Articles | Volume 14, issue 1
Geosci. Model Dev., 14, 323–336, 2021
Geosci. Model Dev., 14, 323–336, 2021

Development and technical paper 22 Jan 2021

Development and technical paper | 22 Jan 2021

Implementation of a synthetic inflow turbulence generator in idealised WRF v3.6.1 large eddy simulations under neutral atmospheric conditions

Jian Zhong et al.

Related authors

The influence of particle composition upon the evolution of urban ultrafine diesel particles on the neighbourhood scale
Irina Nikolova, Xiaoming Cai, Mohammed Salim Alam, Soheil Zeraati-Rezaei, Jian Zhong, A. Rob MacKenzie, and Roy M. Harrison
Atmos. Chem. Phys., 18, 17143–17155,,, 2018
Short summary

Related subject area

Atmospheric Sciences
Numerical study of the effects of initial conditions and emissions on PM2.5 concentration simulations with CAMx v6.1: a Xi'an case study
Han Xiao, Qizhong Wu, Xiaochun Yang, Lanning Wang, and Huaqiong Cheng
Geosci. Model Dev., 14, 223–238,,, 2021
Short summary
A multi-year short-range hindcast experiment with CESM1 for evaluating climate model moist processes from diurnal to interannual timescales
Hsi-Yen Ma, Chen Zhou, Yunyan Zhang, Stephen A. Klein, Mark D. Zelinka, Xue Zheng, Shaocheng Xie, Wei-Ting Chen, and Chien-Ming Wu
Geosci. Model Dev., 14, 73–90,,, 2021
Short summary
Ground-based lidar processing and simulator framework for comparing models and observations (ALCF 1.0)
Peter Kuma, Adrian J. McDonald, Olaf Morgenstern, Richard Querel, Israel Silber, and Connor J. Flynn
Geosci. Model Dev., 14, 43–72,,, 2021
Development of an Ozone Monitoring Instrument (OMI) aerosol index (AI) data assimilation scheme for aerosol modeling over bright surfaces – a step toward direct radiance assimilation in the UV spectrum
Jianglong Zhang, Robert J. D. Spurr, Jeffrey S. Reid, Peng Xian, Peter R. Colarco, James R. Campbell, Edward J. Hyer, and Nancy L. Baker
Geosci. Model Dev., 14, 27–42,,, 2021
Short summary
IntelliO3-ts v1.0: a neural network approach to predict near-surface ozone concentrations in Germany
Felix Kleinert, Lukas H. Leufen, and Martin G. Schultz
Geosci. Model Dev., 14, 1–25,,, 2021
Short summary

Cited articles

Benhamadouche, S., Jarrin, N., Addad, Y., and Laurence, D.: Synthetic turbulent inflow conditions based on a vortex method for large-eddy simulation, Prog. Comput. Fluid Dy., 6, 50–57,, 2006. 
Bercin, K. M., Xie, Z. T., and Turnock, S. R.: Exploration of digital-filter and forward-stepwise synthetic turbulence generators and an improvement for their skewness-kurtosis, Comput. Fluids, 172, 443–466,, 2018. 
Berkooz, G., Holmes, P., and Lumley, J. L.: The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., 25, 539–575,, 1993. 
Chu, X., Xue, L. L., Geerts, B., Rasmussen, R., and Breed, D.: A Case Study of Radar Observations and WRF LES Simulations of the Impact of Ground-Based Glaciogenic Seeding on Orographic Clouds and Precipitation. Part I: Observations and Model Validations, J. Appl. Meteor. Climatol., 53, 2264–2286,, 2014. 
Deardorff, J. W.: A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers, J. Fluid Mech., 41, 453–480,, 1970. 
Short summary
A synthetic inflow turbulence generator was implemented in the idealised Weather Research and Forecasting large eddy simulation. The inflow case yielded a mean velocity profile and second-moment profiles that agreed well with those generated using periodic boundary conditions, after a short adjustment distance. This implementation can be extended to a multi-scale seamless nesting simulation from a meso-scale domain with a kilometre-scale resolution to LES domains with metre-scale resolutions.