Articles | Volume 14, issue 6
https://doi.org/10.5194/gmd-14-3473-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-3473-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
OpenIFS@home version 1: a citizen science project for ensemble weather and climate forecasting
Sarah Sparrow
CORRESPONDING AUTHOR
Oxford e-Research Centre, Engineering Science, University of Oxford, Oxford, UK
Andrew Bowery
Oxford e-Research Centre, Engineering Science, University of Oxford, Oxford, UK
Glenn D. Carver
European Centre for Medium-Range Weather Forecasts (ECMWF), Reading,
UK
Marcus O. Köhler
European Centre for Medium-Range Weather Forecasts (ECMWF), Reading,
UK
Pirkka Ollinaho
Finnish Meteorological Institute (FMI), Helsinki, Finland
Florian Pappenberger
European Centre for Medium-Range Weather Forecasts (ECMWF), Reading,
UK
David Wallom
Oxford e-Research Centre, Engineering Science, University of Oxford, Oxford, UK
Antje Weisheimer
European Centre for Medium-Range Weather Forecasts (ECMWF), Reading,
UK
National Centre for Atmospheric Science (NCAS), Physics department, University of Oxford, Oxford, UK
Related authors
Yona Silvy, Thomas L. Frölicher, Jens Terhaar, Fortunat Joos, Friedrich A. Burger, Fabrice Lacroix, Myles Allen, Raffaele Bernardello, Laurent Bopp, Victor Brovkin, Jonathan R. Buzan, Patricia Cadule, Martin Dix, John Dunne, Pierre Friedlingstein, Goran Georgievski, Tomohiro Hajima, Stuart Jenkins, Michio Kawamiya, Nancy Y. Kiang, Vladimir Lapin, Donghyun Lee, Paul Lerner, Nadine Mengis, Estela A. Monteiro, David Paynter, Glen P. Peters, Anastasia Romanou, Jörg Schwinger, Sarah Sparrow, Eric Stofferahn, Jerry Tjiputra, Etienne Tourigny, and Tilo Ziehn
Earth Syst. Dynam., 15, 1591–1628, https://doi.org/10.5194/esd-15-1591-2024, https://doi.org/10.5194/esd-15-1591-2024, 2024
Short summary
Short summary
The adaptive emission reduction approach is applied with Earth system models to generate temperature stabilization simulations. These simulations provide compatible emission pathways and budgets for a given warming level, uncovering uncertainty ranges previously missing in the Coupled Model Intercomparison Project scenarios. These target-based emission-driven simulations offer a more coherent assessment across models for studying both the carbon cycle and its impacts under climate stabilization.
Ruksana H. Rimi, Karsten Haustein, Emily J. Barbour, Sarah N. Sparrow, Sihan Li, David C. H. Wallom, and Myles R. Allen
Hydrol. Earth Syst. Sci., 26, 5737–5756, https://doi.org/10.5194/hess-26-5737-2022, https://doi.org/10.5194/hess-26-5737-2022, 2022
Short summary
Short summary
Extreme rainfall events are major concerns in Bangladesh. Heavy downpours can cause flash floods and damage nearly harvestable crops in pre-monsoon season. While in monsoon season, the impacts can range from widespread agricultural loss, huge property damage, to loss of lives and livelihoods. This paper assesses the role of anthropogenic climate change drivers in changing risks of extreme rainfall events during pre-monsoon and monsoon seasons at local sub-regional-scale within Bangladesh.
Geert Jan van Oldenborgh, Folmer Krikken, Sophie Lewis, Nicholas J. Leach, Flavio Lehner, Kate R. Saunders, Michiel van Weele, Karsten Haustein, Sihan Li, David Wallom, Sarah Sparrow, Julie Arrighi, Roop K. Singh, Maarten K. van Aalst, Sjoukje Y. Philip, Robert Vautard, and Friederike E. L. Otto
Nat. Hazards Earth Syst. Sci., 21, 941–960, https://doi.org/10.5194/nhess-21-941-2021, https://doi.org/10.5194/nhess-21-941-2021, 2021
Short summary
Short summary
Southeastern Australia suffered from disastrous bushfires during the 2019/20 fire season, raising the question whether these have become more likely due to climate change. We found no attributable trend in extreme annual or monthly low precipitation but a clear shift towards more extreme heat. However, this shift is underestimated by the models. Analysing fire weather directly, we found that the chance has increased by at least 30 %, but due to the underestimation it could well be higher.
Marieke Wesselkamp, Matthew Chantry, Ewan Pinnington, Margarita Choulga, Souhail Boussetta, Maria Kalweit, Joschka Bödecker, Carsten F. Dormann, Florian Pappenberger, and Gianpaolo Balsamo
Geosci. Model Dev., 18, 921–937, https://doi.org/10.5194/gmd-18-921-2025, https://doi.org/10.5194/gmd-18-921-2025, 2025
Short summary
Short summary
We compared spatiotemporal forecasts of three machine learning models that learned water and energy
states on the land surface from a physical model scheme. The forecasting models were developed with reanalysis data and simulations on a European scale and transferred to the globe. We found that all approaches deliver highly accurate approximations of the physical dynamic at long time horizons, implying their usefulness to advance land surface forecasting with synthetic data.
states on the land surface from a physical model scheme. The forecasting models were developed with reanalysis data and simulations on a European scale and transferred to the globe. We found that all approaches deliver highly accurate approximations of the physical dynamic at long time horizons, implying their usefulness to advance land surface forecasting with synthetic data.
Ather Abbas, Yuan Yang, Ming Pan, Yves Tramblay, Chaopeng Shen, Haoyu Ji, Solomon H. Gebrechorkos, Florian Pappenberger, Jong Cheol Pyo, Dapeng Feng, George Huffman, Phu Nguyen, Christian Massari, Luca Brocca, Tan Jackson, and Hylke E. Beck
EGUsphere, https://doi.org/10.5194/egusphere-2024-4194, https://doi.org/10.5194/egusphere-2024-4194, 2025
Short summary
Short summary
Our study evaluated 23 precipitation datasets using a hydrological model at global scale to assess their suitability and accuracy. We found that MSWEP V2.8 excels due to its ability to integrate data from multiple sources, while others, such as IMERG and JRA-3Q, demonstrated strong regional performances. This research assists in selecting the appropriate dataset for applications in water resource management, hazard assessment, agriculture, and environmental monitoring.
Yona Silvy, Thomas L. Frölicher, Jens Terhaar, Fortunat Joos, Friedrich A. Burger, Fabrice Lacroix, Myles Allen, Raffaele Bernardello, Laurent Bopp, Victor Brovkin, Jonathan R. Buzan, Patricia Cadule, Martin Dix, John Dunne, Pierre Friedlingstein, Goran Georgievski, Tomohiro Hajima, Stuart Jenkins, Michio Kawamiya, Nancy Y. Kiang, Vladimir Lapin, Donghyun Lee, Paul Lerner, Nadine Mengis, Estela A. Monteiro, David Paynter, Glen P. Peters, Anastasia Romanou, Jörg Schwinger, Sarah Sparrow, Eric Stofferahn, Jerry Tjiputra, Etienne Tourigny, and Tilo Ziehn
Earth Syst. Dynam., 15, 1591–1628, https://doi.org/10.5194/esd-15-1591-2024, https://doi.org/10.5194/esd-15-1591-2024, 2024
Short summary
Short summary
The adaptive emission reduction approach is applied with Earth system models to generate temperature stabilization simulations. These simulations provide compatible emission pathways and budgets for a given warming level, uncovering uncertainty ranges previously missing in the Coupled Model Intercomparison Project scenarios. These target-based emission-driven simulations offer a more coherent assessment across models for studying both the carbon cycle and its impacts under climate stabilization.
Giorgia Di Capua, Dim Coumou, Bart van den Hurk, Antje Weisheimer, Andrew G. Turner, and Reik V. Donner
Weather Clim. Dynam., 4, 701–723, https://doi.org/10.5194/wcd-4-701-2023, https://doi.org/10.5194/wcd-4-701-2023, 2023
Short summary
Short summary
Heavy rainfall in tropical regions interacts with mid-latitude circulation patterns, and this interaction can explain weather patterns in the Northern Hemisphere during summer. In this analysis we detect these tropical–extratropical interaction pattern both in observational datasets and data obtained by atmospheric models and assess how well atmospheric models can reproduce the observed patterns. We find a good agreement although these relationships are weaker in model data.
Ruksana H. Rimi, Karsten Haustein, Emily J. Barbour, Sarah N. Sparrow, Sihan Li, David C. H. Wallom, and Myles R. Allen
Hydrol. Earth Syst. Sci., 26, 5737–5756, https://doi.org/10.5194/hess-26-5737-2022, https://doi.org/10.5194/hess-26-5737-2022, 2022
Short summary
Short summary
Extreme rainfall events are major concerns in Bangladesh. Heavy downpours can cause flash floods and damage nearly harvestable crops in pre-monsoon season. While in monsoon season, the impacts can range from widespread agricultural loss, huge property damage, to loss of lives and livelihoods. This paper assesses the role of anthropogenic climate change drivers in changing risks of extreme rainfall events during pre-monsoon and monsoon seasons at local sub-regional-scale within Bangladesh.
Kieran M. R. Hunt, Gwyneth R. Matthews, Florian Pappenberger, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 26, 5449–5472, https://doi.org/10.5194/hess-26-5449-2022, https://doi.org/10.5194/hess-26-5449-2022, 2022
Short summary
Short summary
In this study, we use three models to forecast river streamflow operationally for 13 months (September 2020 to October 2021) at 10 gauges in the western US. The first model is a state-of-the-art physics-based streamflow model (GloFAS). The second applies a bias-correction technique to GloFAS. The third is a type of neural network (an LSTM). We find that all three are capable of producing skilful forecasts but that the LSTM performs the best, with skilful 5 d forecasts at nine stations.
Vincent Huijnen, Philippe Le Sager, Marcus O. Köhler, Glenn Carver, Samuel Rémy, Johannes Flemming, Simon Chabrillat, Quentin Errera, and Twan van Noije
Geosci. Model Dev., 15, 6221–6241, https://doi.org/10.5194/gmd-15-6221-2022, https://doi.org/10.5194/gmd-15-6221-2022, 2022
Short summary
Short summary
We report on the first implementation of atmospheric chemistry and aerosol as part of the OpenIFS model, based on the CAMS global model. We give an overview of the model and evaluate two reference model configurations, with and without the stratospheric chemistry extension, against a variety of observational datasets. This OpenIFS version with atmospheric composition components is open to the scientific user community under a standard OpenIFS license.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Beatriz M. Monge-Sanz, Alessio Bozzo, Nicholas Byrne, Martyn P. Chipperfield, Michail Diamantakis, Johannes Flemming, Lesley J. Gray, Robin J. Hogan, Luke Jones, Linus Magnusson, Inna Polichtchouk, Theodore G. Shepherd, Nils Wedi, and Antje Weisheimer
Atmos. Chem. Phys., 22, 4277–4302, https://doi.org/10.5194/acp-22-4277-2022, https://doi.org/10.5194/acp-22-4277-2022, 2022
Short summary
Short summary
The stratosphere is emerging as one of the keys to improve tropospheric weather and climate predictions. This study provides evidence of the role the stratospheric ozone layer plays in improving weather predictions at different timescales. Using a new ozone modelling approach suitable for high-resolution global models that provide operational forecasts from days to seasons, we find significant improvements in stratospheric meteorological fields and stratosphere–troposphere coupling.
Xavier Yepes-Arbós, Gijs van den Oord, Mario C. Acosta, and Glenn D. Carver
Geosci. Model Dev., 15, 379–394, https://doi.org/10.5194/gmd-15-379-2022, https://doi.org/10.5194/gmd-15-379-2022, 2022
Short summary
Short summary
Climate prediction models produce a large volume of simulated data that sometimes might not be efficiently managed. In this paper we present an approach to address this issue by reducing the computing time and storage space. As a case study, we analyse the output writing process of the ECMWF atmospheric model called IFS, and we integrate into it a data writing tool called XIOS. The results suggest that the integration between the two components achieves an adequate computational performance.
Martin Wegmann, Yvan Orsolini, Antje Weisheimer, Bart van den Hurk, and Gerrit Lohmann
Weather Clim. Dynam., 2, 1245–1261, https://doi.org/10.5194/wcd-2-1245-2021, https://doi.org/10.5194/wcd-2-1245-2021, 2021
Short summary
Short summary
Northern Hemisphere winter weather is influenced by the strength of westerly winds 30 km above the surface, the so-called polar vortex. Eurasian autumn snow cover is thought to modulate the polar vortex. So far, however, the modeled influence of snow on the polar vortex did not fit the observed influence. By analyzing a model experiment for the time span of 110 years, we could show that the causality of this impact is indeed sound and snow cover can weaken the polar vortex.
Twan van Noije, Tommi Bergman, Philippe Le Sager, Declan O'Donnell, Risto Makkonen, María Gonçalves-Ageitos, Ralf Döscher, Uwe Fladrich, Jost von Hardenberg, Jukka-Pekka Keskinen, Hannele Korhonen, Anton Laakso, Stelios Myriokefalitakis, Pirkka Ollinaho, Carlos Pérez García-Pando, Thomas Reerink, Roland Schrödner, Klaus Wyser, and Shuting Yang
Geosci. Model Dev., 14, 5637–5668, https://doi.org/10.5194/gmd-14-5637-2021, https://doi.org/10.5194/gmd-14-5637-2021, 2021
Short summary
Short summary
This paper documents the global climate model EC-Earth3-AerChem, one of the members of the EC-Earth3 family of models participating in CMIP6. We give an overview of the model and describe in detail how it differs from its predecessor and the other EC-Earth3 configurations. The model's performance is characterized using coupled simulations conducted for CMIP6. The model has an effective equilibrium climate sensitivity of 3.9 °C and a transient climate response of 2.1 °C.
Chloe Brimicombe, Claudia Di Napoli, Rosalind Cornforth, Florian Pappenberger, Celia Petty, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-242, https://doi.org/10.5194/nhess-2021-242, 2021
Revised manuscript not accepted
Short summary
Short summary
Heatwaves are an increasing risk to African communities. This hazard can have a negative impact on peoples lives and in some cases results in their death. This study shows new information about heatwave characteristics through a list of heatwave events that have been reported for the African continent from 1980 until 2020. Case studies are useful helps to inform the development of early warning systems and forecasting, which is an urgent priority and needs significant improvement.
Florian Pappenberger, Florence Rabier, and Fabio Venuti
Nat. Hazards Earth Syst. Sci., 21, 2163–2167, https://doi.org/10.5194/nhess-21-2163-2021, https://doi.org/10.5194/nhess-21-2163-2021, 2021
Short summary
Short summary
The European Centre for Medium-Range Weather Forecasts mission is to deliver high-quality global medium‐range (3–15 d ahead of time) weather forecasts and monitoring of the Earth system. We have published a new strategy, and in this paper we discuss what this means for forecasting and monitoring natural hazards.
Pirkka Ollinaho, Glenn D. Carver, Simon T. K. Lang, Lauri Tuppi, Madeleine Ekblom, and Heikki Järvinen
Geosci. Model Dev., 14, 2143–2160, https://doi.org/10.5194/gmd-14-2143-2021, https://doi.org/10.5194/gmd-14-2143-2021, 2021
Short summary
Short summary
OpenEnsemble 1.0 is a novel dataset that aims to open ensemble or probabilistic weather forecasting research up to the academic community. The dataset contains atmospheric states that are required for running model forecasts of atmospheric evolution. Our capacity to observe the atmosphere is limited; thus, a single reconstruction of the atmospheric state contains some errors. Our dataset provides sets of 50 slightly different atmospheric states so that these errors can be taken into account.
Geert Jan van Oldenborgh, Folmer Krikken, Sophie Lewis, Nicholas J. Leach, Flavio Lehner, Kate R. Saunders, Michiel van Weele, Karsten Haustein, Sihan Li, David Wallom, Sarah Sparrow, Julie Arrighi, Roop K. Singh, Maarten K. van Aalst, Sjoukje Y. Philip, Robert Vautard, and Friederike E. L. Otto
Nat. Hazards Earth Syst. Sci., 21, 941–960, https://doi.org/10.5194/nhess-21-941-2021, https://doi.org/10.5194/nhess-21-941-2021, 2021
Short summary
Short summary
Southeastern Australia suffered from disastrous bushfires during the 2019/20 fire season, raising the question whether these have become more likely due to climate change. We found no attributable trend in extreme annual or monthly low precipitation but a clear shift towards more extreme heat. However, this shift is underestimated by the models. Analysing fire weather directly, we found that the chance has increased by at least 30 %, but due to the underestimation it could well be higher.
Lauri Tuppi, Pirkka Ollinaho, Madeleine Ekblom, Vladimir Shemyakin, and Heikki Järvinen
Geosci. Model Dev., 13, 5799–5812, https://doi.org/10.5194/gmd-13-5799-2020, https://doi.org/10.5194/gmd-13-5799-2020, 2020
Short summary
Short summary
This paper presents general guidelines on how to utilise computer algorithms efficiently in order to tune weather models so that they would produce better forecasts. The main conclusions are that the computer algorithms work most efficiently with a suitable cost function, certain forecast length and ensemble size. We expect that our results will facilitate the use of algorithmic methods in the tuning of weather models.
Christopher H. O'Reilly, Daniel J. Befort, and Antje Weisheimer
Earth Syst. Dynam., 11, 1033–1049, https://doi.org/10.5194/esd-11-1033-2020, https://doi.org/10.5194/esd-11-1033-2020, 2020
Short summary
Short summary
This study examines how the output of large single-model ensembles can be calibrated using observational data to provide improved future projections over Europe. Using an out-of-sample
imperfect modeltest, in which calibration techniques are applied to individual climate model realisations, these techniques are shown to generally improve the reliability of European climate projections for the next 40 years, particularly for regional surface temperature.
Cited articles
Allen, M.: Do-it-yourself climate prediction, Nature, 401, 642,
https://doi.org/10.1038/44266, 1999.
Anderson, D. P.: BOINC: A system for public-resource computing and storage,
in: GRID '04: Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing,
4–10, https://doi.org/10.1109/GRID.2004.14, 2004.
Balsamo, G., Viterbo, P., Beijaars, A., van den Hurk, B., Hirschi, M.,
Betts, A. K., and Scipal, K.: A revised hydrology for the ECMWF model:
Verification from field site to terrestrial water storage and impact in the
integrated forecast system, J. Hydrometeorol. 10, 623–643,
https://doi.org/10.1175/2008JHM1068.1, 2009.
Bechtold, P., Köhler, M., Jung, T., Doblas-Reyes, F., Leutbecher, M.,
Rodwell, M. J., Vitart, F., and Balsamo, G.: Advances in simulating
atmospheric variability with the ECMWF model: From synoptic to decadal
time-scales, Q. J. Roy. Meteor. Soc., 134, 1337–1351, https://doi.org/10.1002/qj.289, 2008.
Bechtold, P., Semane, N., Lopez, P., Chaboureau, J. P., Beljaars, A., and
Bormann, N.: Representing equilibrium and nonequilibrium convection in
large-scale models, J. Atmos. Sci., 71, 734–753,
https://doi.org/10.1175/JAS-D-13-0163.1, 2014.
Beljaars, A. C. M., Brown, A. R., and Wood, N.: A new parametrization of
turbulent orographic form drag, Q. J. Roy. Meteor. Soc., 130, 1327–1347, https://doi.org/10.1256/qj.03.73, 2004.
Bowery, A. and Carver, G.: Instructions and code for controlling ECMWF
OpenIFS application in ClimatePrediction.net (CPDN) [code],=, Zenodo, https://doi.org/10.5281/zenodo.3999557, 2020.
Buizza, R., Milleer, M., and Palmer, T. N.: Stochastic representation of
model uncertainties in the ECMWF ensemble prediction system, Q. J. Roy. Meteor. Soc., 125, 2887–2908,
https://doi.org/10.1002/qj.49712556006, 2007.
Buizza, R., Leutbecher, M., and Isaksen, L.: Potential use of an ensemble of
analyses in the ECMWF Ensemble Prediction System, Q. J. Roy. Meteor. Soc., 134, 2051–2066, https://doi.org/10.1002/qj.346,
2008.
Christensen, C., Aina, T., and Stainforth, D.: The challenge of volunteer
computing with lengthy climate model simulations, Proceedings of the 1st
IEEE Conference on e-Science and Grid Computing, Melbourne, Australia, 5–8 December 2005.
ClimatePrediction.net: OpenIFS@home dashboard, available at: https://dev.cpdn.org/oifs_dashboard.php (last access: 29 June
2020), 2019.
Daventry, M.: Climate Now | Five ways you can become a citizen scientist and help
save the planet, EuroNews, available at: https://www.euronews.com/2020/12/17/climate-now-how-to-become-a-citizen-scientist-and-help-
save-the-planet (last access: 25 January 2021), 2020.
ECMWF: IFS Documentation CY40R1 – Part III: Dynamics and Numerical
Procedures, ECMWF, https://doi.org/10.21957/khi5o80, 2014a.
ECMWF: IFS Documentation CY40R1 – Part IV: Physical Processes,
ECMWF, https://doi.org/10.21957/f56vvey1x, 2014b.
ECMWF: IFS Documentation CY40R1 – Part VI: Technical and
computational procedures, ECMWF, https://doi.org/10.21957/l9d0p4edi, 2014c.
ECMWF: IFS Documentation CY40R1 – Part VII: ECMWF Wave Model,
ECMWF, https://doi.org/10.21957/jp6ffnj, 2014d.
ECMWF: ECMWF GitHub repository, available at: https://github.com/ecmwf, last access: 1 June 2021,
Euler, C., Riemer, M., Kremer, T., and Schömer, E.: Lagrangian
description of air masses associated with latent heat release in tropical
Storm Karl (2016) during extratropical transition, Mon. Weather Rev.,
147, 2657–2676, https://doi.org/10.1175/MWR-D-18-0422.1, 2019.
Forbes, R. and Tompkins, A.: An improved representation of cloud and
precipitation, ECMWF Newsletter No. 129, 13–18, https://doi.org/10.21957/nfgulzhe,
2011.
Forbes, R. M., Tompkins, A. M., and Untch, A.: A new prognostic bulk
microphysics scheme for the IFS, ECMWF Technical Memorandum No. 649, 22 pp.,
https://doi.org/10.21957/bf6vjvxk, 2011.
Fountain, H.: Looking, quickly, for the fingerprints of climate change, available at:
https://www.nytimes.com/2016/08/02/science/looking-quickly-for-the-fingerprints-of-climate-change.html (last access: 25 January 2021), 2016.
Harr, P. A., Anwender, D., and Jones, S. C.: Predictability associated with
the downstream impacts of the extratropical transition of tropical cyclones:
Methodology and a case study of typhoon Nabi (2005), Mon. Weather Rev.,
136, 3205–3225, https://doi.org/10.1175/2008MWR2248.1, 2008.
Hawkins, L. R., Rupp, D. E., McNeall, D. J., Li, S., Betts, R. A., Mote, P.
W., Sparrow, S. N., and Wallom, D. C. H.: Parametric Sensitivity of
Vegetation Dynamics in the TRIFFID Model and the Associated Uncertainty in
Projected Climate Change Impacts on Western U.S. Forests, J.
Adv. Model. Earth Sy., 11, 2787–2813,
https://doi.org/10.1029/2018MS001577, 2019.
Hortal, M.: The development and testing of a new two-time-level
semi-Lagrangian scheme (SETTLS) in the ECMWF forecast model, Q. J. Roy. Meteor. Soc., 128, 1671–1687,
https://doi.org/10.1002/qj.200212858314, 2002.
Isaksen, L., Bonavita, M., Buizza, R., Fisher, M., Haseler, J., Leutbecher, M., and Raynaud, L.: Ensemble of data assimilations at ECMWF, ECMWF Technical
Memoranda No. 636, ECMWF, https://doi.org/10.21957/obke4k60, 2010.
Janssen, P. A. E. M.: The Interaction of Ocean Waves and Wind, Cambridge
University Press, 385 pp., 2004.
Knight, C. G., Knight, S. H. E., Massey, N., Aina, T., Christensen, C.,
Frame, D. J., Kettleborough, J. A., Martin, A., Pascoe, S., Sanderson, B.,
Stainforth, D. A., and Allen, M. R.: Association of parameter, software, and
hardware variation with large-scale behavior across 57,000 climate models,
P. Natl. Acad. Sci. USA, 104, 12259–12264, https://doi.org/10.1073/pnas.0608144104, 2007.
Lang, S. T. K., Bonavita, M., and Leutbecher, M.: On the impact of
re-centring initial conditions for ensemble forecasts, Q. J. Roy. Meteor. Soc., 141, 2571–2581, https://doi.org/10.1002/qj.2543, 2015.
Lang, S., Hólm, E., Bonavita, M., and Tremolet, Y.: A 50-member Ensemble
of Data Assimilations, ECMWF Newsletter No. 158, 27–29, https://doi.org/10.21957/nb251xc4sl, 2019.
Leutbecher, M. and Lang, S. T. K.: On the reliability of ensemble variance
in subspaces defined by singular vectors, Q. J. Roy. Meteor. Soc., 140, 1453–1466, https://doi.org/10.1002/qj.2229, 2014.
Leutbecher, M. and Palmer, T. N.: Ensemble forecasting, J.
Comput. Phys., 227, 3515–3539, https://doi.org/10.1016/j.jcp.2007.02.014,
2008.
Leutbecher, M., Lock, S. J., Ollinaho, P., Lang, S. T. K., Balsamo, G.,
Bechtold, P., Bonavita, M., Christensen, H. M., Diamantakis, M., Dutra, E.,
English, S., Fisher, M., Forbes, R. M., Goddard, J., Haiden, T., Hogan, R.
J., Juricke, S., Lawrence, H., MacLeod, D., Magnusson, L., Malardel, S.,
Massart, S., Sandu, I., Smolarkiewicz, P. K., Subramanian, A., Vitart, F.,
Wedi, N., and Weisheimer, A.: Stochastic representations of model
uncertainties at ECMWF: state of the art and future vision, Q. J. Roy. Meteor. Soc., 143, 2315–2339,
https://doi.org/10.1002/qj.3094, 2017.
Li, S., Rupp, D. E., Hawkins, L., Mote, P. W., McNeall, D., Sparrow, S. N., Wallom, D. C. H., Betts, R. A., and Wettstein, J. J.: Reducing climate model biases by exploring parameter space with large ensembles of climate model simulations and statistical emulation, Geosci. Model Dev., 12, 3017–3043, https://doi.org/10.5194/gmd-12-3017-2019, 2019.
Li, S., Otto, F. E. L., Harrington, L. J., Sparrow, S. N., and Wallom, D. C.
H.: A pan-South-America assessment of avoided exposure to dangerous extreme
precipitation by limiting to 1.5 ∘C warming, Environ.
Res. Lett., 15, 054005, https://doi.org/10.1088/1748-9326/ab50a2, 2020.
Lott, F. and Miller, M. J.: A new subgrid-scale orographic drag
parametrization: Its formulation and testing, Q. J. Roy. Meteor. Soc., 123, 101–127, https://doi.org/10.1002/qj.49712353704,
1997.
Margolis, J.: Gadgets that give back: awesome eco-innovations, from Turing Trust computers
to the first sustainable phone, Financial Times, available at: https://www.ft.com/content/eb1b1636-61d2-4c54-8524-ab92948331ae, last
access: 25 January 2021.
Magnusson, L. and Källén, E.: Factors influencing skill improvements
in the ECMWF forecasting system, Mon. Weather Rev., 141, 3142–3153,
https://doi.org/10.1175/MWR-D-12-00318.1, 2013.
Millar, R. J., Otto, A., Forster, P. M., Lowe, J. A., Ingram, W. J., and
Allen, M. R.: Model structure in observational constraints on transient
climate response, Clim. Change, 131, 199–211,
https://doi.org/10.1007/s10584-015-1384-4, 2015.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S.
A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res.-Atmos., 102, 16663–16682, https://doi.org/10.1029/97jd00237, 1997.
Morcrette, J. J., Barker, H. W., Cole, J. N. S., Iacono, M. J., and Pincus,
R.: Impact of a new radiation package, McRad, in the ECMWF integrated
forecasting system, Mon. Weather Rev., 136, 4773–4798,
https://doi.org/10.1175/2008MWR2363.1, 2008.
Mulholland, D. P., Haines, K., Sparrow, S. N., and Wallom, D.: Climate model
forecast biases assessed with a perturbed physics ensemble, Clim.
Dynam., 49, 1729–1746, https://doi.org/10.1007/s00382-016-3407-x, 2017.
Oregon State University: “weather@home” offers precise new insights into climate change in the West, available at:
https://phys.org/news/2016-06-weatherhome-precise-insights-climate-west.html (last access: 25 January 2021), 2016.
Orr, A., Bechtold, P., Scinocca, J., Ern, M., and Janiskova, M.: Improved
middle atmosphere climate and forecasts in the ECMWF model through a
nonorographic gravity wave drag parameterization, J. Climate,
23, 5905–5926, https://doi.org/10.1175/2010JCLI3490.1, 2010.
Orszag, S. A.: Transform Method for the Calculation of Vector-Coupled Sums:
Application to the Spectral Form of the Vorticity Equation, J.
Atmos. Sci., 27, 890–895,
https://doi.org/10.1175/1520-0469(1970)027<0890:TMFTCO>2.0.CO;2,
1970.
Otto, F. E. L., Massey, N., van Oldenborgh, G. J., Jones, R. G., and Allen,
M. R.: Reconciling two approaches to attribution of the 2010 Russian heat
wave, Geophys. Res. Lett., 39, L04702, https://doi.org/10.1029/2011GL050422, 2012.
Palmer, T. N., Buizza, R., Doblas-Reyes, F., Jung, T., Leutbecher, M.,
Shutts, G. J., Steinheimer, M., and Weisheimer, A.: 598 Stochastic
Parametrization and Model Uncertainty, available at:
http://www.ecmwf.int/publications/ (last access: 22 June 2020), 2009.
Philip, S., Sparrow, S., Kew, S. F., van der Wiel, K., Wanders, N., Singh, R., Hassan, A., Mohammed, K., Javid, H., Haustein, K., Otto, F. E. L., Hirpa, F., Rimi, R. H., Islam, A. K. M. S., Wallom, D. C. H., and van Oldenborgh, G. J.: Attributing the 2017 Bangladesh floods from meteorological and hydrological perspectives, Hydrol. Earth Syst. Sci., 23, 1409–1429, https://doi.org/10.5194/hess-23-1409-2019, 2019.
Ritchie, H., Temperton, C., Simmons, A., Hortal, M., Davies, T., Dent, D.,
and Hamrud, M.: Implementation of the Semi-Lagrangian Method in a
High-Resolution Version of the ECMWF Forecast Model, Mon. Weather Rev.,
123, 489–514, https://doi.org/10.1175/1520-0493(1995)123<0489:IOTSLM>2.0.CO;2, 1995.
Rowlands, D. J., Frame, D. J., Ackerley, D., Aina, T., Booth, B. B. B.,
Christensen, C., Collins, M., Faull, N., Forest, C. E., Grandey, B. S.,
Gryspeerdt, E., Highwood, E. J., Ingram, W. J., Knight, S., Lopez, A.,
Massey, N., McNamara, F., Meinshausen, N., Piani, C., Rosier, S. M.,
Sanderson, B. M., Smith, L. A., Stone, D. A., Thurston, M., Yamazaki, K.,
Hiro Yamazaki, Y., and Allen, M. R.: Broad range of 2050 warming from an
observationally constrained large climate model ensemble, Nat. Geosci.,
5, 256–260, https://doi.org/10.1038/ngeo1430, 2012.
Royal Society for the Protection of Birds (RSPB): Big Garden BirdWatch, available at: https://www.rspb.org.uk/get-involved/activities/birdwatch/, last access: 15 January 2021.
Rupp, D. E., Li, S., Massey, N., Sparrow, S. N., Mote, P. W., and Allen, M.:
Anthropogenic influence on the changing likelihood of an exceptionally warm
summer in Texas, 2011, Geophys. Res. Lett., 42, 2392–2400,
https://doi.org/10.1002/2014GL062683, 2015.
Schäfler, A., Craig, G., Wernli, H., Arbogast, P., Doyle, Ja. D.,
Mctaggart-Cowan, R., Methven, J., Rivière, G., Ament, F., Boettcher, M.,
Bramberger, M., Cazenave, Q., Cotton, R., Crewell, S., Delanoë, J.,
DörnbrAck, A., Ehrlich, A., Ewald, F., Fix, A., Grams, C. M., Gray, S.
L., Grob, H., Groß, S., Hagen, M., Harvey, B., Hirsch, L., JAcob, M.,
Kölling, T., Konow, H., Lemmerz, C., Lux, O., Magnusson, L., Mayer, B.,
Mech, M., Moore, R., Pelon, J., Quinting, J., Rahm, S., Rapp, M.,
Rautenhaus, M., Reitebuch, O., Reynolds, C. A., Sodemann, H., Spengler, T.,
Vaughan, G., Wendisch, M., Wirth, M., Witschas, B., Wolf, K., and Zinner, T.:
The north atlantic waveguide and downstream impact experiment, B. Am. Meteorol. Soc., 99, 1607–1637,
https://doi.org/10.1175/BAMS-D-17-0003.1, 2018.
Schaller, N., Kay, A. L., Lamb, R., Massey, N. R., van Oldenborgh, G. J.,
Otto, F. E. L., Sparrow, S. N., Vautard, R., Yiou, P., Ashpole, I., Bowery,
A., Crooks, S. M., Haustein, K., Huntingford, C., Ingram, W. J., Jones, R.
G., Legg, T., Miller, J., Skeggs, J., Wallom, D., Weisheimer, A., Wilson,
S., Stott, P. A., and Allen, M. R.: Human influence on climate in the 2014
southern England winter floods and their impacts, Nat. Clim. Change,
6, 627–634, https://doi.org/10.1038/nclimate2927, 2016.
Shutts, G., Leutbecher, M., Weisheimer, A., Stockdale, T., Isaksen, L., and Bonavita, M.:
Representing model uncertainty: Stochastic parametrizations at ECMWF, ECMWF
Newsletter, 129, 19–24, https://doi.org/10.21957/fbqmkhv7, 2011.
Simmons, A. J. and Burridge, D. M.: An Energy and Angular-Momentum
Conserving Vertical Finite-Difference Scheme and Hybrid Vertical
Coordinates, Mon. Weather Rev., 109, 758–766,
https://doi.org/10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2,
1981.
Simpson, R., Page, K. R., and De Roure, D.: Zooniverse: observing the world's largest
citizen science platform, in: WWW'14: 23rd International World Wide Web Conference, Seoul, Korea, April 2014, https://doi.org/10.1145/2566486, 2014.
Smyrk, K. and Minchin, L.: How your computer could reveal what's driving record rain and heat in
Australia and NZ, available at: https://theconversation.com/how-your-computer-could-reveal-whats-driving-record-rain-
and-heat-in-australia-and-nz-24804 (last access: 25 January 2021), 2014.
Sparrow, S.: OpenIFS@home submission xml generation scripts [code], Zenodo,
https://doi.org/10.5281/zenodo.3999542, 2020a.
Sparrow, S.: OpenIFS@home ancillary file repository scripts [code], Zenodo,
https://doi.org/10.5281/zenodo.3999551, 2020b.
Sparrow, S.: OpenIFS@home webpages and dashboard [code], Zenodo,
https://doi.org/10.5281/zenodo.3999555, 2020c.
Sparrow, S., Su, Q., Tian, F., Li, S., Chen, Y., Chen, W., Luo, F.,
Freychet, N., Lott, F. C., Dong, B., Tett, S. F. B., and Wallom, D.:
Attributing human influence on the July 2017 Chinese heatwave: The influence
of sea-surface temperatures, Environ. Res. Lett., 13, 114004,
https://doi.org/10.1088/1748-9326/aae356, 2018a.
Sparrow, S., Millar, R. J., Yamazaki, K., Massey, N., Povey, A. C., Bowery,
A., Grainger, R. G., Wallom, D., and Allen, M.: Finding Ocean States That Are
Consistent with Observations from a Perturbed Physics Parameter Ensemble,
J. Climate, 31, 4639–4656, https://doi.org/10.1175/JCLI-D-17-0514.1, 2018b.
Sparrow, S., Bowery, A., Carver, G., Koehler, M., Ollinaho, P., Pappenberger, F., Wallom, D., and Weisheimer, A.: OpenIFS@home: Ex-tropical cyclone Karl case study [data set], NERC EDS Centre for Environmental Data Analysis, available at: https://catalogue.ceda.ac.uk/uuid/ed1bc64e34a14ca28fedd2731735d18a (last access: 1 June 2021), 2021.
Stainforth, D. A., Aina, T., Christensen, C., Collins, M., Faull, N., Frame,
D. J., Kettleborough, J. A., Knight, S., Martin, A., Murphy, J. M., Piani,
C., Sexton, D., Smith, L. A., Splcer, R. A., Thorpe, A. J., and Allen, M. R.:
Uncertainty in predictions of the climate response to rising levels of
greenhouse gases, Nature, 433, 403–406, https://doi.org/10.1038/nature03301,
2005.
Staniforth, A. and Côté, J.: Semi-Lagrangian Integration Schemes for
Atmospheric Models – A Review, Mon. Weather Rev., 119, 2206–2223,
https://doi.org/10.1175/1520-0493(1991)119<2206:SLISFA>2.0.CO;2,
1991.
Sullivan III, W. T., Werthimer, D., Bowyer, S., Cobb, J., Gedye, D., and Anderson, D.: A new major SETI project based on Project Serendip data and
100,000 personal computers, in: IAU Colloq. 161: Astronomical and Biochemical Origins and the Search for Life in the Universe, edited by: Batalli Cosmovici, C., Bowyer, S., and Werthimer, D., 729 pp., available at:
https://ui.adsabs.harvard.edu/abs/1997abos.conf..729S (last access: 22
June 2020), 1997.
Temperton, C.: On scalar and vector transform methods for global spectral
models, Mon. Weather Rev., 119, 1303–1307,
https://doi.org/10.1175/1520-0493-119-5-1303.1, 1991.
Temperton, C., Hortal, M., and Simmons, A.: A two-time-level semi-Lagrangian
global spectral model, Q. J. Roy. Meteor. Soc., 127, 111–127, https://doi.org/10.1002/qj.49712757107, 2001.
Tiedtke, M.: A Comprehensive Mass Flux Scheme for Cumulus Parameterization
in Large-Scale Models, Mon. Weather Rev., 117, 1779–1800,
https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2,
1989.
Tiedtke, M.: Representation of Clouds in Large-Scale Models, Mon. Weather Rev., 121, 3040–3061, https://doi.org/10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2, 1993.
Uhe, P. and Sparrow, S.: Code for sorting results uploaded to
climatepredcition.net into project, batches and result status [software], Zenodo,
https://doi.org/10.5281/zenodo.3999563, 2020.
Untch, A. and Hortal, M.: A finite-element scheme for the vertical
discretization of the semi-Lagrangian version of the ECMWF forecast model,
Q. J. Roy. Meteor. Soc., 130, 1505–1530,
https://doi.org/10.1256/qj.03.173, 2004.
World Meteorological Organisation (WMO): Introduction to GRIB edition 1 and
GRIB edition 2, available at:
https://www.wmo.int/pages/prog/www/WMOCodes/Guides/GRIB/Introduction_GRIB1-GRIB2.pdf (last access: 22 November 2019), 2003.
Yamazaki, K., Rowlands, D. J., Aina, T., Blaker, A. T., Bowery, A., Massey,
N., Miller, J., Rye, C., Tett, S. F. B., Williamson, D., Yamazaki, Y. H., and
Allen, M. R.: Obtaining diverse behaviors in a climate model without the use
of flux adjustments, J. Geophys. Res.-Atmos., 118,
2781–2793, https://doi.org/10.1002/jgrd.50304, 2013.
Short summary
This paper describes how the research version of the European Centre for Medium-Range Weather Forecasts’ Integrated Forecast System is combined with climateprediction.net’s public volunteer computing resource to develop OpenIFS@home. Thousands of volunteer personal computers simulated slightly different realizations of Tropical Cyclone Karl to demonstrate the performance of the large-ensemble forecast. OpenIFS@Home offers researchers a new tool to study weather forecasts and related questions.
This paper describes how the research version of the European Centre for Medium-Range Weather...