Articles | Volume 14, issue 6
https://doi.org/10.5194/gmd-14-4035-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-4035-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A climatology of tropical wind shear produced by clustering wind profiles from the Met Office Unified Model (GA7.0)
Mark R. Muetzelfeldt
CORRESPONDING AUTHOR
Department of Meteorology, University of Reading, Reading, UK
National Centre for Atmospheric Science, University of Reading, Reading, UK
Robert S. Plant
Department of Meteorology, University of Reading, Reading, UK
Peter A. Clark
Department of Meteorology, University of Reading, Reading, UK
Alison J. Stirling
Met Office, Exeter, UK
Steven J. Woolnough
Department of Meteorology, University of Reading, Reading, UK
National Centre for Atmospheric Science, University of Reading, Reading, UK
Related authors
Mark R. Muetzelfeldt, Reinhard Schiemann, Andrew G. Turner, Nicholas P. Klingaman, Pier Luigi Vidale, and Malcolm J. Roberts
Hydrol. Earth Syst. Sci., 25, 6381–6405, https://doi.org/10.5194/hess-25-6381-2021, https://doi.org/10.5194/hess-25-6381-2021, 2021
Short summary
Short summary
Simulating East Asian Summer Monsoon (EASM) rainfall poses many challenges because of its multi-scale nature. We evaluate three setups of a 14 km global climate model against observations to see if they improve simulated rainfall. We do this over catchment basins of different sizes to estimate how model performance depends on spatial scale. Using explicit convection improves rainfall diurnal cycle, yet more model tuning is needed to improve mean and intensity biases in simulated summer rainfall.
Emma Howard, Steven Woolnough, Nicholas Klingaman, Daniel Shipley, Claudio Sanchez, Simon C. Peatman, Cathryn E. Birch, and Adrian J. Matthews
Geosci. Model Dev., 17, 3815–3837, https://doi.org/10.5194/gmd-17-3815-2024, https://doi.org/10.5194/gmd-17-3815-2024, 2024
Short summary
Short summary
This paper describes a coupled atmosphere–mixed-layer ocean simulation setup that will be used to study weather processes in Southeast Asia. The set-up has been used to compare high-resolution simulations, which are able to partially resolve storms, to coarser simulations, which cannot. We compare the model performance at representing variability of rainfall and sea surface temperatures across length scales between the coarse and fine models.
Mark R. Muetzelfeldt, Reinhard Schiemann, Andrew G. Turner, Nicholas P. Klingaman, Pier Luigi Vidale, and Malcolm J. Roberts
Hydrol. Earth Syst. Sci., 25, 6381–6405, https://doi.org/10.5194/hess-25-6381-2021, https://doi.org/10.5194/hess-25-6381-2021, 2021
Short summary
Short summary
Simulating East Asian Summer Monsoon (EASM) rainfall poses many challenges because of its multi-scale nature. We evaluate three setups of a 14 km global climate model against observations to see if they improve simulated rainfall. We do this over catchment basins of different sizes to estimate how model performance depends on spatial scale. Using explicit convection improves rainfall diurnal cycle, yet more model tuning is needed to improve mean and intensity biases in simulated summer rainfall.
Cited articles
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak,
J. E., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A.,
Susskind, J., Arkin, P., and Nelkin, E.: The Version-2 Global Precipitation
Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present),
J. Hydrometeorol., 4, 1147–1167,
https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2, 2003. a
Aiyyer, A. R. and Thorncroft, C.: Climatology of Vertical Wind Shear over the
Tropical Atlantic, J. Climate, 19, 2969–2983,
https://doi.org/10.1175/JCLI3685.1, 2006. a
Alexander, G. D. and Cotton, W. R.: The Use of Cloud-Resolving Simulations of
Mesoscale Convective Systems to Build a Mesoscale Parameterization Scheme,
J. Atmos. Sci., 55, 2137–2161,
https://doi.org/10.1175/1520-0469(1998)055<2137:TUOCRS>2.0.CO;2, 1998. a, b
Barnes, G. M. and Sieckman, K.: The Environment of Fast- and Slow-Moving
Tropical Mesoscale Convective Cloud Lines, Mon. Weather Rev., 112,
1782–1794, https://doi.org/10.1175/1520-0493(1984)112<1782:TEOFAS>2.0.CO;2, 1984. a, b
Bush, S. J., Turner, A. G., Woolnough, S. J., Martin, G. M., and Klingaman,
N. P.: The effect of increased convective entrainment on Asian monsoon biases
in the MetUM general circulation model, Q. J. Roy.
Meteor. Soc., 141, 311–326, https://doi.org/10.1002/qj.2371, 2015. a, b
Chen, B., Liu, C., and Mapes, B. E.: Relationships between large precipitating systems and atmospheric factors at a grid scale, J. Atmos.
Sci., 74, 531–552, https://doi.org/10.1175/JAS-D-16-0049.1, 2017. a, b
Chen, C.-C., Richter, J. H., Liu, C., Moncrieff, M. W., Tang, Q., Lin, W., Xie, S., and Rasch, P. J.: Effects of organized convection parameterization on the MJO and precipitation in E3SMv1. Part I: Mesoscale heating, J. Adv. Model. Earth Sy., 13, e2020MS002401, https://doi.org/10.1029/2020MS002401, 2021. a
Chen, Q., Fan, J., Hagos, S., Gustafson Jr., W. I., and Berg, L. K.: Roles of
wind shear at different vertical levels: Cloud system organization and
properties, J. Geophys. Res.-Atmos., 120, 6551–6574,
https://doi.org/10.1002/2015JD023253, 2015. a
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J.,
Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P.,
Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman,
P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri,
M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L.,
Woodruff, S. D., and Worley, S. J.: The Twentieth Century Reanalysis Project,
Q. J. Roy. Meteor. Soc., 137, 1–28,
https://doi.org/10.1002/qj.776, 2011. a
Donner, L. J.: A Cumulus Parameterization Including Mass Fluxes, Vertical
Momentum Dynamics, and Mesoscale Effects, J. Atmos.
Sci., 50, 889–906,
https://doi.org/10.1175/1520-0469(1993)050<0889:ACPIMF>2.0.CO;2, 1993. a, b
Fritsch, J. M. and Forbes, G. S.: Mesoscale Convective Systems, in: Severe
Convective Storms, edited by: Doswell, C. A., American
Meteorological Society, Boston, Massachusetts, United States of America, 323–357,
https://doi.org/10.1007/978-1-935704-06-5_9, 2001. a
Grant, L. D., Lane, T. P., and van den Heever, S. C.: The role of cold pools in tropical oceanic convective systems, J. Atmos. Sci., 75, 2615–2634, https://doi.org/10.1175/JAS-D-17-0352.1, 2018. a
Grant, L. D., Moncrieff, M. W., Lane, T. P., and van den Heever, S. C.:
Shear-parallel tropical convective systems: Importance of cold pools and wind
shear, Geophys. Res. Lett., 47, e2020GL087720,
https://doi.org/10.1029/2020GL087720, 2020. a
Gray, M. E. B.: Characteristics of Numerically Simulated Mesoscale Convective
Systems and Their Application to Parameterization, J. Atmos.
Sci., 57, 3953–3970, https://doi.org/10.1175/1520-0469(2001)058<3953:CONSMC>2.0.CO;2, 2000. a, b, c
Gregory, D. and Rowntree, P. R.: A Mass Flux Convection Scheme with
Representation of Cloud Ensemble Characteristics and Stability-Dependent
Closure, Mon. Weather Rev., 118, 1483–1506,
https://doi.org/10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2, 1990. a
Hoffman, F. M., Hargrove Jr., W. W., Erickson III, D. J., and Oglesby, R. J.:
Using Clustered Climate Regimes to Analyze and Compare Predictions from Fully
Coupled General Circulation Models, Earth Interactions, 9, 1–27,
https://doi.org/10.1175/EI110.1, 2005. a
Houchi, K., Stoffelen, A., Marseille, G. J., and De Kloe, J.: Comparison of
wind and wind shear climatologies derived from high-resolution radiosondes
and the ECMWF model, J. Geophys. Res.-Atmos., 115,
D22123, https://doi.org/10.1029/2009JD013196, 2010. a
Houze Jr., R. A.: Structure and Dynamics of a Tropical Squall-Line System,
Mon. Weather Rev., 105, 1540–1567,
https://doi.org/10.1175/1520-0493(1977)105<1540:SADOAT>2.0.CO;2, 1977. a
Houze Jr., R. A.: Mesoscale convective systems, Rev. Geophys., 42,
RG4003, https://doi.org/10.1029/2004RG000150, 2004. a
Houze Jr., R. A.: 100 years of research on mesoscale convective systems,
Meteor. Mon., 59, 17.1–17.54, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0001.1, 2018. a
Huang, X., Hu, C., Huang, X., Chu, Y., Tseng, Y.-H., Zhang, G. J., and Lin, Y.: A long-term tropical mesoscale convective systems dataset based on a novel objective automatic tracking algorithm, Clim. Dynam., 51, 3145–3159,
https://doi.org/10.1007/s00382-018-4071-0, 2018. a, b, c, d
Jorgensen, D. P., LeMone, M. A., and Trier, S. B.: Structure and Evolution of
the 22 February 1993 TOGA COARE Squall Line: Aircraft Observations of
Precipitation, Circulation, and Surface Energy Fluxes, J.
Atmos. Sci., 54, 1961–1985, https://doi.org/10.1175/1520-0469(1997)054<1961:SAEOTF>2.0.CO;2, 1997. a
Lafore, J.-P. and Moncrieff, M. W.: A numerical investigation of the
organization and interaction of the convective and stratiform regions of
tropical squall lines, J. Atmos. Sci., 46, 521–544,
https://doi.org/10.1175/1520-0469(1989)046<0521:ANIOTO>2.0.CO;2, 1989. a, b
Laing, A. G. and Fritsch, J. M.: The global population of mesoscale convective complexes, Q. J. Roy. Meteor. Soc., 123,
389–405, https://doi.org/10.1002/qj.49712353807, 1997. a
Leary, C. A. and Houze Jr., R. A.: The Contribution of Mesoscale Motions to the Mass and Heat Fluxes of an Intense Tropical Convective System, J.
Atmos. Sci., 37, 784–796,
https://doi.org/10.1175/1520-0469(1980)037%3C0784:TCOMMT%3E2.0.CO;2, 1980. a
LeMone, M. A., Zipser, E. J., and Trier, S. B.: The Role of Environmental Shear and Thermodynamic Conditions in Determining the Structure and Evolution of Mesoscale Convective Systems during TOGA COARE, J. Atmos.
Sci., 55, 3493–3518,
https://doi.org/10.1175/1520-0469(1998)055<3493:TROESA>2.0.CO;2, 1998. a, b, c, d, e, f, g, h, i
Lloyd, S.: Least squares quantization in PCM, IEEE T. Inform. Theory, 28, 129–137, https://doi.org/10.1109/TIT.1982.1056489, 1982. a
Mapes, B. E. and Neale, R. B.: Parameterizing convective organization to escape the entrainment dilemma, J. Adv. Model. Earth Sy., 3, M06004, https://doi.org/10.1029/2011MS000042, 2011. a, b
Mohr, K. I. and Zipser, E. J.: Mesoscale Convective Systems Defined by Their
85-GHz Ice Scattering Signature: Size and Intensity Comparison over Tropical
Oceans and Continents, Mon. Weather Rev., 124, 2417–2437,
https://doi.org/10.1175/1520-0493(1996)124<2417:MCSDBT>2.0.CO;2, 1996. a, b, c, d, e, f, g, h, i, j
Moncrieff, M. W.: Organized convective systems: Archetypal dynamical models,
mass and momentum flux theory, and parametrization, Q. J.
Roy. Meteor. Soc., 118, 819–850, https://doi.org/10.1002/qj.49711850703, 1992. a, b
Moncrieff, M. W. and Miller, M. J.: The dynamics and simulation of tropical
cumulonimbus and squall lines, Q. J. Roy. Meteor.
Soc., 102, 373–394, https://doi.org/10.1002/qj.49710243208, 1976. a, b, c
Moncrieff, M. W., Liu, C., and Bogenschutz, P.: Simulation, modeling, and
dynamically based parameterization of organized tropical convection for
global climate models, J. Atmos. Sci., 74, 1363–1380,
https://doi.org/10.1175/JAS-D-16-0166.1, 2017. a, b, c, d
Muetzelfeldt, M. R.: Climatology of shear: UM10.9 GA7.0 output data 19880901-19930601, figshare [data set], available at: https://doi.org/10.6084/m9.figshare.7831574, 2020. a
Muetzelfeldt, M. R.: COSAR analysis, GitHub [code], available at: https://github.com/markmuetz/cosar_analysis, last access: 24 June 2021a. a
Muetzelfeldt, M. R.: omnium – Output Management for UM, GitHub [code], available at: https://github.com/markmuetz/omnium, last access: 24 June 2021b. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python, J. Mach. Learn.
Res., 12, 2825–2830, 2011. a
Poli, P., Hersbach, H., Dee, D. P., Berrisford, P., Simmons, A. J., Vitart, F., Laloyaux, P., Tan, D. G. H., Peubey, C., Thépaut, J.-N., Trémolet, Y.,
Hólm, E. V., Bonavita, M., Isaksen, L., and Fisher, M.: ERA-20C: An
Atmospheric Reanalysis of the Twentieth Century, J. Climate, 29,
4083–4097, https://doi.org/10.1175/JCLI-D-15-0556.1, 2016. a
Robe, F. R. and Emanuel, K. A.: The Effect of Vertical Wind Shear on
Radiative–Convective Equilibrium States, J. Atmos.
Sci., 58, 1427–1445,
https://doi.org/10.1175/1520-0469(2001)058<1427:TEOVWS>2.0.CO;2, 2001. a, b
Rotunno, R., Klemp, J. B., and Weisman, M. L.: A Theory for Strong, Long-Lived Squall Lines, J. Atmos. Sci., 45, 463–485,
https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2, 1988. a, b
Tan, J., Jakob, C., Rossow, W. B., and Tselioudis, G.: Increases in tropical
rainfall driven by changes in frequency of organized deep convection, Nature,
519, 451–454, https://doi.org/10.1038/nature14339, 2015. a, b, c
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019. a
Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, 3rd edn., 676 pp., Academic Press, Elsevier, 2011. a
Williams, K. D., Copsey, D., Blockley, E. W., Bodas-Salcedo, A., Calvert, D.,
Comer, R., Davis, P., Graham, T., Hewitt, H. T., Hill, R., Hyder, P., Ineson, S., Johns, T. C., Keen, A. B., Lee, R. W., Megann, A., Milton, S. F., Rae, J. G. L., Roberts, M. J., Scaife, A. A., Schiemann, R., Storkey, D., Thorpe, L., Watterson, I. G., Walters, D. N., West, A., Wood, R. A., Woollings, T., and Xavier, P. K.: The Met
Office global coupled model 3.0 and 3.1 (GC3.0 and GC3.1) configurations,
J. Adv. Model. Earth Sy., 10, 357–380, https://doi.org/10.1002/2017MS001115, 2017. a
Yanai, M., Esbensen, S., and Chu, J.-H.: Determination of Bulk Properties of
Tropical Cloud Clusters from Large-Scale Heat and Moisture Budgets, J. Atmos. Sci., 30, 611–627,
https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2, 1973. a
Short summary
Wind shear causes organized convection in the tropics, producing, e.g., squall lines. We have developed a procedure for producing a climatology of sheared wind profiles in a climate model and demonstrated that the profiles are linked with organized convection, both in terms of their structure and their spatio-temporal distribution. The procedure could be used to diagnose organization of convection in a climate model, which could lead to improvements in the model's representation of convection.
Wind shear causes organized convection in the tropics, producing, e.g., squall lines. We have...