Sevruk, B.: Rainfall Measurement: Gauges, in: Encyclopedia of Hydrological
Sciences, Part 4. Hydrometeorology, edited by: Anderson, M. G., John Wiley & Sons, Ltd., 35,
8, https://doi.org/10.1002/0470848944.hsa038, 2005. a
Skamarock, W. C.: Evaluating Mesoscale NWP Models Using Kinetic Energy
Spectra, Mon. Weather Rev., 132, 3019–3032, https://doi.org/10.1175/MWR2830.1,
2004. a
Skamarock, W. C. and Klemp, J. B.: A time-split nonhydrostatic atmospheric
model for weather research and forecasting applications, J.
Comput. Phys., 227, 3465–3485, https://doi.org/10.1016/j.jcp.2007.01.037,
2008. a
Smagorinsky, J.: General circulation experiments with the primitive
equations, Mon. Weather Rev., 91, 99–164,
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2, 1963. a
Smolarkiewicz, P. K. and Pudykiewicz, J. A.: A Class of Semi-Lagrangian
Approximations for Fluids, J. Atmos. Sci., 49, 2082–2096,
https://doi.org/10.1175/1520-0469(1992)049<2082:ACOSLA>2.0.CO;2, 1992. a
Staniforth, A. and Côté, J.: Semi-Lagrangian Integration Schemes
for Atmospheric Models – A Review, Mon. Weather Rev., 119, 2206–2223,
https://doi.org/10.1175/1520-0493(1991)119<2206:SLISFA>2.0.CO;2, 1991. a, b
Stephens, G. L., L'Ecuyer, T., Forbes, R., Gettlemen, A., Golaz, J. C.,
Bodas-Salcedo, A., Suzuki, K., Gabriel, P., and Haynes, J.: Dreary state of
precipitation in global models, J. Geophys. Res.-Atmos.,
115, 1–14, https://doi.org/10.1029/2010JD014532, 2010. a
Sun, Y., Solomon, S., Dai, A., and Portmann, R. W.: How often does it rain?,
J. Climate, 19, 916–934, https://doi.org/10.1175/JCLI3672.1, 2006. a
Tiedtke, M.: A comprehensive mass flux scheme for cumulus parameterization in
large-scale models, Mon. Weather Rev., 117, 1779–1800,
https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2, 1989. a, b, c
Ubbiali, S., Schär, C., Schlemmer, L., and Schulthess, T. C.: A
numerical analysis of six physics-dynamics coupling schemes for atmospheric
models, J. Adv. Model. Earth Sy., in review, 2021. a
Vergara-Temprado, J., Ban, N., Panosetti, D., Schlemmer, L., and Schär,
C.: Climate models permit convection at much coarser resolutions than
previously considered, J. Climate, 33, 1915–1933,
https://doi.org/10.1175/JCLI-D-19-0286.1., 2020. a, b
Vergara-Temprado, J., Ban, N., and Schär, C.: Extreme Sub-Hourly
Precipitation Intensities Scale Close to the Clausius-Clapeyron Rate Over
Europe, Geophys. Res. Lett., 48, e2020GL089506,
https://doi.org/10.1029/2020GL089506, 2021. a
Villarini, G. and Krajewski, W. F.: Review of the different sources of
uncertainty in single polarization radar-based estimates of rainfall,
Surv. Geophys., 31, 107–129, https://doi.org/10.1007/s10712-009-9079-x, 2010. a
Wang, S., Liu, J., Wang, J., Qiao, X., and Zhang, J.: Evaluation of GPM IMERG
V05B and TRMM 3B42V7 Precipitation products over high mountainous tributaries
in Lhasa with dense rain gauges, Remote Sensing, 11,
https://doi.org/10.3390/rs11182080, 2019. a, b
Wedi, N., Yessad, K., and Untch, A.: The non-hydrostatic global IFS/ARPEGE
model: model formulation and testing, ECMWF Technical Memoranda, p. 34,
https://doi.org/10.21957/tl4f0ao4t, 2009. a
Wedi, N. P.: Increasing horizontal resolution in numerical weather prediction
and climate simulations: Illusion or panacea?, Philos. T. Roy. Soc. A, 372, 20130289,
https://doi.org/10.1098/rsta.2013.0289, 2014. a
Wedi, N. P., Hamrud, M., and Mozdzynski, G.: A fast spherical harmonics
transform for global NWP and climate models, Mon. Weather Rev., 141,
3450–3461, https://doi.org/10.1175/MWR-D-13-00016.1, 2013. a
Wedi, N. P., Dueben, P., Anantharaj, V. G., Bauer, P., Boussetta, S., Browne,
P., Deconinck, W., Gaudin, W., Hadade, I., Hatfield, S., Iffrig, O., Lopez,
P., Maciel, P., Mueller, A., Polichtchouk, I., Saarinen, S., Quintino, T.,
and Vitart, F.: A baseline for global weather and climate simulations at 1 km resolution, J.
Adv. Model. Earth Sy., 12, e2020MS002192,
https://doi.org/10.1029/2020MS002192, 2020. a, b
Weisman, M. L., Skamarock, W. C., and Klemp, J. B.: The Resolution Dependence
of Explicitly Modeled Convective Systems, Mon. Weather Rev., 125,
527–548, https://doi.org/10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2, 1997.
a, b
Wicker, L. J. and Skamarock, W. C.: Time-Splitting Methods for Elastic Models
Using Forward Time Schemes, Mon. Weather Rev., 130, 2088–2097,
https://doi.org/10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2, 2002. a
Williamson, D. L. and Olson, J. G.: Dependence of aqua-planet simulations on
time step, Q. J. Roy. Meteor. Soc., 129,
2049–2064, https://doi.org/10.1256/qj.02.62, 2003. a
Winterrath, T., Brendel, C., Hafer, M., Junghänel, T., Klameth, A.,
Walawender, E., Weigl, E., and Becker, A.: Erstellung einer
radargestützten Niederschlagsklimatologie, 251, Deutscher
Wetterdienst, https://doi.org/10.17169/refubium-25153, 2017. a
Wüest, M., Frei, C., Altenhoff, A., Hagen, M., Litschi, M., and
Schär, C.: A gridded hourly precipitation dataset for Switzerland
using rain-gauge analysis and radar-based disaggregation, Int.
J. Climatol., 30, 1764–1775, https://doi.org/10.1002/joc.2025, 2010. a
Yang, G. Y. and Slingo, J.: The diurnal cycle in the tropics, Mon. Weather
Rev., 129, 784–801, https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2,
2001. a
Zeman, C., Wedi, N. P., Dueben, P. D., Ban, N., and Schär, C.: Model intercomparison of COSMO 5.0 and IFS 45r1 at kilometer-scale grid spacing (Version 1.0) [data set], Zenodo, https://doi.org/10.5281/zenodo.4479130, 2021. a
Short summary
Kilometer-scale atmospheric models allow us to partially resolve thunderstorms and thus improve their representation. We present an intercomparison between two distinct atmospheric models for 2 summer days with heavy thunderstorms over Europe. We show the dependence of precipitation and vertical wind speed on spatial and temporal resolution and also discuss the possible influence of the system of equations, numerical methods, and diffusion in the models.
Kilometer-scale atmospheric models allow us to partially resolve thunderstorms and thus improve...