Articles | Volume 14, issue 6
https://doi.org/10.5194/gmd-14-3813-2021
https://doi.org/10.5194/gmd-14-3813-2021
Development and technical paper
 | 
24 Jun 2021
Development and technical paper |  | 24 Jun 2021

Effects of heterogeneous reactions on tropospheric chemistry: a global simulation with the chemistry–climate model CHASER V4.0

Phuc T. M. Ha, Ryoki Matsuda, Yugo Kanaya, Fumikazu Taketani, and Kengo Sudo

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Phuc Ha on behalf of the Authors (18 May 2021)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (24 May 2021) by Gerd A. Folberth
AR by Phuc Ha on behalf of the Authors (25 May 2021)
Download
Short summary
Policies to mitigate air pollution require an understanding of tropospheric oxidizing capacity, which is controlled by mechanisms including heterogeneous processes on aerosols and clouds. This study uses a chemistry–climate model CHASER (MIROC) to explore the heterogeneous effects in the troposphere for -2.96 % O3, -2.19 % NOx, +3.28 % CO, and +5.91 % CH4 lifetime. Besides, these processes affect polluted areas and remote areas and can bring challenges to pollution reduction efforts.