Articles | Volume 14, issue 7
Geosci. Model Dev., 14, 4495–4508, 2021
https://doi.org/10.5194/gmd-14-4495-2021
Geosci. Model Dev., 14, 4495–4508, 2021
https://doi.org/10.5194/gmd-14-4495-2021

Methods for assessment of models 22 Jul 2021

Methods for assessment of models | 22 Jul 2021

Testing the reliability of interpretable neural networks in geoscience using the Madden–Julian oscillation

Benjamin A. Toms et al.

Related authors

Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving spatial transformers in a case study with ERA5
Ashesh Chattopadhyay, Mustafa Mustafa, Pedram Hassanzadeh, Eviatar Bach, and Karthik Kashinath
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-71,https://doi.org/10.5194/gmd-2021-71, 2021
Revised manuscript under review for GMD
Short summary
ClimateNet: an expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather
Prabhat, Karthik Kashinath, Mayur Mudigonda, Sol Kim, Lukas Kapp-Schwoerer, Andre Graubner, Ege Karaismailoglu, Leo von Kleist, Thorsten Kurth, Annette Greiner, Ankur Mahesh, Kevin Yang, Colby Lewis, Jiayi Chen, Andrew Lou, Sathyavat Chandran, Ben Toms, Will Chapman, Katherine Dagon, Christine A. Shields, Travis O'Brien, Michael Wehner, and William Collins
Geosci. Model Dev., 14, 107–124, https://doi.org/10.5194/gmd-14-107-2021,https://doi.org/10.5194/gmd-14-107-2021, 2021
Short summary
Detection of atmospheric rivers with inline uncertainty quantification: TECA-BARD v1.0.1
Travis A. O'Brien, Mark D. Risser, Burlen Loring, Abdelrahman A. Elbashandy, Harinarayan Krishnan, Jeffrey Johnson, Christina M. Patricola, John P. O'Brien, Ankur Mahesh, Prabhat, Sarahí Arriaga Ramirez, Alan M. Rhoades, Alexander Charn, Héctor Inda Díaz, and William D. Collins
Geosci. Model Dev., 13, 6131–6148, https://doi.org/10.5194/gmd-13-6131-2020,https://doi.org/10.5194/gmd-13-6131-2020, 2020
Short summary
Topological data analysis and machine learning for recognizing atmospheric river patterns in large climate datasets
Grzegorz Muszynski, Karthik Kashinath, Vitaliy Kurlin, Michael Wehner, and Prabhat
Geosci. Model Dev., 12, 613–628, https://doi.org/10.5194/gmd-12-613-2019,https://doi.org/10.5194/gmd-12-613-2019, 2019
Short summary
Atmospheric River Tracking Method Intercomparison Project (ARTMIP): project goals and experimental design
Christine A. Shields, Jonathan J. Rutz, Lai-Yung Leung, F. Martin Ralph, Michael Wehner, Brian Kawzenuk, Juan M. Lora, Elizabeth McClenny, Tashiana Osborne, Ashley E. Payne, Paul Ullrich, Alexander Gershunov, Naomi Goldenson, Bin Guan, Yun Qian, Alexandre M. Ramos, Chandan Sarangi, Scott Sellars, Irina Gorodetskaya, Karthik Kashinath, Vitaliy Kurlin, Kelly Mahoney, Grzegorz Muszynski, Roger Pierce, Aneesh C. Subramanian, Ricardo Tome, Duane Waliser, Daniel Walton, Gary Wick, Anna Wilson, David Lavers, Prabhat, Allison Collow, Harinarayan Krishnan, Gudrun Magnusdottir, and Phu Nguyen
Geosci. Model Dev., 11, 2455–2474, https://doi.org/10.5194/gmd-11-2455-2018,https://doi.org/10.5194/gmd-11-2455-2018, 2018
Short summary

Related subject area

Climate and Earth system modeling
Grid-stretching capability for the GEOS-Chem 13.0.0 atmospheric chemistry model
Liam Bindle, Randall V. Martin, Matthew J. Cooper, Elizabeth W. Lundgren, Sebastian D. Eastham, Benjamin M. Auer, Thomas L. Clune, Hongjian Weng, Jintai Lin, Lee T. Murray, Jun Meng, Christoph A. Keller, William M. Putman, Steven Pawson, and Daniel J. Jacob
Geosci. Model Dev., 14, 5977–5997, https://doi.org/10.5194/gmd-14-5977-2021,https://doi.org/10.5194/gmd-14-5977-2021, 2021
Short summary
Performance of the Adriatic Sea and Coast (AdriSC) climate component – a COAWST V3.3-based one-way coupled atmosphere–ocean modelling suite: ocean results
Petra Pranić, Cléa Denamiel, and Ivica Vilibić
Geosci. Model Dev., 14, 5927–5955, https://doi.org/10.5194/gmd-14-5927-2021,https://doi.org/10.5194/gmd-14-5927-2021, 2021
Short summary
Validation of terrestrial biogeochemistry in CMIP6 Earth system models: a review
Lynsay Spafford and Andrew H. MacDougall
Geosci. Model Dev., 14, 5863–5889, https://doi.org/10.5194/gmd-14-5863-2021,https://doi.org/10.5194/gmd-14-5863-2021, 2021
Short summary
FAMOUS version xotzt (FAMOUS-ice): a general circulation model (GCM) capable of energy- and water-conserving coupling to an ice sheet model
Robin S. Smith, Steve George, and Jonathan M. Gregory
Geosci. Model Dev., 14, 5769–5787, https://doi.org/10.5194/gmd-14-5769-2021,https://doi.org/10.5194/gmd-14-5769-2021, 2021
Short summary
EC-Earth3-AerChem: a global climate model with interactive aerosols and atmospheric chemistry participating in CMIP6
Twan van Noije, Tommi Bergman, Philippe Le Sager, Declan O'Donnell, Risto Makkonen, María Gonçalves-Ageitos, Ralf Döscher, Uwe Fladrich, Jost von Hardenberg, Jukka-Pekka Keskinen, Hannele Korhonen, Anton Laakso, Stelios Myriokefalitakis, Pirkka Ollinaho, Carlos Pérez García-Pando, Thomas Reerink, Roland Schrödner, Klaus Wyser, and Shuting Yang
Geosci. Model Dev., 14, 5637–5668, https://doi.org/10.5194/gmd-14-5637-2021,https://doi.org/10.5194/gmd-14-5637-2021, 2021
Short summary

Cited articles

Abhik, S. and Hendon, H. H.: Influence of the QBO on the MJO during coupled model multiweek forecasts, Geophys. Res. Lett., 46, 9213–9221, 2019. a
Adames, Á. F. and Kim, D.: The MJO as a dispersive, convectively coupled moisture wave: Theory and observations, J. Atmos. Sci., 73, 913–941, 2016. a
Adames, Á. F. and Wallace, J. M.: Three-dimensional structure and evolution of the MJO and its relation to the mean flow, J. Atmos. Sci., 71, 2007–2026, 2014. a
Adames, Á. F. and Wallace, J. M.: Three-dimensional structure and evolution of the moisture field in the MJO, J. Atmos. Sci., 72, 3733–3754, 2015. a
Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., and Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation, PloS one, 10, e0130140, https://doi.org/10.1371/journal.pone.0130140, 2015. a
Download
Short summary
We test whether a type of machine learning called neural networks can be used trustfully within the geosciences. We do so by challenging the networks to understand the spatial patterns of a commonly studied geoscientific phenomenon. The neural networks can correctly identify the spatial patterns, which lends confidence that similar networks can be used for more uncertain problems. The results of this study may give geoscientists confidence when using neural networks in their research.