Articles | Volume 14, issue 1
Development and technical paper
22 Jan 2021
Development and technical paper |  | 22 Jan 2021

Implementation of a synthetic inflow turbulence generator in idealised WRF v3.6.1 large eddy simulations under neutral atmospheric conditions

Jian Zhong, Xiaoming Cai, and Zheng-Tong Xie

Related authors

The influence of particle composition upon the evolution of urban ultrafine diesel particles on the neighbourhood scale
Irina Nikolova, Xiaoming Cai, Mohammed Salim Alam, Soheil Zeraati-Rezaei, Jian Zhong, A. Rob MacKenzie, and Roy M. Harrison
Atmos. Chem. Phys., 18, 17143–17155,,, 2018
Short summary

Related subject area

Atmospheric sciences
On the use of Infrared Atmospheric Sounding Interferometer (IASI) spectrally resolved radiances to test the EC-Earth climate model (v3.3.3) in clear-sky conditions
Stefano Della Fera, Federico Fabiano, Piera Raspollini, Marco Ridolfi, Ugo Cortesi, Flavio Barbara, and Jost von Hardenberg
Geosci. Model Dev., 16, 1379–1394,,, 2023
Short summary
Incorporation of aerosol into the COSPv2 satellite lidar simulator for climate model evaluation
Marine Bonazzola, Hélène Chepfer, Po-Lun Ma, Johannes Quaas, David M. Winker, Artem Feofilov, and Nick Schutgens
Geosci. Model Dev., 16, 1359–1377,,, 2023
Short summary
The impact of altering emission data precision on compression efficiency and accuracy of simulations of the community multiscale air quality model
Michael S. Walters and David C. Wong
Geosci. Model Dev., 16, 1179–1190,,, 2023
Short summary
AerSett v1.0: a simple and straightforward model for the settling speed of big spherical atmospheric aerosols
Sylvain Mailler, Laurent Menut, Arineh Cholakian, and Romain Pennel
Geosci. Model Dev., 16, 1119–1127,,, 2023
Short summary
Optimization of weather forecasting for cloud cover over the European domain using the meteorological component of the Ensemble for Stochastic Integration of Atmospheric Simulations version 1.0
Yen-Sen Lu, Garrett H. Good, and Hendrik Elbern
Geosci. Model Dev., 16, 1083–1104,,, 2023
Short summary

Cited articles

Benhamadouche, S., Jarrin, N., Addad, Y., and Laurence, D.: Synthetic turbulent inflow conditions based on a vortex method for large-eddy simulation, Prog. Comput. Fluid Dy., 6, 50–57,, 2006. 
Bercin, K. M., Xie, Z. T., and Turnock, S. R.: Exploration of digital-filter and forward-stepwise synthetic turbulence generators and an improvement for their skewness-kurtosis, Comput. Fluids, 172, 443–466,, 2018. 
Berkooz, G., Holmes, P., and Lumley, J. L.: The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., 25, 539–575,, 1993. 
Chu, X., Xue, L. L., Geerts, B., Rasmussen, R., and Breed, D.: A Case Study of Radar Observations and WRF LES Simulations of the Impact of Ground-Based Glaciogenic Seeding on Orographic Clouds and Precipitation. Part I: Observations and Model Validations, J. Appl. Meteor. Climatol., 53, 2264–2286,, 2014. 
Deardorff, J. W.: A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers, J. Fluid Mech., 41, 453–480,, 1970. 
Short summary
A synthetic inflow turbulence generator was implemented in the idealised Weather Research and Forecasting large eddy simulation. The inflow case yielded a mean velocity profile and second-moment profiles that agreed well with those generated using periodic boundary conditions, after a short adjustment distance. This implementation can be extended to a multi-scale seamless nesting simulation from a meso-scale domain with a kilometre-scale resolution to LES domains with metre-scale resolutions.