Articles | Volume 14, issue 6
https://doi.org/10.5194/gmd-14-4087-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-4087-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Vertical structure of cloud radiative heating in the tropics: confronting the EC-Earth v3.3.1/3P model with satellite observations
Atmospheric Remote Sensing, Research and development department, Swedish Meteorological and Hydrological Institute
(SMHI), Norrköping, Sweden
Department of Meteorology, Stockholm University (MISU), Stockholm, Sweden
Bolin Center for Climate Research, Stockholm University, Stockholm, Sweden
Abhay Devasthale
Atmospheric Remote Sensing, Research and development department, Swedish Meteorological and Hydrological Institute
(SMHI), Norrköping, Sweden
Michael Tjernström
Department of Meteorology, Stockholm University (MISU), Stockholm, Sweden
Bolin Center for Climate Research, Stockholm University, Stockholm, Sweden
Annica M. L. Ekman
Department of Meteorology, Stockholm University (MISU), Stockholm, Sweden
Bolin Center for Climate Research, Stockholm University, Stockholm, Sweden
Klaus Wyser
Rossby Centre, Research and development department, Swedish Meteorological and Hydrological Institute (SMHI),
Norrköping, Sweden
Tristan L'Ecuyer
Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI, USA
Related authors
Nikos Benas, Irina Solodovnik, Martin Stengel, Imke Hüser, Karl-Göran Karlsson, Nina Håkansson, Erik Johansson, Salomon Eliasson, Marc Schröder, Rainer Hollmann, and Jan Fokke Meirink
Earth Syst. Sci. Data, 15, 5153–5170, https://doi.org/10.5194/essd-15-5153-2023, https://doi.org/10.5194/essd-15-5153-2023, 2023
Short summary
Short summary
This paper describes CLAAS-3, the third edition of the Cloud property dAtAset using SEVIRI, which was created based on observations from geostationary Meteosat satellites. CLAAS-3 cloud properties are evaluated using a variety of reference datasets, with very good overall results. The demonstrated quality of CLAAS-3 ensures its usefulness in a wide range of applications, including studies of local- to continental-scale cloud processes and evaluation of climate models.
Karl-Göran Karlsson, Martin Stengel, Jan Fokke Meirink, Aku Riihelä, Jörg Trentmann, Tom Akkermans, Diana Stein, Abhay Devasthale, Salomon Eliasson, Erik Johansson, Nina Håkansson, Irina Solodovnik, Nikos Benas, Nicolas Clerbaux, Nathalie Selbach, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data, 15, 4901–4926, https://doi.org/10.5194/essd-15-4901-2023, https://doi.org/10.5194/essd-15-4901-2023, 2023
Short summary
Short summary
This paper presents a global climate data record on cloud parameters, radiation at the surface and at the top of atmosphere, and surface albedo. The temporal coverage is 1979–2020 (42 years) and the data record is also continuously updated until present time. Thus, more than four decades of climate parameters are provided. Based on CLARA-A3, studies on distribution of clouds and radiation parameters can be made and, especially, investigations of climate trends and evaluation of climate models.
Theresa Mathes, Heather Guy, John Prytherch, Julia Kojoj, Ian Brooks, Sonja Murto, Paul Zieger, Birgit Wehner, Michael Tjernström, and Andreas Held
Atmos. Chem. Phys., 25, 8455–8474, https://doi.org/10.5194/acp-25-8455-2025, https://doi.org/10.5194/acp-25-8455-2025, 2025
Short summary
Short summary
The Arctic is warming faster than the global average and an investigation of aerosol–cloud–sea ice interactions is crucial for studying its climate system. During the ARTofMELT Expedition 2023, particle and sensible heat fluxes were measured over different surfaces. Wide lead surfaces acted as particle sources, with the strongest sensible heat fluxes, while closed ice surfaces acted as particle sinks. In this study, methods to measure these interactions are improved, enhancing our understanding of Arctic climate processes.
Tuomas Naakka, Daniel Köhler, Kalle Nordling, Petri Räisänen, Marianne Tronstad Lund, Risto Makkonen, Joonas Merikanto, Bjørn H. Samset, Victoria A. Sinclair, Jennie L. Thomas, and Annica M. L. Ekman
Atmos. Chem. Phys., 25, 8127–8145, https://doi.org/10.5194/acp-25-8127-2025, https://doi.org/10.5194/acp-25-8127-2025, 2025
Short summary
Short summary
The effects of warmer sea surface temperatures and decreasing sea ice cover on polar climates have been studied using four climate models with identical prescribed changes in sea surface temperatures and sea ice cover. The models predict similar changes in air temperature and precipitation in the polar regions in a warmer climate with less sea ice. However, the models disagree on how the atmospheric circulation, i.e. the large-scale winds, will change with warmer temperatures and less sea ice.
Abhay Devasthale, Sandra Andersson, Erik Engström, Frank Kaspar, Jörg Trentmann, Anke Duguay-Tetzlaff, Jan Fokke Meirink, Erik Kjellström, Tomas Landelius, Manu Anna Thomas, and Karl-Göran Karlsson
Earth Syst. Dynam., 16, 1169–1182, https://doi.org/10.5194/esd-16-1169-2025, https://doi.org/10.5194/esd-16-1169-2025, 2025
Short summary
Short summary
By compositing trends in multiple climate variables, this study presents emerging regimes that are relevant for solar energy applications. It is shown that the favourable conditions for exploiting solar energy are emerging during spring and early summer. The study also underscores the increasingly important role of clouds in regulating surface solar radiation as the aerosol concentrations are decreasing over Europe and the societal value of satellite-based climate monitoring.
Chanyoung Park, Brian J. Soden, Ryan J. Kramer, Tristan S. L'Ecuyer, and Haozhe He
Atmos. Chem. Phys., 25, 7299–7313, https://doi.org/10.5194/acp-25-7299-2025, https://doi.org/10.5194/acp-25-7299-2025, 2025
Short summary
Short summary
This study addresses the long-standing challenge of quantifying the impact of aerosol–cloud interactions. Using satellite observations, reanalysis data, and a "perfect-model" cross-validation, we show that explicitly accounting for aerosol–cloud droplet activation rates is key to accurately estimating ERFaci (effective radiative forcing due to aerosol–cloud interactions). Our results indicate a smaller and less uncertain ERFaci than previously assessed, implying the reduced role of aerosol–cloud interactions in shaping climate sensitivity.
Mehdi Pasha Karami, Torben Koenigk, Shiyu Wang, René Navarro Labastida, Tim Kruschke, Aude Carreric, Pablo Ortega, Klaus Wyser, Ramon Fuentes Franco, Agatha M. de Boer, Marie Sicard, and Aitor Aldama Campino
EGUsphere, https://doi.org/10.5194/egusphere-2025-2653, https://doi.org/10.5194/egusphere-2025-2653, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
This study uses a high-resolution global climate model to simulate future climate, focusing on the Arctic and North Atlantic. The model captures observed sea ice loss and Atlantic circulation trends, projecting a nearly ice-free Arctic by 2040. It introduces a new method to quantify deep water formation, revealing how different ocean regions contribute to the weakening of overturning circulation in a warming climate.
Ricarda Winkelmann, Donovan P. Dennis, Jonathan F. Donges, Sina Loriani, Ann Kristin Klose, Jesse F. Abrams, Jorge Alvarez-Solas, Torsten Albrecht, David Armstrong McKay, Sebastian Bathiany, Javier Blasco Navarro, Victor Brovkin, Eleanor Burke, Gokhan Danabasoglu, Reik V. Donner, Markus Drüke, Goran Georgievski, Heiko Goelzer, Anna B. Harper, Gabriele Hegerl, Marina Hirota, Aixue Hu, Laura C. Jackson, Colin Jones, Hyungjun Kim, Torben Koenigk, Peter Lawrence, Timothy M. Lenton, Hannah Liddy, José Licón-Saláiz, Maxence Menthon, Marisa Montoya, Jan Nitzbon, Sophie Nowicki, Bette Otto-Bliesner, Francesco Pausata, Stefan Rahmstorf, Karoline Ramin, Alexander Robinson, Johan Rockström, Anastasia Romanou, Boris Sakschewski, Christina Schädel, Steven Sherwood, Robin S. Smith, Norman J. Steinert, Didier Swingedouw, Matteo Willeit, Wilbert Weijer, Richard Wood, Klaus Wyser, and Shuting Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1899, https://doi.org/10.5194/egusphere-2025-1899, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
The Tipping Points Modelling Intercomparison Project (TIPMIP) is an international collaborative effort to systematically assess tipping point risks in the Earth system using state-of-the-art coupled and stand-alone domain models. TIPMIP will provide a first global atlas of potential tipping dynamics, respective critical thresholds and key uncertainties, generating an important building block towards a comprehensive scientific basis for policy- and decision-making.
Rahul Ranjan, Liine Heikkinen, Lauri R. Ahonen, Krista Luoma, Paul Bowen, Tuukka Petäjä, Annica M. L. Ekman, Daniel G. Partridge, and Ilona Riipinen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1602, https://doi.org/10.5194/egusphere-2025-1602, 2025
Short summary
Short summary
We use multi-year measurements of cloud condensation nuclei (CCN) at a boreal forest site to inversely infer size-resolved aerosol chemical composition. We find that inorganic species are more enriched in the larger end (accumulation mode) of the sub-micron aerosol population while organics dominate the smaller end (Aitken mode). Our approach demonstrates the potential of long-term CCN measurements to infer size-resolved chemical composition of sub-micron aerosol.
Duncan Watson-Parris, Laura J. Wilcox, Camilla W. Stjern, Robert J. Allen, Geeta Persad, Massimo A. Bollasina, Annica M. L. Ekman, Carley E. Iles, Manoj Joshi, Marianne T. Lund, Daniel McCoy, Daniel M. Westervelt, Andrew I. L. Williams, and Bjørn H. Samset
Atmos. Chem. Phys., 25, 4443–4454, https://doi.org/10.5194/acp-25-4443-2025, https://doi.org/10.5194/acp-25-4443-2025, 2025
Short summary
Short summary
In 2020, regulations by the International Maritime Organization aimed to reduce aerosol emissions from ships. These aerosols previously had a cooling effect, which the regulations might reduce, revealing more greenhouse gas warming. Here we find that, while there is regional warming, the global 2020–2040 temperature rise is only +0.03 °C. This small change is difficult to distinguish from natural climate variability, indicating the regulations have had a limited effect on observed warming to date.
Dominic Heslin-Rees, Peter Tunved, Diego Aliaga, Janne Lampilahti, Ilona Riipinen, Annica Ekman, Ki-Tae Park, Martina Mazzini, Stefania Gilardoni, Roseline Thakur, Kihong Park, Young Jun Yoon, Kitack Lee, Mikko Sipilä, Mauro Mazzola, and Radovan Krejci
Aerosol Research Discuss., https://doi.org/10.5194/ar-2025-11, https://doi.org/10.5194/ar-2025-11, 2025
Preprint under review for AR
Short summary
Short summary
New particles form in the atmosphere and can influence the climate. We studied Arctic new particle formation (NPF) from 2022 to 2024 at the Zeppelin Observatory, on Svalbard. NPF occurs from April to November, peaking in late spring as sunlight increases. Some particles measured on-site grow large enough to seed clouds. Sunlight and existing aerosol particles strongly impact the likelihood of NPF, which mainly originates from marine regions, particularly the Greenland Sea.
Stephan Harrison, Adina Racoviteanu, Sarah Shannon, Darren Jones, Karen Anderson, Neil Glasser, Jasper Knight, Anna Ranger, Arindan Mandal, Brahma Dutt Vishwakarma, Jeffrey Kargel, Dan Shugar, Umesh Haritishaya, Dongfeng Li, Aristeidis Koutroulis, Klaus Wyser, and Sam Inglis
EGUsphere, https://doi.org/10.5194/egusphere-2024-4033, https://doi.org/10.5194/egusphere-2024-4033, 2025
Short summary
Short summary
Climate change is leading to a global recession of mountain glaciers, and numerical modelling suggests that this will result in the eventual disappearance of many glaciers, impacting water supplies. However, an alternative scenario suggests that increased rock fall and debris flows to valley bottoms will cover glaciers with thick rock debris, slowing melting and transforming glaciers into rock-ice mixtures called rock glaciers. This paper explores these scenarios.
Michail Karalis, Gunilla Svensson, Manfred Wendisch, and Michael Tjernström
EGUsphere, https://doi.org/10.5194/egusphere-2024-3709, https://doi.org/10.5194/egusphere-2024-3709, 2025
Short summary
Short summary
During the spring Arctic warm-air intrusion captured by HALO-(𝒜𝒞)3, the airmass demonstrated a column-like structure. We built a Lagrangian modeling framework using a single-column model (AOSCM) to simulate the airmass transformation. Comparing to observations, reanalysis and forecast data, we found that the AOSCM can successfully reproduce the main features of the transformation. The framework can be used for future model development to improve Arctic weather and climate prediction.
Luís Filipe Escusa dos Santos, Hannah C. Frostenberg, Alejandro Baró Pérez, Annica M. L. Ekman, Luisa Ickes, and Erik S. Thomson
Atmos. Chem. Phys., 25, 119–142, https://doi.org/10.5194/acp-25-119-2025, https://doi.org/10.5194/acp-25-119-2025, 2025
Short summary
Short summary
The Arctic is experiencing enhanced surface warming. The observed decline in Arctic sea-ice extent is projected to lead to an increase in Arctic shipping activity, which may lead to further climatic feedbacks. Using an atmospheric model and results from marine engine experiments that focused on fuel sulfur content reduction and exhaust wet scrubbing, we investigate how ship exhaust particles influence the properties of Arctic clouds. Implications for radiative surface processes are discussed.
Manu Anna Thomas, Klaus Wyser, Shiyu Wang, Marios Chatziparaschos, Paraskevi Georgakaki, Montserrat Costa-Surós, Maria Gonçalves Ageitos, Maria Kanakidou, Carlos Pérez García-Pando, Athanasios Nenes, Twan van Noije, Philippe Le Sager, and Abhay Devasthale
Geosci. Model Dev., 17, 6903–6927, https://doi.org/10.5194/gmd-17-6903-2024, https://doi.org/10.5194/gmd-17-6903-2024, 2024
Short summary
Short summary
Aerosol–cloud interactions occur at a range of spatio-temporal scales. While evaluating recent developments in EC-Earth3-AerChem, this study aims to understand the extent to which the Twomey effect manifests itself at larger scales. We find a reduction in the warm bias over the Southern Ocean due to model improvements. While we see footprints of the Twomey effect at larger scales, the negative relationship between cloud droplet number and liquid water drives the shortwave radiative effect.
Natasha Vos, Tristan S. L'Ecuyer, and Tim Michaels
EGUsphere, https://doi.org/10.5194/egusphere-2024-2040, https://doi.org/10.5194/egusphere-2024-2040, 2024
Preprint withdrawn
Short summary
Short summary
PREFIRE uses two CubeSats to make novel measurements of outgoing energy. The CubeSats will frequently resample regions, forming orbit “intersections” that reveal how polar processes impact thermal emissions. This study develops new methods to characterize orbit intersections and applies them to simulated PREFIRE orbits to assess the hypothetical resampling distribution. Generalizing our results informs future missions that two CubeSats at different altitudes greatly enhance resampling coverage.
Jenny Hieronymus, Magnus Hieronymus, Matthias Gröger, Jörg Schwinger, Raffaele Bernadello, Etienne Tourigny, Valentina Sicardi, Itzel Ruvalcaba Baroni, and Klaus Wyser
Biogeosciences, 21, 2189–2206, https://doi.org/10.5194/bg-21-2189-2024, https://doi.org/10.5194/bg-21-2189-2024, 2024
Short summary
Short summary
The timing of the net primary production annual maxima in the North Atlantic in the period 1750–2100 is investigated using two Earth system models and the high-emissions scenario SSP5-8.5. It is found that, for most of the region, the annual maxima occur progressively earlier, with the most change occurring after the year 2000. Shifts in the seasonality of the primary production may impact the entire ecosystem, which highlights the need for long-term monitoring campaigns in this area.
Alejandro Baró Pérez, Michael S. Diamond, Frida A.-M. Bender, Abhay Devasthale, Matthias Schwarz, Julien Savre, Juha Tonttila, Harri Kokkola, Hyunho Lee, David Painemal, and Annica M. L. Ekman
Atmos. Chem. Phys., 24, 4591–4610, https://doi.org/10.5194/acp-24-4591-2024, https://doi.org/10.5194/acp-24-4591-2024, 2024
Short summary
Short summary
We use a numerical model to study interactions between humid light-absorbing aerosol plumes, clouds, and radiation over the southeast Atlantic. We find that the warming produced by the aerosols reduces cloud cover, especially in highly polluted situations. Aerosol impacts on drizzle play a minor role. However, aerosol effects on cloud reflectivity and moisture-induced changes in cloud cover dominate the climatic response and lead to an overall cooling by the biomass burning plumes.
Dominic Heslin-Rees, Peter Tunved, Johan Ström, Roxana Cremer, Paul Zieger, Ilona Riipinen, Annica M. L. Ekman, Konstantinos Eleftheriadis, and Radovan Krejci
Atmos. Chem. Phys., 24, 2059–2075, https://doi.org/10.5194/acp-24-2059-2024, https://doi.org/10.5194/acp-24-2059-2024, 2024
Short summary
Short summary
Light-absorbing atmospheric particles (e.g. black carbon – BC) exert a warming effect on the Arctic climate. We show that the amount of particle light absorption decreased from 2002 to 2023. We conclude that in addition to reductions in emissions of BC, wet removal plays a role in the long-term reduction of BC in the Arctic, given the increase in surface precipitation experienced by air masses arriving at the site. The potential impact of biomass burning events is shown to have increased.
John Prytherch, Sonja Murto, Ian Brown, Adam Ulfsbo, Brett F. Thornton, Volker Brüchert, Michael Tjernström, Anna Lunde Hermansson, Amanda T. Nylund, and Lina A. Holthusen
Biogeosciences, 21, 671–688, https://doi.org/10.5194/bg-21-671-2024, https://doi.org/10.5194/bg-21-671-2024, 2024
Short summary
Short summary
We directly measured methane and carbon dioxide exchange between ocean or sea ice and the atmosphere during an icebreaker-based expedition to the central Arctic Ocean (CAO) in summer 2021. These measurements can help constrain climate models and carbon budgets. The methane measurements, the first such made in the CAO, are lower than previous estimates and imply that the CAO is an insignificant contributor to Arctic methane emission. Gas exchange rates are slower than previous estimates.
Nikos Benas, Irina Solodovnik, Martin Stengel, Imke Hüser, Karl-Göran Karlsson, Nina Håkansson, Erik Johansson, Salomon Eliasson, Marc Schröder, Rainer Hollmann, and Jan Fokke Meirink
Earth Syst. Sci. Data, 15, 5153–5170, https://doi.org/10.5194/essd-15-5153-2023, https://doi.org/10.5194/essd-15-5153-2023, 2023
Short summary
Short summary
This paper describes CLAAS-3, the third edition of the Cloud property dAtAset using SEVIRI, which was created based on observations from geostationary Meteosat satellites. CLAAS-3 cloud properties are evaluated using a variety of reference datasets, with very good overall results. The demonstrated quality of CLAAS-3 ensures its usefulness in a wide range of applications, including studies of local- to continental-scale cloud processes and evaluation of climate models.
Brian Kahn, Cameron Bertossa, Xiuhong Chen, Brian Drouin, Erin Hokanson, Xianglei Huang, Tristan L'Ecuyer, Kyle Mattingly, Aronne Merrelli, Tim Michaels, Nate Miller, Federico Donat, Tiziano Maestri, and Michele Martinazzo
EGUsphere, https://doi.org/10.5194/egusphere-2023-2463, https://doi.org/10.5194/egusphere-2023-2463, 2023
Preprint archived
Short summary
Short summary
A cloud detection mask algorithm is developed for the upcoming Polar Radiant Energy in the Far Infrared Experiment (PREFIRE) satellite mission to be launched by NASA in May 2024. The cloud mask is compared to "truth" and is capable of detecting over 90 % of all clouds globally tested with simulated data, and about 87 % of all clouds in the Arctic region.
Karl-Göran Karlsson, Martin Stengel, Jan Fokke Meirink, Aku Riihelä, Jörg Trentmann, Tom Akkermans, Diana Stein, Abhay Devasthale, Salomon Eliasson, Erik Johansson, Nina Håkansson, Irina Solodovnik, Nikos Benas, Nicolas Clerbaux, Nathalie Selbach, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data, 15, 4901–4926, https://doi.org/10.5194/essd-15-4901-2023, https://doi.org/10.5194/essd-15-4901-2023, 2023
Short summary
Short summary
This paper presents a global climate data record on cloud parameters, radiation at the surface and at the top of atmosphere, and surface albedo. The temporal coverage is 1979–2020 (42 years) and the data record is also continuously updated until present time. Thus, more than four decades of climate parameters are provided. Based on CLARA-A3, studies on distribution of clouds and radiation parameters can be made and, especially, investigations of climate trends and evaluation of climate models.
Ines Bulatovic, Julien Savre, Michael Tjernström, Caroline Leck, and Annica M. L. Ekman
Atmos. Chem. Phys., 23, 7033–7055, https://doi.org/10.5194/acp-23-7033-2023, https://doi.org/10.5194/acp-23-7033-2023, 2023
Short summary
Short summary
We use numerical modeling with detailed cloud microphysics to investigate a low-altitude cloud system consisting of two cloud layers – a type of cloud situation which was commonly observed during the summer of 2018 in the central Arctic (north of 80° N). The model generally reproduces the observed cloud layers and the thermodynamic structure of the lower atmosphere well. The cloud system is maintained unless there are low aerosol number concentrations or high large-scale wind speeds.
Gillian Young McCusker, Jutta Vüllers, Peggy Achtert, Paul Field, Jonathan J. Day, Richard Forbes, Ruth Price, Ewan O'Connor, Michael Tjernström, John Prytherch, Ryan Neely III, and Ian M. Brooks
Atmos. Chem. Phys., 23, 4819–4847, https://doi.org/10.5194/acp-23-4819-2023, https://doi.org/10.5194/acp-23-4819-2023, 2023
Short summary
Short summary
In this study, we show that recent versions of two atmospheric models – the Unified Model and Integrated Forecasting System – overestimate Arctic cloud fraction within the lower troposphere by comparison with recent remote-sensing measurements made during the Arctic Ocean 2018 expedition. The overabundance of cloud is interlinked with the modelled thermodynamic structure, with strong negative temperature biases coincident with these overestimated cloud layers.
Alyson Rose Douglas and Tristan L'Ecuyer
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-688, https://doi.org/10.5194/acp-2022-688, 2022
Revised manuscript not accepted
Short summary
Short summary
Aerosol, or small particles released by human activities, enter the atmosphere and eventually interact with clouds in what we term aerosol-cloud interactions. As more aerosol enter a cloud, they act as cloud droplet nuclei, increasing the number of cloud droplets in a cloud and delaying rain formation, leading to a larger cloud. We use machine learning and found that these interactions lead to 1.27 % more cloudiness on Earth and offset ~1/4 of the warming due to CO2.
Assia Arouf, Hélène Chepfer, Thibault Vaillant de Guélis, Marjolaine Chiriaco, Matthew D. Shupe, Rodrigo Guzman, Artem Feofilov, Patrick Raberanto, Tristan S. L'Ecuyer, Seiji Kato, and Michael R. Gallagher
Atmos. Meas. Tech., 15, 3893–3923, https://doi.org/10.5194/amt-15-3893-2022, https://doi.org/10.5194/amt-15-3893-2022, 2022
Short summary
Short summary
We proposed new estimates of the surface longwave (LW) cloud radiative effect (CRE) derived from observations collected by a space-based lidar on board the CALIPSO satellite and radiative transfer computations. Our estimate appropriately captures the surface LW CRE annual variability over bright polar surfaces, and it provides a dataset more than 13 years long.
Cheng You, Michael Tjernström, and Abhay Devasthale
Atmos. Chem. Phys., 22, 8037–8057, https://doi.org/10.5194/acp-22-8037-2022, https://doi.org/10.5194/acp-22-8037-2022, 2022
Short summary
Short summary
In winter when solar radiation is absent in the Arctic, the poleward transport of heat and moisture into the high Arctic becomes the main contribution of Arctic warming. Over completely frozen ocean sectors, total surface energy budget is dominated by net long-wave heat, while over the Barents Sea, with an open ocean to the south, total net surface energy budget is dominated by the surface turbulent heat.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Michael R. Gallagher, Matthew D. Shupe, Hélène Chepfer, and Tristan L'Ecuyer
The Cryosphere, 16, 435–450, https://doi.org/10.5194/tc-16-435-2022, https://doi.org/10.5194/tc-16-435-2022, 2022
Short summary
Short summary
By using direct observations of snowfall and mass changes, the variability of daily snowfall mass input to the Greenland ice sheet is quantified for the first time. With new methods we conclude that cyclones west of Greenland in summer contribute the most snowfall, with 1.66 Gt per occurrence. These cyclones are contextualized in the broader Greenland climate, and snowfall is validated against mass changes to verify the results. Snowfall and mass change observations are shown to agree well.
Manu Anna Thomas, Abhay Devasthale, and Michael Kahnert
Atmos. Chem. Phys., 22, 119–137, https://doi.org/10.5194/acp-22-119-2022, https://doi.org/10.5194/acp-22-119-2022, 2022
Short summary
Short summary
The Southern Ocean (SO) covers a large area of our planet and its boundary layer is dominated by sea salt aerosols during winter. These aerosols have large implications for the regional climate through their direct and indirect effects. Using satellite and reanalysis data, we document if and how the aerosol properties over the SO are dependent on different local meteorological parameters. Such an observational assessment is necessary to improve the understanding of atmospheric aerosol processes.
Tiina Nygård, Michael Tjernström, and Tuomas Naakka
Weather Clim. Dynam., 2, 1263–1282, https://doi.org/10.5194/wcd-2-1263-2021, https://doi.org/10.5194/wcd-2-1263-2021, 2021
Short summary
Short summary
Temperature and humidity profiles in the Arctic atmosphere in winter are affected by both the large-scale dynamics and the local processes, such as radiation, cloud formation and turbulence. The results show that the influence of different large-scale flows on temperature and humidity profiles must be viewed as a progressing set of processes. Within the Arctic, there are notable regional differences in how large-scale flows affect the temperature and specific humidity profiles.
Manu Anna Thomas, Abhay Devasthale, and Tiina Nygård
Atmos. Chem. Phys., 21, 16593–16608, https://doi.org/10.5194/acp-21-16593-2021, https://doi.org/10.5194/acp-21-16593-2021, 2021
Short summary
Short summary
The impact of transported pollutants and their spatial distribution in the Arctic are governed by the local atmospheric circulation or weather states. Therefore, we investigated eight different atmospheric circulation types observed during the spring season in the Arctic. Using satellite and reanalysis datasets, this study provides a comprehensive assessment of the typical circulation patterns that can lead to enhanced or reduced pollution concentrations in the different sectors of the Arctic.
Alyson Douglas and Tristan L'Ecuyer
Atmos. Chem. Phys., 21, 15103–15114, https://doi.org/10.5194/acp-21-15103-2021, https://doi.org/10.5194/acp-21-15103-2021, 2021
Short summary
Short summary
When aerosols enter the atmosphere, they interact with the clouds above in what we term aerosol–cloud interactions and lead to a series of reactions which delay the onset of rain. This delay may lead to increased rain rates, or invigoration, when the cloud eventually rains. We show that aerosol leads to invigoration in certain environments. The strength of the invigoration depends on how large the cloud is, which suggests that it is highly tied to the organization of the cloud system.
Twan van Noije, Tommi Bergman, Philippe Le Sager, Declan O'Donnell, Risto Makkonen, María Gonçalves-Ageitos, Ralf Döscher, Uwe Fladrich, Jost von Hardenberg, Jukka-Pekka Keskinen, Hannele Korhonen, Anton Laakso, Stelios Myriokefalitakis, Pirkka Ollinaho, Carlos Pérez García-Pando, Thomas Reerink, Roland Schrödner, Klaus Wyser, and Shuting Yang
Geosci. Model Dev., 14, 5637–5668, https://doi.org/10.5194/gmd-14-5637-2021, https://doi.org/10.5194/gmd-14-5637-2021, 2021
Short summary
Short summary
This paper documents the global climate model EC-Earth3-AerChem, one of the members of the EC-Earth3 family of models participating in CMIP6. We give an overview of the model and describe in detail how it differs from its predecessor and the other EC-Earth3 configurations. The model's performance is characterized using coupled simulations conducted for CMIP6. The model has an effective equilibrium climate sensitivity of 3.9 °C and a transient climate response of 2.1 °C.
Klaus Wyser, Torben Koenigk, Uwe Fladrich, Ramon Fuentes-Franco, Mehdi Pasha Karami, and Tim Kruschke
Geosci. Model Dev., 14, 4781–4796, https://doi.org/10.5194/gmd-14-4781-2021, https://doi.org/10.5194/gmd-14-4781-2021, 2021
Short summary
Short summary
This paper describes the large ensemble done by SMHI with the EC-Earth3 climate model. The ensemble comprises 50 realizations for each of the historical experiments after 1970 and four different future projections for CMIP6. We describe the creation of the initial states for the ensemble and the reduced set of output variables. A first look at the results illustrates the changes in the climate during this century and puts them in relation to the uncertainty from the model's internal variability.
Georgia Sotiropoulou, Luisa Ickes, Athanasios Nenes, and Annica M. L. Ekman
Atmos. Chem. Phys., 21, 9741–9760, https://doi.org/10.5194/acp-21-9741-2021, https://doi.org/10.5194/acp-21-9741-2021, 2021
Short summary
Short summary
Mixed-phase clouds are a large source of uncertainty in projections of the Arctic climate. This is partly due to the poor representation of the cloud ice formation processes. Implementing a parameterization for ice multiplication due to mechanical breakup upon collision of two ice particles in a high-resolution model improves cloud ice phase representation; however, cloud liquid remains overestimated.
Alejandro Baró Pérez, Abhay Devasthale, Frida A.-M. Bender, and Annica M. L. Ekman
Atmos. Chem. Phys., 21, 6053–6077, https://doi.org/10.5194/acp-21-6053-2021, https://doi.org/10.5194/acp-21-6053-2021, 2021
Short summary
Short summary
We study the impacts of above-cloud biomass burning plumes on radiation and clouds over the southeast Atlantic using data derived from satellite observations and data-constrained model simulations. A substantial amount of the aerosol within the plumes is not classified as smoke by the satellite. The atmosphere warms more with increasing smoke aerosol loading. No clear influence of aerosol type, loading, or moisture within the overlying aerosol plumes is detected on the cloud top cooling rates.
Andrew M. Dzambo, Tristan L'Ecuyer, Kenneth Sinclair, Bastiaan van Diedenhoven, Siddhant Gupta, Greg McFarquhar, Joseph R. O'Brien, Brian Cairns, Andrzej P. Wasilewski, and Mikhail Alexandrov
Atmos. Chem. Phys., 21, 5513–5532, https://doi.org/10.5194/acp-21-5513-2021, https://doi.org/10.5194/acp-21-5513-2021, 2021
Short summary
Short summary
This work highlights a new algorithm using data collected from the 2016–2018 NASA ORACLES field campaign. This algorithm synthesizes cloud and rain measurements to attain estimates of cloud and precipitation properties over the southeast Atlantic Ocean. Estimates produced by this algorithm compare well against in situ estimates. Increased rain fractions and rain rates are found in regions of atmospheric instability. This dataset can be used to explore aerosol–cloud–precipitation interactions.
Ines Bulatovic, Adele L. Igel, Caroline Leck, Jost Heintzenberg, Ilona Riipinen, and Annica M. L. Ekman
Atmos. Chem. Phys., 21, 3871–3897, https://doi.org/10.5194/acp-21-3871-2021, https://doi.org/10.5194/acp-21-3871-2021, 2021
Short summary
Short summary
We use detailed numerical modelling to show that small aerosol particles (diameters ~25–80 nm; so-called Aitken mode particles) significantly influence low-level cloud properties in the clean summertime high Arctic. The small particles can help sustain clouds when the concentration of larger particles is low (<10–20 cm-3). Measurements from four different observational campaigns in the high Arctic support the modelling results as they indicate that Aitken mode aerosols are frequently activated.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Qiong Zhang, Ellen Berntell, Josefine Axelsson, Jie Chen, Zixuan Han, Wesley de Nooijer, Zhengyao Lu, Qiang Li, Qiang Zhang, Klaus Wyser, and Shuting Yang
Geosci. Model Dev., 14, 1147–1169, https://doi.org/10.5194/gmd-14-1147-2021, https://doi.org/10.5194/gmd-14-1147-2021, 2021
Short summary
Short summary
Paleoclimate modelling has long been regarded as a strong out-of-sample test bed of the climate models that are used for the projection of future climate changes. Here, we document the model experimental setups for the three past warm periods with EC-Earth3-LR and present the results on the large-scale features. The simulations demonstrate good performance of the model in capturing the climate response under different climate forcings.
Ann Keen, Ed Blockley, David A. Bailey, Jens Boldingh Debernard, Mitchell Bushuk, Steve Delhaye, David Docquier, Daniel Feltham, François Massonnet, Siobhan O'Farrell, Leandro Ponsoni, José M. Rodriguez, David Schroeder, Neil Swart, Takahiro Toyoda, Hiroyuki Tsujino, Martin Vancoppenolle, and Klaus Wyser
The Cryosphere, 15, 951–982, https://doi.org/10.5194/tc-15-951-2021, https://doi.org/10.5194/tc-15-951-2021, 2021
Short summary
Short summary
We compare the mass budget of the Arctic sea ice in a number of the latest climate models. New output has been defined that allows us to compare the processes of sea ice growth and loss in a more detailed way than has previously been possible. We find that that the models are strikingly similar in terms of the major processes causing the annual growth and loss of Arctic sea ice and that the budget terms respond in a broadly consistent way as the climate warms during the 21st century.
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Short summary
Southern Africa produces significant biomass burning emissions whose impacts on regional and global climate are poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA investigation designed to study the key processes that determine these climate impacts. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project, the dataset it produced, and the most important initial findings.
Norman B. Wood and Tristan S. L'Ecuyer
Atmos. Meas. Tech., 14, 869–888, https://doi.org/10.5194/amt-14-869-2021, https://doi.org/10.5194/amt-14-869-2021, 2021
Short summary
Short summary
Although millimeter-wavelength radar reflectivity observations are used to investigate snowfall properties, their ability to constrain specific properties has not been well-quantified. An information-focused retrieval
method shows how well snowfall properties, including rate and size distribution, are constrained by reflectivity. Sources of uncertainty in snowfall rate are dominated by uncertainties in the retrieved size distribution properties rather than by other retrieval assumptions.
Jutta Vüllers, Peggy Achtert, Ian M. Brooks, Michael Tjernström, John Prytherch, Annika Burzik, and Ryan Neely III
Atmos. Chem. Phys., 21, 289–314, https://doi.org/10.5194/acp-21-289-2021, https://doi.org/10.5194/acp-21-289-2021, 2021
Short summary
Short summary
This paper provides interesting new results on the thermodynamic structure of the boundary layer, cloud conditions, and fog characteristics in the Arctic during the Arctic Ocean 2018 campaign. It provides information for interpreting further process studies on aerosol–cloud interactions and shows substantial differences in thermodynamic conditions and cloud characteristics based on comparison with previous campaigns. This certainly raises the question of whether it is just an exceptional year.
Elin A. McIlhattan, Claire Pettersen, Norman B. Wood, and Tristan S. L'Ecuyer
The Cryosphere, 14, 4379–4404, https://doi.org/10.5194/tc-14-4379-2020, https://doi.org/10.5194/tc-14-4379-2020, 2020
Short summary
Short summary
Snowfall builds the mass of the Greenland Ice Sheet (GrIS) and reduces melt by brightening the surface. We present satellite observations of GrIS snowfall events divided into two regimes: those coincident with ice clouds and those coincident with mixed-phase clouds. Snowfall from ice clouds plays the dominant role in building the GrIS, producing ~ 80 % of total accumulation. The two regimes have similar snowfall frequency in summer, brightening the surface when solar insolation is at its peak.
Peggy Achtert, Ewan J. O'Connor, Ian M. Brooks, Georgia Sotiropoulou, Matthew D. Shupe, Bernhard Pospichal, Barbara J. Brooks, and Michael Tjernström
Atmos. Chem. Phys., 20, 14983–15002, https://doi.org/10.5194/acp-20-14983-2020, https://doi.org/10.5194/acp-20-14983-2020, 2020
Short summary
Short summary
We present observations of precipitating and non-precipitating Arctic liquid and mixed-phase clouds during a research cruise along the Russian shelf in summer and autumn of 2014. Active remote-sensing observations, radiosondes, and auxiliary measurements are combined in the synergistic Cloudnet retrieval. Cloud properties are analysed with respect to cloud-top temperature and boundary layer structure. About 8 % of all liquid clouds show a liquid water path below the infrared black body limit.
Johannes Quaas, Antti Arola, Brian Cairns, Matthew Christensen, Hartwig Deneke, Annica M. L. Ekman, Graham Feingold, Ann Fridlind, Edward Gryspeerdt, Otto Hasekamp, Zhanqing Li, Antti Lipponen, Po-Lun Ma, Johannes Mülmenstädt, Athanasios Nenes, Joyce E. Penner, Daniel Rosenfeld, Roland Schrödner, Kenneth Sinclair, Odran Sourdeval, Philip Stier, Matthias Tesche, Bastiaan van Diedenhoven, and Manfred Wendisch
Atmos. Chem. Phys., 20, 15079–15099, https://doi.org/10.5194/acp-20-15079-2020, https://doi.org/10.5194/acp-20-15079-2020, 2020
Short summary
Short summary
Anthropogenic pollution particles – aerosols – serve as cloud condensation nuclei and thus increase cloud droplet concentration and the clouds' reflection of sunlight (a cooling effect on climate). This Twomey effect is poorly constrained by models and requires satellite data for better quantification. The review summarizes the challenges in properly doing so and outlines avenues for progress towards a better use of aerosol retrievals and better retrievals of droplet concentrations.
Kai-Wei Chang and Tristan L'Ecuyer
Atmos. Chem. Phys., 20, 12499–12514, https://doi.org/10.5194/acp-20-12499-2020, https://doi.org/10.5194/acp-20-12499-2020, 2020
Short summary
Short summary
High-altitude clouds in the tropics that reside in the transition layer between the troposphere and stratosphere are important as they influence the amount of water vapor going into the stratosphere. Waves in the atmosphere can influence the temperature and form these high-altitude cirrus clouds. We use satellite observations to explore the connection between atmospheric waves and clouds and show that cirrus clouds occurrence and properties are closely correlated with waves.
Laura J. Wilcox, Zhen Liu, Bjørn H. Samset, Ed Hawkins, Marianne T. Lund, Kalle Nordling, Sabine Undorf, Massimo Bollasina, Annica M. L. Ekman, Srinath Krishnan, Joonas Merikanto, and Andrew G. Turner
Atmos. Chem. Phys., 20, 11955–11977, https://doi.org/10.5194/acp-20-11955-2020, https://doi.org/10.5194/acp-20-11955-2020, 2020
Short summary
Short summary
Projected changes in man-made aerosol range from large reductions to moderate increases in emissions until 2050. Rapid reductions between the present and the 2050s lead to enhanced increases in global and Asian summer monsoon precipitation relative to scenarios with continued increases in aerosol. Relative magnitude and spatial distribution of aerosol changes are particularly important for South Asian summer monsoon precipitation changes, affecting the sign of the trend in the coming decades.
Luisa Ickes, Grace C. E. Porter, Robert Wagner, Michael P. Adams, Sascha Bierbauer, Allan K. Bertram, Merete Bilde, Sigurd Christiansen, Annica M. L. Ekman, Elena Gorokhova, Kristina Höhler, Alexei A. Kiselev, Caroline Leck, Ottmar Möhler, Benjamin J. Murray, Thea Schiebel, Romy Ullrich, and Matthew E. Salter
Atmos. Chem. Phys., 20, 11089–11117, https://doi.org/10.5194/acp-20-11089-2020, https://doi.org/10.5194/acp-20-11089-2020, 2020
Short summary
Short summary
The Arctic is a region where aerosols are scarce. Sea spray might be a potential source of aerosols acting as ice-nucleating particles. We investigate two common phytoplankton species (Melosira arctica and Skeletonema marinoi) and present their ice nucleation activity in comparison with Arctic seawater microlayer samples from different field campaigns. We also aim to understand the aerosolization process of marine biological samples and the potential effect on the ice nucleation activity.
Anne Sophie Daloz, Marian Mateling, Tristan L'Ecuyer, Mark Kulie, Norm B. Wood, Mikael Durand, Melissa Wrzesien, Camilla W. Stjern, and Ashok P. Dimri
The Cryosphere, 14, 3195–3207, https://doi.org/10.5194/tc-14-3195-2020, https://doi.org/10.5194/tc-14-3195-2020, 2020
Short summary
Short summary
The total of snow that falls globally is a critical factor governing freshwater availability. To better understand how this resource is impacted by climate change, we need to know how reliable the current observational datasets for snow are. Here, we compare five datasets looking at the snow falling over the mountains versus the other continents. We show that there is a large consensus when looking at fractional contributions but strong dissimilarities when comparing magnitudes.
Cited articles
Ackerman, T. P., Liou, K.-N., Valero, F. P. J., and Pfister, L.: Heating
Rates in Tropical Anvils, J. Atmos. Sci., 45,
1606–1623, https://doi.org/10.1175/1520-0469(1988)045<1606:HRITA>2.0.CO;2, 1988. a
Austin, R. T., Heymsfield, A. J., and Stephens, G. L.: Retrieval of Ice Cloud
Microphysical Parameters Using the CloudSat Millimeter-Wave Radar and
Temperature, J. Geophys. Res.-Atmos., 114, D00A23,
https://doi.org/10.1029/2008JD010049, 2009. a
Bechtold, P., Köhler, M., Jung, T., Doblas-Reyes, F., Leutbecher, M.,
Rodwell, M. J., Vitart, F., and Balsamo, G.: Advances in Simulating
Atmospheric Variability with the ECMWF Model: From Synoptic to
Decadal Time-Scales, Q. J. Roy. Meteor. Soc.,
134, 1337–1351, https://doi.org/10.1002/qj.289, 2008. a
Bechtold, P., Semane, N., Lopez, P., Chaboureau, J.-P., Beljaars, A., and
Bormann, N.: Representing Equilibrium and Nonequilibrium Convection
in Large-Scale Models, J. Atmos. Sci., 71,
734–753, https://doi.org/10.1175/JAS-D-13-0163.1, 2013. a
Bojinski, S., Verstraete, M., Peterson, T. C., Richter, C., Simmons, A., and
Zemp, M.: The Concept of Essential Climate Variables in Support
of Climate Research, Applications, and Policy, B.
Am. Meteorol. Soc., 95, 1431–1443,
https://doi.org/10.1175/BAMS-D-13-00047.1, 2014. a
Cesana, G., Waliser, D. E., Henderson, D., L'Ecuyer, T. S., Jiang, X., and Li,
J.-L. F.: The Vertical Structure of Radiative Heating Rates: A
Multimodel Evaluation Using A-Train Satellite Observations, J.
Climate, 32, 1573–1590, https://doi.org/10.1175/JCLI-D-17-0136.1, 2019. a, b, c, d
CloudSat: Data processing center, available at: http://www.cloudsat.cira.colostate.edu, last access: April 2019. a
Corti, T., Luo, B. P., Fu, Q., Vömel, H., and Peter, T.: The impact of cirrus clouds on tropical troposphere-to-stratosphere transport, Atmos. Chem. Phys., 6, 2539–2547, https://doi.org/10.5194/acp-6-2539-2006, 2006. a
Devasthale, A. and Thomas, M. A.: Sensitivity of Cloud Liquid Water Content
Estimates to the Temperature-Dependent Thermodynamic Phase: A
Global Study Using CloudSat Data, J. Climate, 25, 7297–7307,
https://doi.org/10.1175/JCLI-D-11-00521.1, 2012. a
Exarchou, E., Prodhomme, C., Brodeau, L., Guemas, V., and Doblas-Reyes, F.:
Origin of the Warm Eastern Tropical Atlantic SST Bias in a Climate Model,
Clim. Dynam., 51, 1819–1840, https://doi.org/10.1007/s00382-017-3984-3, 2017. a
Forbes, R., Tompkins, A. M., and Untch, A.: A New Prognostic Bulk Microphysics
Scheme for the IFS, Technical Memorandum 649, European Centre for
Medium-Range Weather Forecasts, https://doi.org/10.21957/bf6vjvxk,
2011. a
Hang, Y., L'Ecuyer, T. S., Henderson, D. S., Matus, A. V., and Wang, Z.:
Reassessing the Effect of Cloud Type on Earth's Energy
Balance in the Age of Active Spaceborne Observations. Part II:
Atmospheric Heating, J. Climate, 32, 6219–6236,
https://doi.org/10.1175/JCLI-D-18-0754.1, 2019. a
Hart, N. C. G., Washington, R., and Maidment, R. I.: Deep Convection over
Africa: Annual Cycle, ENSO, and Trends in the Hotspots,
J. Climate, 32, 8791–8811, https://doi.org/10.1175/JCLI-D-19-0274.1, 2019. a
Hartmann, D. L. and Berry, S. E.: The Balanced Radiative Effect of Tropical
Anvil Clouds, J. Geophys. Res.-Atmos., 122, 5003–5020,
https://doi.org/10.1002/2017JD026460, 2017. a
Hazeleger, W., Wang, X., Severijns, C., Ştefănescu, S., Bintanja, R.,
Sterl, A., Wyser, K., Semmler, T., Yang, S., van den Hurk, B., van Noije, T.,
van der Linden, E., and van der Wiel, K.: EC-Earth V2.2: Description
and Validation of a New Seamless Earth System Prediction Model, Clim.
Dynam., 39, 2611–2629, https://doi.org/10.1007/s00382-011-1228-5, 2012. a
Hazeleger, W., Guemas, V., Wouters, B., Corti, S., Andreu-Burillo, I.,
Doblas-Reyes, F. J., Wyser, K., and Caian, M.: Multiyear Climate
Predictions Using Two Initialization Strategies, Geophys. Res.
Lett., 40, 1794–1798, https://doi.org/10.1002/grl.50355, 2013. a
Henderson, D. S., L'Ecuyer, T., Stephens, G., Partain, P., and Sekiguchi, M.: A
Multisensor Perspective on the Radiative Impacts of Clouds and
Aerosols, J. Appl. Meteorol. Clim., 52, 853–871,
https://doi.org/10.1175/JAMC-D-12-025.1, 2013. a
Holton, J. R. and Hakim, G. J.: An Introduction to Dynamic Meteorology,
Vol. 88, 5th Edn., Academic Press, ISBN 978-0-12-384866-6, 2012. a
Hourdin, F., Foujols, M.-A., Codron, F., Guemas, V., Dufresne, J.-L., Bony, S.,
Denvil, S., Guez, L., Lott, F., Ghattas, J., Braconnot, P., Marti, O.,
Meurdesoif, Y., and Bopp, L.: Impact of the LMDZ Atmospheric Grid
Configuration on the Climate and Sensitivity of the IPSL-CM5A Coupled
Model, Clim. Dynam., 40, 2167–2192, https://doi.org/10.1007/s00382-012-1411-3,
2013. a
Jiang, J. H., Su, H., Zhai, C., Perun, V. S., Del Genio, A., Nazarenko, L. S.,
Donner, L. J., Horowitz, L., Seman, C., Cole, J., Gettelman, A., Ringer,
M. A., Rotstayn, L., Jeffrey, S., Wu, T., Brient, F., Dufresne, J.-L., Kawai,
H., Koshiro, T., Watanabe, M., LÉcuyer, T. S., Volodin, E. M., Iversen,
T., Drange, H., Mesquita, M. D. S., Read, W. G., Waters, J. W., Tian, B.,
Teixeira, J., and Stephens, G. L.: Evaluation of Cloud and Water Vapor
Simulations in CMIP5 Climate Models Using NASA “A-Train”
Satellite Observations, J. Geophys. Res.-Atmos., 117,
D14105, https://doi.org/10.1029/2011JD017237, 2012. a
Johansson, E.: Vertical cloud radiative heating: Python code, Zenodo [code], https://doi.org/10.5281/zenodo.4734468, 2021a. a
Johansson, E.: Vertical cloud radiative heating from the EC-Earth3 v3.3.1 model, Zenodo [data set], https://doi.org/10.5281/zenodo.3981154, 2021b. a
Johansson, E.: Vertical cloud radiative heating from the EC-Earth3 PRIMAVERA standard-resolution model, Zenodo [data set], https://doi.org/10.5281/zenodo.3947700, 2021c. a
Johansson, E.: Vertical cloud radiative heating from the EC-Earth3 PRIMAVERA high-resolution model part 1 (of 2), Zenodo [data set], https://doi.org/10.5281/zenodo.3958826, 2021d. a
Johansson, E.: Vertical cloud radiative heating from the EC-Earth3 PRIMAVERA high-resolution model part 2 (of 2), Zenodo [data set], https://doi.org/10.5281/zenodo.3960087, 2021e. a
Johansson, E., Devasthale, A., L'Ecuyer, T., Ekman, A. M. L., and Tjernström, M.: The vertical structure of cloud radiative heating over the Indian subcontinent during summer monsoon, Atmos. Chem. Phys., 15, 11557–11570, https://doi.org/10.5194/acp-15-11557-2015, 2015. a, b, c
Johansson, E., Devasthale, A., Ekman, A. M. L., Tjernström, M., and
L'Ecuyer, T.: How Does Cloud Overlap Affect the Radiative Heating in
the Tropical Upper Troposphere/Lower Stratosphere?, Geophys.
Res. Lett., 46, 5623–5631, https://doi.org/10.1029/2019GL082602, 2019. a, b
Karlsson, K.-G. and Devasthale, A.: Inter-Comparison and Evaluation of
the Four Longest Satellite-Derived Cloud Climate Data Records:
CLARA-A2, ESA Cloud CCI V3, ISCCP-HGM, and PATMOS-x,
Remote Sens., 10, 1567, https://doi.org/10.3390/rs10101567, 2018. a
King, M. D., Platnick, S., Menzel, W. P., Ackerman, S. A., and Hubanks, P. A.:
Spatial and Temporal Distribution of Clouds Observed by MODIS
Onboard the Terra and Aqua Satellites, IEEE T.
Geosci. Remote Sens., 51, 3826–3852,
https://doi.org/10.1109/TGRS.2012.2227333, 2013. a
L'Ecuyer, T. S. and Jiang, J. H.: Touring the Atmosphere Aboard the
A-Train, Phys. Today, 63, 36–41, https://doi.org/10.1063/1.3463626, 2010. a
L'Ecuyer, T. S., Wood, N. B., Haladay, T., Stephens, G. L., and Stackhouse,
P. W.: Impact of Clouds on Atmospheric Heating Based on the R04 CloudSat
Fluxes and Heating Rates Data Set, J. Geophys. Res.-Atmos., 113, D00A15, https://doi.org/10.1029/2008JD009951, 2008. a
L'Ecuyer, T. S., Hang, Y., Matus, A. V., and Wang, Z.: Reassessing the
Effect of Cloud Type on Earth's Energy Balance in the Age
of Active Spaceborne Observations. Part I: Top of Atmosphere
and Surface, J. Climate, 32, 6197–6217,
https://doi.org/10.1175/JCLI-D-18-0753.1, 2019. a
Li, J.-L. F., Waliser, D. E., Stephens, G., Lee, S., L'Ecuyer, T., Kato, S.,
Loeb, N., and Ma, H.-Y.: Characterizing and Understanding Radiation Budget
Biases in CMIP3/CMIP5 GCMs, Contemporary GCM, and Reanalysis,
J. Geophys. Res.-Atmos., 118, 8166–8184,
https://doi.org/10.1002/jgrd.50378, 2013. a
Madenach, N., Carbajal Henken, C., Preusker, R., Sourdeval, O., and Fischer, J.: Analysis and quantification of ENSO-linked changes in the tropical Atlantic cloud vertical distribution using 14 years of MODIS observations, Atmos. Chem. Phys., 19, 13535–13546, https://doi.org/10.5194/acp-19-13535-2019, 2019. a, b
Matus, A. V. and L'Ecuyer, T. S.: The Role of Cloud Phase in Earth's
Radiation Budget, J. Geophys. Res.-Atmos., 122,
2016JD025951, https://doi.org/10.1002/2016JD025951, 2017. a
Mauritsen, T., Stevens, B., Roeckner, E., Crueger, T., Esch, M., Giorgetta, M.,
Haak, H., Jungclaus, J., Klocke, D., Matei, D., Mikolajewicz, U., Notz, D.,
Pincus, R., Schmidt, H., and Tomassini, L.: Tuning the Climate of a Global
Model, J. Adv. Model. Earth Sy., 4, M00A01,
https://doi.org/10.1029/2012MS000154, 2012. a
McFarlane, S. A., Mather, J. H., and Ackerman, T. P.: Analysis of Tropical
Radiative Heating Profiles: A Comparison of Models and Observations,
J. Geophys. Res.-Atmo., 112, D14218,
https://doi.org/10.1029/2006JD008290, 2007. a
Morcrette, J.-J., Barker, H. W., Cole, J. N. S., Iacono, M. J., and Pincus, R.:
Impact of a New Radiation Package, McRad, in the ECMWF Integrated
Forecasting System, Mon. Weather Rev., 136, 4773–4798,
https://doi.org/10.1175/2008MWR2363.1, 2008. a
Pincus, R., Platnick, S., Ackerman, S. A., Hemler, R. S., and Patrick Hofmann,
R. J.: Reconciling Simulated and Observed Views of Clouds:
MODIS, ISCCP, and the Limits of Instrument Simulators,
J. Climate, 25, 4699–4720, https://doi.org/10.1175/JCLI-D-11-00267.1, 2012. a
Prodhomme, C., Batté, L., Massonnet, F., Davini, P., Bellprat, O., Guemas,
V., and Doblas-Reyes, F. J.: Benefits of Increasing the Model
Resolution for the Seasonal Forecast Quality in EC-Earth,
J. Climate, 29, 9141–9162, https://doi.org/10.1175/JCLI-D-16-0117.1, 2016. a
Randall, D. A., Harshvardhan, Dazlich, D. A., and Corsetti, T. G.:
Interactions among Radiation, Convection, and Large-Scale
Dynamics in a General Circulation Model, J. Atmos.
Sci., 46, 1943–1970,
https://doi.org/10.1175/1520-0469(1989)046<1943:IARCAL>2.0.CO;2, 1989. a
Raymond, D. J.: The Hadley Circulation as a
Radiative–Convective Instability, J.
Atmos. Sci., 57, 1286–1297,
https://doi.org/10.1175/1520-0469(2000)057<1286:THCAAR>2.0.CO;2, 2000. a
Sassen, K., Wang, Z., and Liu, D.: Global Distribution of Cirrus Clouds from
CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observations (CALIPSO) Measurements, J. Geophys. Res.-Atmos., 113, D00A12, https://doi.org/10.1029/2008JD009972, 2008. a
Sherwood, S. C., Ramanathan, V., Barnett, T. P., Tyree, M. K., and Roeckner,
E.: Response of an Atmospheric General Circulation Model to Radiative Forcing
of Tropical Clouds, J. Geophys. Res.-Atmos., 99,
20829–20845, https://doi.org/10.1029/94JD01632, 1994. a, b, c
Slingo, A. and Slingo, J. M.: The Response of a General Circulation Model to
Cloud Longwave Radiative Forcing. I: Introduction and Initial
Experiments, Q. J. Roy. Meteor. Soc., 114,
1027–1062, https://doi.org/10.1002/qj.49711448209, 1988. a
Stephens, G. L.: Cloud Feedbacks in the Climate System: A Critical
Review, J. Climate, 18, 237–273, https://doi.org/10.1175/JCLI-3243.1, 2005. a
Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, K., Wang, Z., Illingworth, A.
J., O'connor, E. J., Rossow, W. B., Durden, S. L., Miller, S. D., Austin, R. T., Benedetti, A.,
Mitrescu, C., and the CloudSat Science Team: THE CLOUDSAT MISSION AND THE A-TRAIN: A New Dimension of
Space-Based Observations of Clouds and Precipitation,
B. Am. Meteorol. Soc., 83, 1771–1790,
https://doi.org/10.1175/BAMS-83-12-1771, 2002. a
Stephens, G. L., Vane, D. G., Tanelli, S., Im, E., Durden, S., Rokey, M.,
Reinke, D., Partain, P., Mace, G. G., Austin, R., L'Ecuyer, T., Haynes, J.,
Lebsock, M., Suzuki, K., Waliser, D., Wu, D., Kay, J., Gettelman, A., Wang,
Z., and Marchand, R.: CloudSat Mission: Performance and Early Science
after the First Year of Operation, J. Geophys. Res.-Atmos., 113, D00A18, https://doi.org/10.1029/2008JD009982, 2008. a
Stubenrauch, C. J., Rossow, W. B., Kinne, S., Ackerman, S., Cesana, G.,
Chepfer, H., Di Girolamo, L., Getzewich, B., Guignard, A., Heidinger, A.,
Maddux, B. C., Menzel, W. P., Minnis, P., Pearl, C., Platnick, S., Poulsen,
C., Riedi, J., Sun-Mack, S., Walther, A., Winker, D., Zeng, S., and Zhao,
G.: Assessment of Global Cloud Datasets from Satellites: Project
and Database Initiated by the GEWEX Radiation Panel, B.
Am. Meteorol. Soc., 94, 1031–1049,
https://doi.org/10.1175/BAMS-D-12-00117.1, 2013. a
Su, H., Jiang, J. H., Zhai, C., Perun, V. S., Shen, J. T., Genio, A. D.,
Nazarenko, L. S., Donner, L. J., Horowitz, L., Seman, C., Morcrette, C.,
Petch, J., Ringer, M., Cole, J., von Salzen, K., Mesquita, M. d. S., Iversen,
T., Kristjansson, J. E., Gettelman, A., Rotstayn, L., Jeffrey, S., Dufresne,
J.-L., Watanabe, M., Kawai, H., Koshiro, T., Wu, T., Volodin, E. M.,
L'Ecuyer, T., Teixeira, J., and Stephens, G. L.: Diagnosis of
Regime-Dependent Cloud Simulation Errors in CMIP5 Models Using
“A-Train” Satellite Observations and Reanalysis Data, J.
Geophys. Res.-Atmos., 118, 2762–2780,
https://doi.org/10.1029/2012JD018575, 2013. a
Thomas, M. A., Devasthale, A., Koenigk, T., Wyser, K., Roberts, M., Roberts, C., and Lohmann, K.: A statistical and process-oriented evaluation of cloud radiative effects in high-resolution global models, Geosci. Model Dev., 12, 1679–1702, https://doi.org/10.5194/gmd-12-1679-2019, 2019. a, b
Timmermann, A., An, S.-I., Kug, J.-S., Jin, F.-F., Cai, W., Capotondi, A.,
Cobb, K. M., Lengaigne, M., McPhaden, M. J., Stuecker, M. F., Stein, K.,
Wittenberg, A. T., Yun, K.-S., Bayr, T., Chen, H.-C., Chikamoto, Y., Dewitte,
B., Dommenget, D., Grothe, P., Guilyardi, E., Ham, Y.-G., Hayashi, M.,
Ineson, S., Kang, D., Kim, S., Kim, W., Lee, J.-Y., Li, T., Luo, J.-J.,
McGregor, S., Planton, Y., Power, S., Rashid, H., Ren, H.-L., Santoso, A.,
Takahashi, K., Todd, A., Wang, G., Wang, G., Xie, R., Yang, W.-H., Yeh,
S.-W., Yoon, J., Zeller, E., and Zhang, X.: El
Niño–Southern Oscillation Complexity, Nature, 559, 535–545,
https://doi.org/10.1038/s41586-018-0252-6, 2018. a
Voigt, A., Albern, N., and Papavasileiou, G.: The Atmospheric Pathway of
the Cloud-Radiative Impact on the Circulation Response to
Global Warming: Important and Uncertain, J. Climate, 32,
3051–3067, https://doi.org/10.1175/JCLI-D-18-0810.1, 2019. a
Wang, H. and Su, W.: Evaluating and Understanding Top of the Atmosphere Cloud
Radiative Effects in Intergovernmental Panel on Climate Change
(IPCC) Fifth Assessment Report (AR5) Coupled Model
Intercomparison Project Phase 5 (CMIP5) Models Using Satellite
Observations, J. Geophys. Res.-Atmos., 118, 683–699,
https://doi.org/10.1029/2012JD018619, 2013. a
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z., Hunt,
W. H., and Young, S. A.: Overview of the CALIPSO Mission and CALIOP
Data Processing Algorithms, J. Atmos. Ocean. Tech.,
26, 2310–2323, https://doi.org/10.1175/2009JTECHA1281.1, 2009. a
Wood, R.: Stratocumulus Clouds, Mon. Weather Rev., 140, 2373–2423,
https://doi.org/10.1175/MWR-D-11-00121.1, 2012. a, b
Zelinka, M. D., Grise, K. M., Klein, S. A., Zhou, C., DeAngelis, A. M., and
Christensen, M. W.: Drivers of the Low-Cloud Response to Poleward
Jet Shifts in the North Pacific in Observations and Models,
J. Climate, 31, 7925–7947, https://doi.org/10.1175/JCLI-D-18-0114.1, 2018. a
Short summary
Understanding the coupling of clouds to large-scale circulation is a grand challenge for the climate community. Cloud radiative heating (CRH) is a key parameter in this coupling and is therefore essential to model realistically. We, therefore, evaluate a climate model against satellite observations. Our findings indicate good agreement in the seasonal pattern of CRH even if the magnitude differs. We also find that increasing the horizontal resolution in the model has little effect on the CRH.
Understanding the coupling of clouds to large-scale circulation is a grand challenge for the...