Articles | Volume 14, issue 7
https://doi.org/10.5194/gmd-14-4357-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-4357-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
BARRA v1.0: kilometre-scale downscaling of an Australian regional atmospheric reanalysis over four midlatitude domains
Chun-Hsu Su
CORRESPONDING AUTHOR
Bureau of Meteorology, Docklands, Victoria 3008, Australia
Nathan Eizenberg
Department of Earth Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
Dörte Jakob
Bureau of Meteorology, Docklands, Victoria 3008, Australia
Paul Fox-Hughes
Bureau of Meteorology, Hobart, Tasmania 7000, Australia
Peter Steinle
Bureau of Meteorology, Docklands, Victoria 3008, Australia
Christopher J. White
Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, Scotland, UK
School of Engineering, University of Tasmania, Hobart, Australia
Charmaine Franklin
Bureau of Meteorology, Docklands, Victoria 3008, Australia
Related authors
Mike Bush, David L. A. Flack, Huw W. Lewis, Sylvia I. Bohnenstengel, Chris J. Short, Charmaine Franklin, Adrian P. Lock, Martin Best, Paul Field, Anne McCabe, Kwinten Van Weverberg, Segolene Berthou, Ian Boutle, Jennifer K. Brooke, Seb Cole, Shaun Cooper, Gareth Dow, John Edwards, Anke Finnenkoetter, Kalli Furtado, Kate Halladay, Kirsty Hanley, Margaret A. Hendry, Adrian Hill, Aravindakshan Jayakumar, Richard W. Jones, Humphrey Lean, Joshua C. K. Lee, Andy Malcolm, Marion Mittermaier, Saji Mohandas, Stuart Moore, Cyril Morcrette, Rachel North, Aurore Porson, Susan Rennie, Nigel Roberts, Belinda Roux, Claudio Sanchez, Chun-Hsu Su, Simon Tucker, Simon Vosper, David Walters, James Warner, Stuart Webster, Mark Weeks, Jonathan Wilkinson, Michael Whitall, Keith D. Williams, and Hugh Zhang
Geosci. Model Dev., 18, 3819–3855, https://doi.org/10.5194/gmd-18-3819-2025, https://doi.org/10.5194/gmd-18-3819-2025, 2025
Short summary
Short summary
RAL configurations define settings for the Unified Model atmosphere and Joint UK Land Environment Simulator. The third version of the Regional Atmosphere and Land (RAL3) science configuration for kilometre- and sub-kilometre-scale modelling represents a major advance compared to previous versions (RAL2) by delivering a common science definition for applications in tropical and mid-latitude regions. RAL3 has more realistic precipitation distributions and an improved representation of clouds and visibility.
Emma Howard, Chun-Hsu Su, Christian Stassen, Rajashree Naha, Harvey Ye, Acacia Pepler, Samuel S. Bell, Andrew J. Dowdy, Simon O. Tucker, and Charmaine Franklin
Geosci. Model Dev., 17, 731–757, https://doi.org/10.5194/gmd-17-731-2024, https://doi.org/10.5194/gmd-17-731-2024, 2024
Short summary
Short summary
The BARPA-R modelling configuration has been developed to produce high-resolution climate hazard projections within the Australian region. When using boundary driving data from quasi-observed historical conditions, BARPA-R shows good performance with errors generally on par with reanalysis products. BARPA-R also captures trends, known modes of climate variability, large-scale weather processes, and multivariate relationships.
Lou Brett, Christopher J. White, Daniela I. V. Domeisen, Bart van den Hurk, Philip Ward, and Jakob Zscheischler
Nat. Hazards Earth Syst. Sci., 25, 2591–2611, https://doi.org/10.5194/nhess-25-2591-2025, https://doi.org/10.5194/nhess-25-2591-2025, 2025
Short summary
Short summary
Compound events, where multiple weather or climate hazards occur together, pose significant risks to both society and the environment. These events, like simultaneous wind and rain, can have more severe impacts than single hazards. Our review of compound event research from 2012–2022 reveals a rise in studies, especially on events that occur concurrently, hot and dry events, and compounding flooding. The review also highlights opportunities for research in the coming years.
Mike Bush, David L. A. Flack, Huw W. Lewis, Sylvia I. Bohnenstengel, Chris J. Short, Charmaine Franklin, Adrian P. Lock, Martin Best, Paul Field, Anne McCabe, Kwinten Van Weverberg, Segolene Berthou, Ian Boutle, Jennifer K. Brooke, Seb Cole, Shaun Cooper, Gareth Dow, John Edwards, Anke Finnenkoetter, Kalli Furtado, Kate Halladay, Kirsty Hanley, Margaret A. Hendry, Adrian Hill, Aravindakshan Jayakumar, Richard W. Jones, Humphrey Lean, Joshua C. K. Lee, Andy Malcolm, Marion Mittermaier, Saji Mohandas, Stuart Moore, Cyril Morcrette, Rachel North, Aurore Porson, Susan Rennie, Nigel Roberts, Belinda Roux, Claudio Sanchez, Chun-Hsu Su, Simon Tucker, Simon Vosper, David Walters, James Warner, Stuart Webster, Mark Weeks, Jonathan Wilkinson, Michael Whitall, Keith D. Williams, and Hugh Zhang
Geosci. Model Dev., 18, 3819–3855, https://doi.org/10.5194/gmd-18-3819-2025, https://doi.org/10.5194/gmd-18-3819-2025, 2025
Short summary
Short summary
RAL configurations define settings for the Unified Model atmosphere and Joint UK Land Environment Simulator. The third version of the Regional Atmosphere and Land (RAL3) science configuration for kilometre- and sub-kilometre-scale modelling represents a major advance compared to previous versions (RAL2) by delivering a common science definition for applications in tropical and mid-latitude regions. RAL3 has more realistic precipitation distributions and an improved representation of clouds and visibility.
Christopher J. White, Mohammed Sarfaraz Gani Adnan, Marcello Arosio, Stephanie Buller, YoungHwa Cha, Roxana Ciurean, Julia M. Crummy, Melanie Duncan, Joel Gill, Claire Kennedy, Elisa Nobile, Lara Smale, and Philip J. Ward
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-178, https://doi.org/10.5194/nhess-2024-178, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Indicators contain observable and measurable characteristics to understand the state of a concept or phenomenon and/or monitor it over time. There have been limited efforts to understand how indicators are being used in multi-hazard and multi-risk contexts. We find most of existing indicators do not include the interactions between hazards or risks. We propose 12 recommendations to enable the development and uptake of multi-hazard and multi-risk indicators.
Conrad Wasko, Seth Westra, Rory Nathan, Acacia Pepler, Timothy H. Raupach, Andrew Dowdy, Fiona Johnson, Michelle Ho, Kathleen L. McInnes, Doerte Jakob, Jason Evans, Gabriele Villarini, and Hayley J. Fowler
Hydrol. Earth Syst. Sci., 28, 1251–1285, https://doi.org/10.5194/hess-28-1251-2024, https://doi.org/10.5194/hess-28-1251-2024, 2024
Short summary
Short summary
In response to flood risk, design flood estimation is a cornerstone of infrastructure design and emergency response planning, but design flood estimation guidance under climate change is still in its infancy. We perform the first published systematic review of the impact of climate change on design flood estimation and conduct a meta-analysis to provide quantitative estimates of possible future changes in extreme rainfall.
Emma Howard, Chun-Hsu Su, Christian Stassen, Rajashree Naha, Harvey Ye, Acacia Pepler, Samuel S. Bell, Andrew J. Dowdy, Simon O. Tucker, and Charmaine Franklin
Geosci. Model Dev., 17, 731–757, https://doi.org/10.5194/gmd-17-731-2024, https://doi.org/10.5194/gmd-17-731-2024, 2024
Short summary
Short summary
The BARPA-R modelling configuration has been developed to produce high-resolution climate hazard projections within the Australian region. When using boundary driving data from quasi-observed historical conditions, BARPA-R shows good performance with errors generally on par with reanalysis products. BARPA-R also captures trends, known modes of climate variability, large-scale weather processes, and multivariate relationships.
Ivana Čavlina Tomašević, Paul Fox-Hughes, Kevin Cheung, Višnjica Vučetić, Jon Marsden-Smedley, Paul Beggs, and Maja Telišman Prtenjak
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-210, https://doi.org/10.5194/nhess-2023-210, 2024
Manuscript not accepted for further review
Short summary
Short summary
We have analyzed a severe wildfire event in Tasmania, Australia that also developed thunderstorm clouds. The drivers of this compound hazard were highly complex, which included climatic factors (above normal heavy rain seasons followed by heatwave), weather systems (fronts and high winds) to heighten fire severity and unstable atmosphere to develop thunderstorm clouds, all in coincidence. Such event has demonstrated the difficulty to assess wildfire risk in a warming climate.
Mike Bush, Ian Boutle, John Edwards, Anke Finnenkoetter, Charmaine Franklin, Kirsty Hanley, Aravindakshan Jayakumar, Huw Lewis, Adrian Lock, Marion Mittermaier, Saji Mohandas, Rachel North, Aurore Porson, Belinda Roux, Stuart Webster, and Mark Weeks
Geosci. Model Dev., 16, 1713–1734, https://doi.org/10.5194/gmd-16-1713-2023, https://doi.org/10.5194/gmd-16-1713-2023, 2023
Short summary
Short summary
Building on the baseline of RAL1, the RAL2 science configuration is used for regional modelling around the UM partnership and in operations at the Met Office. RAL2 has been tested in different parts of the world including Australia, India and the UK. RAL2 increases medium and low cloud amounts in the mid-latitudes compared to RAL1, leading to improved cloud forecasts and a reduced diurnal cycle of screen temperature. There is also a reduction in the frequency of heavier precipitation rates.
Ivana Čavlina Tomašević, Kevin K. W. Cheung, Višnjica Vučetić, Paul Fox-Hughes, Kristian Horvath, Maja Telišman Prtenjak, Paul J. Beggs, Barbara Malečić, and Velimir Milić
Nat. Hazards Earth Syst. Sci., 22, 3143–3165, https://doi.org/10.5194/nhess-22-3143-2022, https://doi.org/10.5194/nhess-22-3143-2022, 2022
Short summary
Short summary
One of the most severe and impactful urban wildfire events in Croatian history has been reconstructed and analyzed. The study identified some important meteorological influences related to the event: the synoptic conditions of the Azores anticyclone, cold front, and upper-level shortwave trough all led to the highest fire weather index in 2017. A low-level jet, locally known as bura wind that can be explained by hydraulic jump theory, was the dynamic trigger of the event.
Enrico Tubaldi, Christopher J. White, Edoardo Patelli, Stergios Aristoteles Mitoulis, Gustavo de Almeida, Jim Brown, Michael Cranston, Martin Hardman, Eftychia Koursari, Rob Lamb, Hazel McDonald, Richard Mathews, Richard Newell, Alonso Pizarro, Marta Roca, and Daniele Zonta
Nat. Hazards Earth Syst. Sci., 22, 795–812, https://doi.org/10.5194/nhess-22-795-2022, https://doi.org/10.5194/nhess-22-795-2022, 2022
Short summary
Short summary
Bridges are critical infrastructure components of transport networks. A large number of these critical assets cross or are adjacent to waterways and are therefore exposed to the potentially devastating impact of floods. This paper discusses a series of issues and areas where improvements in research and practice are required in the context of risk assessment and management of bridges exposed to flood hazard, with the ultimate goal of guiding future efforts in improving bridge flood resilience.
Cited articles
Acharya, S. C., Nathan, R., Wang, Q. J., Su, C.-H., and Eizenberg, N.: Ability of an Australian reanalysis dataset to characterise sub-daily precipitation, Hydrol. Earth Syst. Sci., 24, 2951–2962, https://doi.org/10.5194/hess-24-2951-2020, 2020.
Arakawa, A. and Lamb, V. R.:
Computational design of the basic dynamical processes of the UCLA general circulation model,
Methods in Computational Physics: Advances in Research and Applications,
17, 173–265, https://doi.org/10.1016/B978-0-12-460817-7.50009-4, 1977.
Argüeso, D., Evans, J. P., Fita, L., and Bormann, K. J.:
Temperature response to future urbanization and climate change,
Clim. Dynam.,
42, 2183–2199, https://doi.org/10.1007/s00382-013-1789-6, 2014.
Bermejo, R. and Staniforth, A.:
The conversion of semi-Lagrangian advection schemes to quasi-monotone schemes,
Mon. Weather. Rev.,
120, 2622–2632, https://doi.org/10.1175/1520-0493(1992)120<2622:TCOSLA>2.0.CO;2, 1992.
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011.
Borsche, M., Kaiser-Weiss, A. K., Undén, P., and Kaspar, F.: Methodologies to characterize uncertainties in regional reanalyses, Adv. Sci. Res., 12, 207–218, https://doi.org/10.5194/asr-12-207-2015, 2015.
Boutle, I. A., Abel, S. J., Hill, P. G., and Morcrette, C. J.:
Spatial variability of liquid cloud and rain: observations and microphysical effects,
Q. J. Roy. Meteor. Soc.,
140, 583–594, https://doi.org/10.1002/qj.2140, 2014a.
Boutle, I. A., Eyre, J. E. J., and Lock, A. P.:
Seamless stratocumulus simulation across the turbulent gray zone,
Mon. Weather Rev.,
142, 1655–1668, https://doi.org/10.1175/MWR-D-13-00229.1, 2014b.
Bromwich, D. H., Wilson, A. B., Bai, L., Moore, G. W. K., and Bauer, P.:
A comparison of the regional Arctic System Reanalysis and the global ERA-Interim Reanalysis for the Arctic,
Q. J. Roy. Meteor. Soc.,
142, 644–658, https://doi.org/10.1002/qj.2527, 2016.
Brousseau, P., Seity, Y., Ricard, D., and Léger, J.:
Improvement of the forecast of convective activity from the AROME-France system,
Q. J. Roy. Meteor. Soc.,
142, 2231–2243, https://doi.org/10.1002/qj.2822, 2016.
Bureau of Meteorology:
APS2 upgrade of the ACCESS-R numerical weather prediction system, NOC Operations Bulletin Number 107,
available at: http://www.bom.gov.au/australia/charts/bulletins/apob107-external.pdf (last access: 31 August 2020), 2016.
Bureau of Meteorology:
APS2 upgrade of the ACCESS-C numerical weather prediction system, NOC Operations Bulletin Number 114,
available at: http://www.bom.gov.au/australia/charts/bulletins/BNOC_Operations_Bulletin_114.pdf (last access: 31 August 2020), 2018.
Bureau of Meteorology:
Atmospheric high-resolution regional reanalysis for Australia,
available at: http://www.bom.gov.au/research/projects/reanalysis (last access: 1 May 2020), 2020.
Bush, M., Allen, T., Bain, C., Boutle, I., Edwards, J., Finnenkoetter, A., Franklin, C., Hanley, K., Lean, H., Lock, A., Manners, J., Mittermaier, M., Morcrette, C., North, R., Petch, J., Short, C., Vosper, S., Walters, D., Webster, S., Weeks, M., Wilkinson, J., Wood, N., and Zerroukat, M.: The first Met Office Unified Model–JULES Regional Atmosphere and Land configuration, RAL1, Geosci. Model Dev., 13, 1999–2029, https://doi.org/10.5194/gmd-13-1999-2020, 2020.
Calmet, I., Mestayer, P. G., van Eijk, A. M. J., and Herlédant, O.:
A coastal day summer breeze study, Part 2: High-resolution numerical simulation of sea-breeze local influences,
Bound.-Lay. Meteorol.,
167, 27–51, https://doi.org/10.1007/s10546-017-0319-1, 2018.
Cattoën, C., Robertson, D. E., Bennett, J. C., Wang, Q. J., and Carey-Smith, T. K.:
Calibrating Hourly Precipitation Forecasts with Daily Observations,
J. Hydrometeorol.,
21, 1655–1673, https://doi.org/10.1175/JHM-D-19-0246.1, 2020.
Champion, A. J. and Hodges, K.:
Importance of resolution and model configuration when downscaling extreme precipitation,
Tellus A,
66, 23993, https://doi.org/10.3402/tellusa.v66.23993, 2014.
Charney, J. G. and Phillips, N. A.:
Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flows,
J. Meteorol.,
10, 71–99, https://doi.org/10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2, 1953.
Chubb, T., Manton, M., Siems, S., and Peace, A. D.:
Evaluation of the AWAP daily precipitation spatial analysis with an independent gauge network in the Snowy Mountains,
Journal of Southern Hemisphere Earth Systems Science,
66, 55–67, https://doi.org/10.22499/3.6601.006, 2016.
Clark, P., Roberts, N., Lean, H., Ballard, S. P., and Charlton-Perez, C.:
Convection-permitting models: a step-change in rainfall forecasting,
Meteorol. Appl.,
23, 165–181, https://doi.org/10.1002/met.1538, 2016.
Davies, T., Cullen, M. J. P., Malcolm, A. J., Mawson, M. H., Staniforth, A., White, A. A., and Wood, N.:
A new dynamical core for the Met Office's global and regional modelling of the atmosphere,
Q. J. Roy. Meteor. Soc.,
131, 1759–1782, https://doi.org/10.1256/qj.04.101, 2005.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol. C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J. N., and Vitart, F.:
The Era-Interim reanalysis: Configuration and performance of the data assimilation system,
Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dharssi, I., Steinle, P., and Fernon, J.:
Improved numerical weather predictions by using optimised urban model parameter values and satellite derived tree heights,
in: MODSIM2015, 21st International Congress on Modelling and Simulation,
edited by: Weber, T., McPhee, M. J., and Anderssen, R. S.,
Modelling and Simulation Society of Australia and New Zealand, December 2015, 1161–1167, ISBN: 978-0-9872143-5-5,
available at: https://www.mssanz.org.au/modsim2015/M4/dharssi.pdf (last access: 31 August 2020), 2015.
Di Luca, A., de Elía, R., and Laprise, R.:
Challenges in the quest for added value of regional climate dynamical downscaling,
Current Climate Change Reports,
1, 10–21, https://doi.org/10.1007/s40641-015-0003-9, 2015.
Di Luca, A., Argüeso, D., Evans, J. P., de Elía, R., and Laprise, R.:
Quantifying the overall added value of dynamical downscaling and the contribution from different spatial scales,
J. Geophys. Res.-Atmos.,
121, 1575–1590, https://doi.org/10.1002/2015JD024009, 2016.
Dixon, M., Li, Z., Lean, H., Roberts, N., and Ballard, S.:
Impact of data assimilation on forecasting convection over the United Kingdom using a high resolution version of the Met Office Unified Model,
Mon. Weather Rev.,
137, 1562–1584, https://doi.org/10.1175/2008MWR2561.1, 2009.
Done, J., Davis, C. A., and Weisman, M.:
The next generation of NWP: explicit forecasts of convection using the weather research and forecasting (WRF) model,
Atmos. Sci. Lett.,
5, 110–117, https://doi.org/10.1002/asl.72, 2004.
Donlon, C. J., Martin, M., Stark, J. D., Roberts-Jones, J., Fiedler, E., and Wimmer, W.:
The Operational Sea Surface Temperature and Sea Ice analysis (OSTIA) system,
Remote Sens. Environ.,
116, 140–158, https://doi.org/10.1016/j.rse.2010.10.017, 2012.
Ebert, E. E.:
Neighborhood verification: A strategy for rewarding close forecasts,
Weather Forecast.,
24, 1498–1510, https://doi.org/10.1175/2009WAF2222251.1, 2009.
Ebita, A., Kobayashi, S., Ota, Y., Moriya, M., Kumabe, R., Onogi, K., Harada, Y., Yasui, S., Miyaoka, K., Takahashi, K., Kamahori, H., Kobayashi, C., Endo, H., Soma, M., Oikawa, Y., and Ishimizu, T.:
The Japanese 55-year reanalysis JRA-55: An interim report,
SOLA,
7, 149–152, https://doi.org/10.2151/sola.2011-038, 2011.
Edwards, J. M. and Slingo, A.:
Studies with a flexible new radiation code. I: Choosing a configuration for a largescale model,
Q. J. Roy. Meteor. Soc.,
122, 689–719, https://doi.org/10.1002/qj.49712253107, 1996.
Fosser, G., Khodayar, S., and Berg, P:
Benefit of convection permitting climate model simulations in the representation of convective precipitation,
Clim. Dynam.,
44, 45–60, https://doi.org/10.1007/s00382-014-2242-1, 2015.
Frank, C. W., Pospichal, B., Wahl, S., Keller, J. D., Hence, A., and Crewell, S.:
The added value of high resolution regional reanalyses for wind power applications,
Renew. Energ.,
148, 1094–1109, https://doi.org/10.1016/j.renene.2019.09.138, 2020.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.:
The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2),
J. Climate,
30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gerard, L., Piriou, J., Brožková, R., Geleyn, J., and Banciu, D.:
Cloud and precipitation parameterization in a meso-gamma-scale operational weather prediction model,
Mon. Weather Rev.,
137, 3960–3977, https://doi.org/10.1175/2009MWR2750.1, 2009.
Glahn, H. R. and Lowry, D. A.:
The use of model output statistics (MOS) in objective weather forecasting,
J. Appl. Meteorol.,
11, 1203–1211, https://doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2, 1972.
Gregory, D. and Rowntree, P. R.:
A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure,
Mon. Weather Rev.,
118, 1483–1506, https://doi.org/10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2, 1990.
Gregow, H., Jylhä, K., Mäkelä, H. M., Aalto, J., Manninen, T., Karlsson, P., Kaiser-Weiss, A. K., Kaspar, F., Poli, P., Tan, D. G., Obregon, A., and Su, Z.:
Worldwide survey of awareness and needs concerning reanalyses and respondents views on climate services,
B. Am. Meteorol. Soc.,
97, 1461–1473, https://doi.org/10.1175/BAMS-D-14-00271.1, 2016.
Griffiths, D. J., Colquhoun, J. R., Batt, K. L., and Casinader, T. R.:
Severe thunderstorms in New South Wales: Climatology and means of assessing the impact of climate change,
Climatic Change,
25, 369–388, https://doi.org/10.1007/BF01098382, 1993.
Halliwell, C., Boutle, I., and Hanley, K.:
Subgrid turbulence scheme, Unified Model Documentation Paper 28,
Met Office, Exeter, UK, 2007.
Hanley, K. E., Plant, R. S., Stein, T. H. M., Hogan, R. J., Nicol, J. C., Lean, H. W., Halliwell, C. and Clark, P. A.:
Mixing-length controls on high-resolution simulations of convective storms,
Q. J. Roy. Meteor. Soc.,
141, 272-284, https://doi.org/10.1002/qj.2356, 2015.
Hartley, A., MacBean, N., Georgievski, G., and Bontemps, S.:
Uncertainty in plant functional type distributions and its impact on land surface models,
Remote Sens. Environ.,
203, 71–89, https://doi.org/10.1016/j.rse.2017.07.037, 2017.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. D., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.:
The ERA5 global reanalysis,
Q. J. Roy. Meteor. Soc.,
146, 1999– 2049, https://doi.org/10.1002/qj.3803, 2020.
Jakob, D., Su, C.-H., Eizenberg, N., Kociuba, G., Steinle, P., Fox-Hughes, P., and Bettio, L.:
An atmospheric high-resolution regional reanalysis for Australia,
B. Aus. Meteorol. Oceanog. Soc.,
30, 16–23, 2017.
Jermey, P. M. and Renshaw, R. J.:
Precipitation representation over a two-year period in regional reanalysis,
Q. J. Roy. Meteor. Soc.,
142, 1300-1310, https://doi.org/10.1002/qj.2733, 2016.
Jones, D. A., Wang, W., and Fawcett, R.:
High-quality spatial climate data-sets for Australia,
Aust. Meteorol. Ocean.,
58, 233–248, 2009.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa,A., Reynolds, R., Jenne, R., and Joseph, D.:
The NCEP/NCAR 40-Year Reanalysis Project,
B. Am. Meteorol. Soc.,
77, 437–472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., Evans, J. P., Fosser, G., and Wilkinson, J. M.:
Do convection-permitting regional climate models improve projections of future precipitation change?,
B. Am. Meteorol. Soc.,
98, 79–93, https://doi.org/10.1175/BAMS-D-15-0004.1, 2017.
Kendon, E. J., Stratton, R. A., Tucker, S., Marsham, J. H., Berthou, S., Rowell, D. P., and Senior, C. A.:
Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale,
Nat Commun.,
10, 1794, https://doi.org/10.1038/s41467-019-09776-9, 2019.
Kendon, E. J., Prein, A. F., and Senior, C. A.:
Challenges and outlook for convective-permitting climate modelling,
Philos. T. R. Soc. A,
379, 20190547, https://doi.org/10.1098/rsta.2019.0547, 2021.
King, A. D., Alexander, L. V., and Donat, M. G.:
The efficacy of using gridded data to examine extreme rainfall characteristics: a case study for Australia,
Int. J. Climatol.,
33, 2376–2387, https://doi.org/10.1002/joc.3588, 2012.
Kuleshov, Y., de Hoedt, G., Wright, W., and Brewster, A.:
Thunderstorm distribution and frequency in Australia,
Aust. Meteorol. Mag.,
51, 145–154, 2002.
Louis, J.-F.:
A parametric model of vertical eddy fluxes in the atmosphere,
Bound.-Lay. Meteorol.,
17, 187–202, 1979.
Lean, H. W., Clark, P. A., Dixon, M., Roberts, N. M., Fitch, A., Forbes, R., Halliwell, C.:
Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom,
Mon. Weather Rev.,
136, 3408–3424, https://doi.org/10.1175/2008MWR2332.1, 2008.
Leutwyler, D., Lüthi, D., Ban, N., Fuhrer, O., and Schär, C.:
Evaluation of the convection-resolving climate modeling approach on continental scales,
J. Geophys. Res.-Atmos.,
122, 5237–5258, https://doi.org/10.1002/2016JD026013, 2017.
Lock, A. P., Brown, A. R., Bush, M. R., Martin, G. M., and Smith, R. N. B.:
A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests,
Mon. Weather Rev.,
128, 3187–3199, https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2, 2000.
Lock, A., Edwards, J., and Boutle, I.:
The parametrization of boundary layer processes,
Unified Model Documentation Paper 024, vn10.6, 2016.
Lopez, M. A., Hartmann, D. L., Blossey, P. N., Wood, R., Bretherton, C. S., and Kubar, T. L.:
A test of the simulation of tropical convective cloudiness by a cloud-resolving model,
J. Climate,
22, 2834–2849, https://doi.org/10.1175/2008JCLI2272.1, 2009.
Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L., and Merchant, J. W.:
Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data,
Int. J. Remote Sens.,
21, 1303–1330, https://doi.org/10.1080/014311600210191, 2000.
Ma, Y. and Liu, H.:
Large-eddy simulations of atmospheric flows over complex terrain using the immersed-boundary method in the Weather Research and Forecasting model,
Bound.-Lay. Meteorol.,
165, 421–445, https://doi.org/10.1007/s10546-017-0283-9, 2017.
Mahmood, S., Davie, J., Jermey, P., Renshaw, R., George, J. P., Rajagopal, E. N., and Rani, S. I.:
Indian monsoon data assimilation and analysis regional reanalysis: Configuration and performance,
Atmos. Sci. Lett.,
19, e808, https://doi.org/10.1002/asl.808, 2018.
Mailhot, J., Bélair, S., Charron, M., Doyle, C., Joe, P., Abrahamowicz, M., Bernier, N. B., Denis, B., Erfani, A., Frenette, R., Giguére, A., Issac, G. A., McLennan, N., McTaggart-Cowan, R., Milbrandt, J., and Tong, L.:
Environment Canada's experimental numerical weather prediction systems for the Vancouver 2010 Winter Olympic and Paralympic Games,
B. Am. Meteorol. Soc.,
91, 1073–1086, https://doi.org/10.1175/2010BAMS2913.1, 2010.
Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W., Jović, D., Woollen, J., Rogers, E., Berbery, E. H., Ek, M. B., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y., Manikin, G., Parrish, D., and Shi, W.:
North American Regional Reanalysis,
B. Am. Meteorol. Soc.,
87, 343–360, https://doi.org/10.1175/BAMS-87-3-343, 2006.
Mueller, N., Lewis, A., Roberts, D., Ring, S., Melrose, R., Sixsmith, J., Lymburner, L., McIntyre, A., Tan, P., Curnow, S., and Ip, A.:
Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia,
Remote Sens. Environ.,
174, 341–352, https://doi.org/10.1016/j.rse.2015.11.003, 2016.
Oliver, H., Shin, M., Matthews, D., Sanders, O., Bartholomew, S., Clark, A., Fitzpatrick, B., van Haren, R., Hut, R., and Drost, N.:
Workflow automation for cycling systems,
Comput. Sci. Eng.,
21, 7–21, https://doi.org/10.1109/MCSE.2019.2906593, 2019.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen–Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K., Keller, M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet, S., Schmidli, J., Van Lipzig, N. P. M, and Leung, R.:
A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges,
Rev. Geophys.,
53, 323–361, https://doi.org/10.1002/2014RG000475, 2015.
Puri, K., Dietachmayer, G., Steinle, P., Dix, M., Rikus, L., Logan,L., Naughton, M., Tingwell, C., Xiao, Y., Barras, V., Bermous, I., Bowen, R., Deschamps, L., Franklin, C., Fraser, J., Glowacki, T., Harris, B., Lee, J., Le, T., Roff, G., Sulaiman, A., Sims, H., Sun, X., Sun, Z., Zhu, H., Chattopadhyay, M. and Engel, C.:
Implementation of the initial ACCESS numerical weather prediction system,
Aust. Meteorol. Ocean.,
63, 265–284, 2013.
Rennie, S., Rikus, L., Eizenberg, N., Steinle, P., and Krysta, M.:
Impact of Doppler radar wind observations on Australian high-resolution numerical weather prediction,
Weather Forecast.,
35, 309–324, https://doi.org/10.1175/WAF-D-19-0100.1, 2020.
Roberts, N. M. and Lean, H. W.:
Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events,
Mon. Weather Rev.,
136, 78–97, https://doi.org/10.1175/2007MWR2123.1, 2007.
Roberts-Jones, J., Fiedler, E. K., and Martin, M. J.:
Daily, global, high-resolution SST and sea ice reanalysis for 1985–2007 Using the OSTIA system,
J. Climate,
25, 6215–6232, https://doi.org/10.1175/JCLI-D-11-00648.1, 2012.
Schär, C., Fuhrer, O., Arteaga, A., Ban, N., Charpilloz, C., Di Girolamo, S., Hentgen, L., Hoefler, T., Lapillonne, X., Leutwyler, D., Osterried, K., Panosetti, D., Rüdisühli, S., Schlemmer, L., Schulthess, T. C., Sprenger, M., Ubbiali, S., and Wernli, H.:
Kilometer-scale climate models: Prospects and challenges,
B. Am. Meteorol. Soc.,
101, E567–E587, https://doi.org/10.1175/BAMS-D-18-0167.1, 2020.
Seed, A., Duthie, E., and Chumchean, S.: Rainfields: The Australian Bureau of Meteorology system for quantitative precipitation estimation, Abstract P6B.8, Proceedings of the 33rd AMS Conference on Radar Meteorology, Cairns, Australia, 6–10 August 2007.
Simard, M., Pinto, N., Fisher, J. B., and Baccini, A.:
Mapping forest canopy height globally with spaceborne lidar,
J. Geophys. Res.-Biogeo.,
116, G04021, https://doi.org/10.1029/2011JG001708, 2011.
Sinclair, S. and Pegram, G.:
Combining radar and rain gauge rainfall estimates using conditional merging,
Atmos. Sci. Lett.,
6, 19–22, https://doi.org/10.1002/asl.85, 2005.
Smagorinsky, J.:
General circulation experiments with the primitive equations. I: The basic experiment,
Mon. Weather Rev.,
91, 99–164, 1963.
Smith, R. N. B.:
A scheme for predicting layer cloud and their water content in a general circulation model,
Q. J. Roy. Meteor. Soc.,
116, 435–460, https://doi.org/10.1002/qj.49711649210, 1990.
Steeneveld, G.-J.:
Current challenges in understanding and forecasting stable boundary layers over land and ice,
Front. Environ. Sci.,
2, 41, https://doi.org/10.3389/fenvs.2014.00041, 2014.
Stein, T. H. M., Hogan, R. J., Clark, P. A., Halliwell, C. E., Hanley, K. E., Lean, H. W., Nicol, J. C., and Plant, R. S.:
The DYMECS Project: A statistical approach for the evaluation of convective storms in high-resolution NWP models,
B. Am. Meteorol. Soc.,
96, 939–951, https://doi.org/10.1175/BAMS-D-13-00279.1, 2015.
Su, C.-H., Eizenberg, N., Steinle, P., Jakob, D., Fox-Hughes, P., White, C. J., Rennie, S., Franklin, C., Dharssi, I., and Zhu, H.: BARRA v1.0: the Bureau of Meteorology Atmospheric high-resolution Regional Reanalysis for Australia, Geosci. Model Dev., 12, 2049–2068, https://doi.org/10.5194/gmd-12-2049-2019, 2019.
Vitolo, C., Napoli, C. D., Giuseppe, F. D., Cloke, H. L., and Pappenberger, F.:
Mapping combined wildfire and heat stress hazards to improve evidence-based decision making,
Environ. Internat.,
127, 21–34, https://doi.org/10.1016/j.envint.2019.03.008, 2019.
Wahl, S., Bollmeyer, C., Crewell, S., Figura, C., Friederichs, P., Hense, A., Keller, J. D., and Ohlwein, C.:
A novel convective-scale regional reanalysis COSMO-REA2: Improving the representation of precipitation,
Meteorol. Z.,
26, 345–361, https://doi.org/10.1127/metz/2017/0824, 2017.
Walsh, K. J. E, White, C. J., McInnes, K. L, Holmes, J., Schuster, S., Richter, H., Evans, J. P., Di Luca, A. and Warren, R. A.:
Natural hazards in Australia: storms, wind and hail,
Climatic Change,
139, 55–67, https://doi.org/10.1007/s10584-016-1737-7, 2016.
Walters, D., Boutle, I., Brooks, M., Melvin, T., Stratton, R., Vosper, S., Wells, H., Williams, K., Wood, N., Allen, T., Bushell, A., Copsey, D., Earnshaw, P., Edwards, J., Gross, M., Hardiman, S., Harris, C., Heming, J., Klingaman, N., Levine, R., Manners, J., Martin, G., Milton, S., Mittermaier, M., Morcrette, C., Riddick, T., Roberts, M., Sanchez, C., Selwood, P., Stirling, A., Smith, C., Suri, D., Tennant, W., Vidale, P. L., Wilkinson, J., Willett, M., Woolnough, S., and Xavier, P.: The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations, Geosci. Model Dev., 10, 1487–1520, https://doi.org/10.5194/gmd-10-1487-2017, 2017.
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019.
Wilkinson, J. M. and Jorge Bornemann, F.:
A lightning forecast for the London 2012 Olympics opening ceremony,
Weather,
69, 16–19, https://doi.org/10.1002/wea.2176, 2014.
Wilson, D. R. and Ballard, S. P.:
A microphysically based precipitation scheme for the UK Meteorological Office Unified Model,
Q. J. Roy. Meteor. Soc.,
125, 1607–1636, https://doi.org/10.1002/qj.49712555707, 1999.
Wood, N., Staniforth, A., White, A., Allen, T., Diamantakis, M., Gross, M., Melvin, T., Smith, C., Vosper, S., Zerroukat, M., and Thuburn, J.:
An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global nonhydrostatic equations,
Q. J. Roy. Meteor. Soc.,
140, 1505–1520, https://doi.org/10.1002/qj.2235, 2014.
Zerroukat, M. and Shipway, B. J.:
ZLF (Zero Lateral Flux): a simple mass conservation method for semi-Lagrangian-based limited-area models,
Q. J. Roy. Meteor. Soc,
143, 2578–2584, https://doi.org/10.1002/qj.3108, 2017.
Short summary
The Bureau of Meteorology Atmospheric Regional Reanalysis for Australia (BARRA) has produced a very high-resolution reconstruction of Australian historical weather from 1990 to 2018. This paper demonstrates the added weather and climate information to supplement coarse- or moderate-resolution regional and global reanalyses. The new climate data can allow greater understanding of past weather, including extreme events, at very local kilometre scales.
The Bureau of Meteorology Atmospheric Regional Reanalysis for Australia (BARRA) has produced a...