Articles | Volume 14, issue 7
https://doi.org/10.5194/gmd-14-4401-2021
https://doi.org/10.5194/gmd-14-4401-2021
Development and technical paper
 | Highlight paper
 | 
16 Jul 2021
Development and technical paper | Highlight paper |  | 16 Jul 2021

fv3gfs-wrapper: a Python wrapper of the FV3GFS atmospheric model

Jeremy McGibbon, Noah D. Brenowitz, Mark Cheeseman, Spencer K. Clark, Johann P. S. Dahm, Eddie C. Davis, Oliver D. Elbert, Rhea C. George, Lucas M. Harris, Brian Henn, Anna Kwa, W. Andre Perkins, Oliver Watt-Meyer, Tobias F. Wicky, Christopher S. Bretherton, and Oliver Fuhrer

Related authors

sympl (v. 0.4.0) and climt (v. 0.15.3) – towards a flexible framework for building model hierarchies in Python
Joy Merwin Monteiro, Jeremy McGibbon, and Rodrigo Caballero
Geosci. Model Dev., 11, 3781–3794, https://doi.org/10.5194/gmd-11-3781-2018,https://doi.org/10.5194/gmd-11-3781-2018, 2018
Short summary

Related subject area

Climate and Earth system modeling
Development and evaluation of a new 4DEnVar-based weakly coupled ocean data assimilation system in E3SMv2
Pengfei Shi, L. Ruby Leung, and Bin Wang
Geosci. Model Dev., 18, 2443–2460, https://doi.org/10.5194/gmd-18-2443-2025,https://doi.org/10.5194/gmd-18-2443-2025, 2025
Short summary
TemDeep: a self-supervised framework for temporal downscaling of atmospheric fields at arbitrary time resolutions
Liwen Wang, Qian Li, Qi Lv, Xuan Peng, and Wei You
Geosci. Model Dev., 18, 2427–2442, https://doi.org/10.5194/gmd-18-2427-2025,https://doi.org/10.5194/gmd-18-2427-2025, 2025
Short summary
The ensemble consistency test: from CESM to MPAS and beyond
Teo Price-Broncucia, Allison Baker, Dorit Hammerling, Michael Duda, and Rebecca Morrison
Geosci. Model Dev., 18, 2349–2372, https://doi.org/10.5194/gmd-18-2349-2025,https://doi.org/10.5194/gmd-18-2349-2025, 2025
Short summary
Presentation, calibration and testing of the DCESS II Earth system model of intermediate complexity (version 1.0)
Esteban Fernández Villanueva and Gary Shaffer
Geosci. Model Dev., 18, 2161–2192, https://doi.org/10.5194/gmd-18-2161-2025,https://doi.org/10.5194/gmd-18-2161-2025, 2025
Short summary
Synthesizing global carbon–nitrogen coupling effects – the MAGICC coupled carbon–nitrogen cycle model v1.0
Gang Tang, Zebedee Nicholls, Alexander Norton, Sönke Zaehle, and Malte Meinshausen
Geosci. Model Dev., 18, 2193–2230, https://doi.org/10.5194/gmd-18-2193-2025,https://doi.org/10.5194/gmd-18-2193-2025, 2025
Short summary

Cited articles

Bianchi, F. A., Margara, A., and Pezzè, M.: A Survey of Recent Trends in Testing Concurrent Software Systems, IEEE T. Soft. Eng., 44, 747–783, https://doi.org/10.1109/TSE.2017.2707089, 2018. a
Brenowitz, N. D. and Bretherton, C. S.: Spatially Extended Tests of a Neural Network Parametrization Trained by Coarse-Graining, J. Adv. Model. Earth Sy., 11, 2728–2744, https://doi.org/10.1029/2019MS001711, 2019. a
Curcic, M.: A parallel Fortran framework for neural networks and deep learning, CoRR, abs/1902.06714, available at: http://arxiv.org/abs/1902.06714 (last access: 21 May 2021), 2019. a, b
Dalcín, L., Paz, R., Storti, M., and D'Elía, J.: MPI for Python: Performance improvements and MPI-2 extensions, J. Parallel Distr. Com., 68, 655–662, https://doi.org/10.1016/j.jpdc.2007.09.005, 2008. a, b
Enkovaara, J., Romero, N. A., Shende, S., and Mortensen, J. J.: GPAW – massively parallel electronic structure calculations with Python-based software, Procedia Comput. Sci., 4, 17–25, https://doi.org/10.1016/j.procs.2011.04.003, 2011. a
Download
Short summary
FV3GFS is a weather and climate model written in Fortran. It uses Fortran so that it can run fast, but this makes it hard to add features if you do not (or even if you do) know Fortran. We have written a Python interface to FV3GFS that lets you import the Fortran model as a Python package. We show examples of how this is used to write model scripts, which reproduce or build on what the Fortran model can do. You could do this same wrapping for any compiled model, not just FV3GFS.
Share