Articles | Volume 14, issue 5
https://doi.org/10.5194/gmd-14-2917-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-2917-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Unstructured global to coastal wave modeling for the Energy Exascale Earth System Model using WAVEWATCH III version 6.07
Mathematics and Computer Science, Argonne National Laboratory, Lemont, IL, USA
Fluid Dynamics and Solid Mechanics, Los Alamos National Laboratory, Los Alamos, NM, USA
Phillip J. Wolfram
Advanced Engineering Analysis, Los Alamos National Laboratory, Los Alamos, NM, USA
Luke P. Van Roekel
Fluid Dynamics and Solid Mechanics, Los Alamos National Laboratory, Los Alamos, NM, USA
Jessica D. Meixner
National Centers for Environmental Prediction, Environmental Modeling Center, National Oceanic and Atmospheric Administration, College Park, MD, USA
Related authors
Mark R. Petersen, Xylar S. Asay-Davis, Alice M. Barthel, Carolyn Branecky Begeman, Siddhartha Bishnu, Steven R. Brus, Philip W. Jones, Hyun-Gyu Kang, Youngsung Kim, Azamat Mametjanov, Brian O’Neill, Kieran K. Ringel, Katherine M. Smith, Sarat Sreepathi, Luke P. Van Roekel, and Maciej Waruszewski
EGUsphere, https://doi.org/10.5194/egusphere-2025-3500, https://doi.org/10.5194/egusphere-2025-3500, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Ocean models are used to predict currents, temperature, and salinity of the earth’s oceans, much like weather forecasting. As supercomputer hardware changes with evolving technology, models must be updated, and sometimes rewritten. Here we document Omega, a new ocean model that was designed to run on the world’s fastest supercomputers. Testing shows that Omega accurately solves the model equations, and runs efficiently on many different computer architectures, including exascale computers.
Olawale James Ikuyajolu, Luke Van Roekel, Steven R. Brus, Erin E. Thomas, Yi Deng, and Sarat Sreepathi
Geosci. Model Dev., 16, 1445–1458, https://doi.org/10.5194/gmd-16-1445-2023, https://doi.org/10.5194/gmd-16-1445-2023, 2023
Short summary
Short summary
Wind-generated waves play an important role in modifying physical processes at the air–sea interface, but they have been traditionally excluded from climate models due to the high computational cost of running spectral wave models for climate simulations. To address this, our work identified and accelerated the computationally intensive section of WAVEWATCH III on GPU using OpenACC. This allows for high-resolution modeling of atmosphere–wave–ocean feedbacks in century-scale climate integrations.
Nairita Pal, Kristin N. Barton, Mark R. Petersen, Steven R. Brus, Darren Engwirda, Brian K. Arbic, Andrew F. Roberts, Joannes J. Westerink, and Damrongsak Wirasaet
Geosci. Model Dev., 16, 1297–1314, https://doi.org/10.5194/gmd-16-1297-2023, https://doi.org/10.5194/gmd-16-1297-2023, 2023
Short summary
Short summary
Understanding tides is essential to accurately predict ocean currents. Over the next several decades coastal processes such as flooding and erosion will be severely impacted due to climate change. Tides affect currents along the coastal regions the most. In this paper we show the results of implementing tides in a global ocean model known as MPAS–Ocean. We also show how Antarctic ice shelf cavities affect global tides. Our work points towards future research with tide–ice interactions.
Gokhan Danabasoglu, Frederic S. Castruccio, Burcu Boza, Alice M. Barthel, Arne Biastoch, Adam Blaker, Alexandra Bozec, Diego Bruciaferri, Frank O. Bryan, Eric P. Chassignet, Yao Fu, Ian Grooms, Catherine Guiavarc'h, Hakase Hayashida, Andrew McC. Hogg, Ryan M. Holmes, Doroteaciro Iovino, Andrew E. Kiss, M. Susan Lozier, Gustavo Marques, Alex Megann, Franziska U. Schwarzkopf, Dave Storkey, Luke van Roekel, Jon Wolfe, Xiaobiao Xu, and Rong Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-5406, https://doi.org/10.5194/egusphere-2025-5406, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
A comparison of simulated and observed overturning transports across the Overturning in the Subpolar North Atlantic Program sections for the 2014–2022 period is presented. Eighteen ocean simulations participate in the study. The simulated transports are in general agreement with observations. Analyzing overturning circulations in both depth and density space together provides a more complete picture of the overturning properties. The study serves as a benchmark for evaluation of ocean models.
Mark R. Petersen, Xylar S. Asay-Davis, Alice M. Barthel, Carolyn Branecky Begeman, Siddhartha Bishnu, Steven R. Brus, Philip W. Jones, Hyun-Gyu Kang, Youngsung Kim, Azamat Mametjanov, Brian O’Neill, Kieran K. Ringel, Katherine M. Smith, Sarat Sreepathi, Luke P. Van Roekel, and Maciej Waruszewski
EGUsphere, https://doi.org/10.5194/egusphere-2025-3500, https://doi.org/10.5194/egusphere-2025-3500, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Ocean models are used to predict currents, temperature, and salinity of the earth’s oceans, much like weather forecasting. As supercomputer hardware changes with evolving technology, models must be updated, and sometimes rewritten. Here we document Omega, a new ocean model that was designed to run on the world’s fastest supercomputers. Testing shows that Omega accurately solves the model equations, and runs efficiently on many different computer architectures, including exascale computers.
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025, https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed-layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer bias reduction in temperature, salinity, and sea ice extent in the North Atlantic; a small strengthening of the Atlantic meridional overturning circulation; and improvements to many atmospheric climatological variables.
Sara Calandrini, Darren Engwirda, and Luke Van Roekel
EGUsphere, https://doi.org/10.5194/egusphere-2024-472, https://doi.org/10.5194/egusphere-2024-472, 2024
Preprint withdrawn
Short summary
Short summary
Most modern ocean circulation models only consider the hydrostatic pressure, but for coastal phenomena nonhydrostatic effects become important, creating the need to include the nonhydrostatic pressure. In this work, we present a nonhydrostatic formulation for MPAS-Ocean (MPAS-O NH) and show its correctness on idealized benchmark test cases. MPAS-O NH is the first global nonhydrostatic model at variable resolution and is the first nonhydrostatic ocean model to be fully coupled in a climate model.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Hyein Jeong, Adrian K. Turner, Andrew F. Roberts, Milena Veneziani, Stephen F. Price, Xylar S. Asay-Davis, Luke P. Van Roekel, Wuyin Lin, Peter M. Caldwell, Hyo-Seok Park, Jonathan D. Wolfe, and Azamat Mametjanov
The Cryosphere, 17, 2681–2700, https://doi.org/10.5194/tc-17-2681-2023, https://doi.org/10.5194/tc-17-2681-2023, 2023
Short summary
Short summary
We find that E3SM-HR reproduces the main features of the Antarctic coastal polynyas. Despite the high amount of coastal sea ice production, the densest water masses are formed in the open ocean. Biases related to the lack of dense water formation are associated with overly strong atmospheric polar easterlies. Our results indicate that the large-scale polar atmospheric circulation must be accurately simulated in models to properly reproduce Antarctic dense water formation.
Olawale James Ikuyajolu, Luke Van Roekel, Steven R. Brus, Erin E. Thomas, Yi Deng, and Sarat Sreepathi
Geosci. Model Dev., 16, 1445–1458, https://doi.org/10.5194/gmd-16-1445-2023, https://doi.org/10.5194/gmd-16-1445-2023, 2023
Short summary
Short summary
Wind-generated waves play an important role in modifying physical processes at the air–sea interface, but they have been traditionally excluded from climate models due to the high computational cost of running spectral wave models for climate simulations. To address this, our work identified and accelerated the computationally intensive section of WAVEWATCH III on GPU using OpenACC. This allows for high-resolution modeling of atmosphere–wave–ocean feedbacks in century-scale climate integrations.
Nairita Pal, Kristin N. Barton, Mark R. Petersen, Steven R. Brus, Darren Engwirda, Brian K. Arbic, Andrew F. Roberts, Joannes J. Westerink, and Damrongsak Wirasaet
Geosci. Model Dev., 16, 1297–1314, https://doi.org/10.5194/gmd-16-1297-2023, https://doi.org/10.5194/gmd-16-1297-2023, 2023
Short summary
Short summary
Understanding tides is essential to accurately predict ocean currents. Over the next several decades coastal processes such as flooding and erosion will be severely impacted due to climate change. Tides affect currents along the coastal regions the most. In this paper we show the results of implementing tides in a global ocean model known as MPAS–Ocean. We also show how Antarctic ice shelf cavities affect global tides. Our work points towards future research with tide–ice interactions.
Xue Zheng, Qing Li, Tian Zhou, Qi Tang, Luke P. Van Roekel, Jean-Christophe Golaz, Hailong Wang, and Philip Cameron-Smith
Geosci. Model Dev., 15, 3941–3967, https://doi.org/10.5194/gmd-15-3941-2022, https://doi.org/10.5194/gmd-15-3941-2022, 2022
Short summary
Short summary
We document the model experiments for the future climate projection by E3SMv1.0. At the highest future emission scenario, E3SMv1.0 projects a strong surface warming with rapid changes in the atmosphere, ocean, sea ice, and land runoff. Specifically, we detect a significant polar amplification and accelerated warming linked to the unmasking of the aerosol effects. The impact of greenhouse gas forcing is examined in different climate components.
Carolyn Branecky Begeman, Xylar Asay-Davis, and Luke Van Roekel
The Cryosphere, 16, 277–295, https://doi.org/10.5194/tc-16-277-2022, https://doi.org/10.5194/tc-16-277-2022, 2022
Short summary
Short summary
This study uses ocean modeling at ultra-high resolution to study the small-scale ocean mixing that controls ice-shelf melting. It offers some insights into the relationship between ice-shelf melting and ocean temperature far from the ice base, which may help us project how fast ice will melt when ocean waters entering the cavity warm. This study adds to a growing body of research that indicates we need a more sophisticated treatment of ice-shelf melting in coarse-resolution ocean models.
Qing Li and Luke Van Roekel
Geosci. Model Dev., 14, 2011–2028, https://doi.org/10.5194/gmd-14-2011-2021, https://doi.org/10.5194/gmd-14-2011-2021, 2021
Short summary
Short summary
Physical processes in the ocean span multiple spatial and temporal scales. Simultaneously resolving all these in a simulation is computationally challenging. Here we develop a more efficient technique to better study the interactions across scales, particularly focusing on the ocean surface turbulent mixing, by coupling a global ocean circulation model MPAS-Ocean and a large eddy simulation model PALM. The latter is customized and ported on a GPU to further accelerate the computation.
Cited articles
Abdolali, A., Roland, A., Van Der Westhuysen, A., Meixner, J., Chawla, A.,
Hesser, T. J., Smith, J. M., and Sikiric, M. D.: Large-scale hurricane
modeling using domain decomposition parallelization and implicit scheme
implemented in WAVEWATCH III wave model, Coast. Eng., 157, 103656, https://doi.org/10.1016/j.coastaleng.2020.103656,
2020. a, b, c, d
Alves, J.-H. G., Chawla, A., Tolman, H. L., Schwab, D., Lang, G., and Mann, G.:
The operational implementation of a Great Lakes wave forecasting system at
NOAA/NCEP, Weather Forecast., 29, 1473–1497, 2014. a
Amante, C. and Eakins, B. W.: ETOPO1 arc-minute global relief model:
procedures, data sources and analysis, NOAA Technical Memorandum NESDIS NGDC-24, 2009. a
Amores, A. and Marcos, M.: Ocean Swells along the Global Coastlines and Their
Climate Projections for the Twenty-First Century, J. Climate, 33,
185–199, 2020. a
Amrutha, M., Kumar, V. S., Sandhya, K., Nair, T. B., and Rathod, J.: Wave
hindcast studies using SWAN nested in WAVEWATCH III-comparison with measured
nearshore buoy data off Karwar, eastern Arabian Sea, Ocean Eng., 119,
114–124, 2016. a
Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J.-F., Magne, R., Roland, A.,
van Der Westhuysen, A., Queffeulou, P., Lefevre, J.-M., Aouf, L., and Collard, F.:
Semiempirical dissipation source functions for ocean waves. Part I:
Definition, calibration, and validation, J. Phys. Oceanogr.,
40, 1917–1941, 2010. a, b
Ardhuin, F., Gille, S. T., Menemenlis, D., Rocha, C. B., Rascle, N., Chapron,
B., Gula, J., and Molemaker, J.: Small-scale open ocean currents have large
effects on wind wave heights, J. Geophys. Res.-Oceans, 122,
4500–4517, 2017. a
Battjes J. A. and Janssen J. P. F. M.: Energy loss and set-up due to breaking of random waves, Proceedings of the 16th International Conference on Coastal Engineering, ASCE, Hamburg, Germany, 27 August–3 September 1978, pp. 569–587, 1978. a
Belcher, S. E., Grant, A. L., Hanley, K. E., Fox-Kemper, B., Van Roekel, L., Sullivan, P. P., Large, W. G., Brown, A., Hines, A., Calvert, D. Rutgersson, A., Pettersson, H., Bidlot, J.-R., Janssen, P. A. E. M, and Polton, J. A.: A
global perspective on Langmuir turbulence in the ocean surface boundary
layer, Geophys. Res. Lett., 39, L18605, https://doi.org/10.1029/2012GL052932, 2012. a
Beven, J. L., Avila, L. A., Blake, E. S., Brown, D. P., Franklin, J. L., Knabb,
R. D., Pasch, R. J., Rhome, J. R., and Stewart, S. R.: Atlantic hurricane
season of 2005, Mon. Weather Rev., 136, 1109–1173, 2008. a
Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation wave model
for coastal regions: 1. Model description and validation, J.
Geophys. Res.-Oceans, 104, 7649–7666, 1999. a
Bretherton, F. P. and Garrett, C. J. R.: Wavetrains in inhomogeneous moving
media, Proceedings of the Royal Society of London. Series A, Mathematical and
Physical Sciences, 302, 529–554, 1968. a
Brus, S., Wolfram, P., and Van Roekel, L.: Unstructured global to coastal wave
modeling for the Energy Exascale Earth System Model – 2 degree WaveWatchIII
configuration files, Zenodo, https://doi.org/10.5281/zenodo.4086171,
2020a. a
Brus, S., Wolfram, P., and Van Roekel, L.: Unstructured global to coastal wave
modeling for the Energy Exascale Earth System Model – WaveWatchIII codebase,
Zenodo, https://doi.org/10.5281/zenodo.4088977, 2020b. a
Brus, S., Wolfram, P., and Van Roekel, L.: Unstructured global to coastal wave
modeling for the Energy Exascale Earth System Model – degree WaveWatchIII
configuration files, Zenodo, https://doi.org/10.5281/zenodo.4088444,
2020c. a
Brus, S., Wolfram, P., and Van Roekel, L.: Unstructured global to coastal wave
modeling for the Energy Exascale Earth System Model – Simuation results and
observed data, Zenodo, https://doi.org/10.5281/zenodo.4088881,
2020d. a
Brus, S., Wolfram, P., and Van Roekel, L.: Unstructured global to coastal wave
modeling for the Energy Exascale Earth System Model – unstructured (2 degree
to degree) WaveWatchIII configuration files, Zenodo,
https://doi.org/10.5281/zenodo.4088520, 2020e. a
Cavaleri, L., Fox-Kemper, B., and Hemer, M.: Wind waves in the coupled climate
system, B. Am. Meteorol. Soc., 93, 1651–1661,
2012. a
Cavaleri, L., Abdalla, S., Benetazzo, A., Bertotti, L., Bidlot, J.-R., Breivik, Ø., Carniel, S., Jensen, R. E., Portilla-Yandun, J., Rogers, W. E, Roland, A., Sanchez-Arcilla, A., Smith, J. M., Staneva, J., Toledo, Y., van Vledder, G. Ph., and van der Westhuysen, A. J.: Wave
modelling in coastal and inner seas, Prog. Oceanogr., 167, 164–233,
2018. a
Chawla, A. and Tolman, H. L.: Automated grid generation for WAVEWATCH III., Technical Bulletin 254, NCEP/NOAA/NWS, National Center for Environmental Prediction, Washington, DC, 2007. a
Chawla, A., Tolman, H. L., Gerald, V., Spindler, D., Spindler, T., Alves,
J.-H. G., Cao, D., Hanson, J. L., and Devaliere, E.-M.: A multigrid wave
forecasting model: A new paradigm in operational wave forecasting, Weather
Forecast., 28, 1057–1078, 2013b. a
Cornett, A. M.: A global wave energy resource assessment, in: The
Eighteenth International Offshore and Polar Engineering Conference,
International Society of Offshore and Polar Engineers, ISOPE-I-08-370, 2008. a
Dai, H.-J., McWilliams, J. C., and Liang, J.-H.: Wave-driven mesoscale currents
in a marginal ice zone, Ocean Model., 134, 1–17, 2019. a
Donelan, M., Curcic, M., Chen, S. S., and Magnusson, A.: Modeling waves and
wind stress, J. Geophys. Res.-Oceans, 117, C00J23,
https://doi.org/10.1029/2011JC007787, 2012. a
Engwirda, D.: JIGSAW-GEO (1.0): locally orthogonal staggered unstructured grid generation for general circulation modelling on the sphere, Geosci. Model Dev., 10, 2117–2140, https://doi.org/10.5194/gmd-10-2117-2017, 2017. a, b
Frouin, R., Iacobellis, S., and Deschamps, P.-Y.: Influence of oceanic
whitecaps on the global radiation budget, Geophys. Res. Lett., 28,
1523–1526, 2001. a
Golaz, J.-C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q., Wolfe, J. D., Abeshu, G., Anantharaj, V., Asay-Davis, X. S., Bader, D. C., Baldwin, S. A, Bisht, G., Bogenschutz, P. A., Branstetter, M., Brunke, M. A., Brus, S. R., Burrows, S. M., Cameron Smith, P. J., Donahue, A. S., Deakin, M., Easter, R. C., Evans, K. J., Feng, Y., Flanner, M., Foucar, J. G., Fyke, J. G., Griffin B. M., Hannay, C., Harrop, B. E., Hoffman, M. J., Hunke, E. C., Jacob, R. L., Jacobsen, D. W., Jeffery, N., Jones, P. W., Keen, N. D., Klein, S. A., Larson, V. E., Leung, L. R., Li, H. Y., Lin, W., Lipscomb, W. H., Ma, P. L., Mahajan, S., Maltrud, M. E., Mametjanov, A., McClean, J. L., McCoy, R. B., Neale, R. B., Price, S. F., Qian, Y., Rasch, P. J., Eyre, J. E. J. R., Riley, W. J., Ringler, T. D., Roberts, A. F., Roesler, E. L., Salinger, A. G., Shaheen, Z., Shi, X., Singh, B., Tang, J., Taylor, M. A., Thornton, P. E., Turner, A. K., Veneziani, M., Wan, H., Wang, H., Wang, S., Williams, D. N., Wolfram, P. J., Worley, P. H., Xie, S., Yang, Y., Yoon, J. H., Zelinka, M. D., Zender, C. S., Zeng, X., Zhang, C., Zhang, K., Zhang, Y., Zheng, X., Zhou, T., and Zhu, Q.: The DOE E3SM coupled model version 1: Overview and evaluation at
standard resolution, J. Adv. Model. Earth Sy., 11,
2089–2129, 2019. a
Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J., Gienapp, H., Hasselmann, D., Kruseman, P., Meerburg, A., Müller, P., Olbers, D. J., Richter, K., Sell, W., and Walden, H.:
Measurements of wind-wave growth and swell decay during the Joint North Sea
Wave Project (JONSWAP), Dtsch. Hydrogr. Z. Suppl., 12, 1–95, 1973 a
Hasselmann, S., Hasselmann, K., Allender, J., and Barnett, T.: Computations and
parameterizations of the nonlinear energy transfer in a gravity-wave
specturm. Part II: Parameterizations of the nonlinear energy transfer for
application in wave models, J. Phys. Oceanogr., 15, 1378–1391,
1985. a
Hemer, M. A., Katzfey, J., and Trenham, C. E.: Global dynamical projections of
surface ocean wave climate for a future high greenhouse gas emission
scenario, Ocean Model., 70, 221–245, 2013. a
Hoch, K. E., Petersen, M. R., Brus, S. R., Engwirda, D., Roberts, A. F., Rosa,
K. L., and Wolfram, P. J.: MPAS-Ocean Simulation Quality for
Variable-Resolution North American Coastal Meshes, J. Adv.
Model. Earth Sy., 12, e2019MS001848,
https://doi.org/10.1029/2019MS001848, 2020. a
Jones, P. W.: First-and second-order conservative remapping schemes for grids
in spherical coordinates, Mon. Weather Rev., 127, 2204–2210, 1999. a
Kennedy, A. B., Chen, Q., Kirby, J. T., and Dalrymple, R. A.: Boussinesq
modeling of wave transformation, breaking, and runup. I: 1D, J.
Waterw. Port C., 126, 39–47, 2000. a
Li, J.-G.: Propagation of ocean surface waves on a spherical multiple-cell
grid, J. Comput. Phys., 231, 8262–8277, 2012. a
Longuet-Higgins, M. S. and Stewart, R.: Radiation stresses in water waves; a
physical discussion, with applications, Deep-Sea Res., 11, 529–562, 1964. a
Mariotti, G. and Fagherazzi, S.: A numerical model for the coupled long-term
evolution of salt marshes and tidal flats, J. Geophys. Res.- Earth, 115, F01004, https://doi.org/10.1029/2009JF001326, 2010. a
Massom, R. A., Scambos, T. A., Bennetts, L. G., Reid, P., Squire, V. A., and
Stammerjohn, S. E.: Antarctic ice shelf disintegration triggered by sea ice
loss and ocean swell, Nature, 558, 383–389, 2018. a
Meindl, E. A. and Hamilton, G. D.: Programs of the national data buoy center,
B. Am. Meteorol. Soc., 73, 985–994, 1992. a
Mentaschi, L., Vousdoukas, M. I., Pekel, J.-F., Voukouvalas, E., and Feyen, L.:
Global long-term observations of coastal erosion and accretion, Scientific
Reports, 8, 12876, https://doi.org/10.1038/s41598-018-30904-w, 2018. a, b
Mentaschi, L., Vousdoukas, M., Besio, G., and Feyen, L.: alphaBetaLab:
Automatic estimation of subscale transparencies for the Unresolved Obstacles
Source Term in ocean wave modelling, SoftwareX, 9, 1–6, https://doi.org/10.1016/j.softx.2018.11.006, 2019. a
Mentaschi, L., Vousdoukas, M., Montblanc, T. F., Kakoulaki, G., Voukouvalas,
E., Besio, G., and Salamon, P.: Assessment of global wave models on regular
and unstructured grids using the Unresolved Obstacles Source Term, Ocean
Dynam., 70, 1475–1483, https://doi.org/10.1007/s10236-020-01410-3, 2020. a
Overeem, I., Anderson, R. S., Wobus, C. W., Clow, G. D., Urban, F. E., and
Matell, N.: Sea ice loss enhances wave action at the Arctic coast,
Geophys. Res. Lett., 38, L17503, https://doi.org/10.1029/2011GL048681, 2011. a
Perez, J., Menendez, M., and Losada, I. J.: GOW2: A global wave hindcast for
coastal applications, Coast. Eng., 124, 1–11, https://doi.org/10.1016/j.coastaleng.2017.03.005, 2017. a
Rascle, N. and Ardhuin, F.: A global wave parameter database for geophysical
applications. Part 2: Model validation with improved source term
parameterization, Ocean Model., 70, 174–188, 2013. a
Reguero, B. G., Losada, I. J., and Méndez, F. J.: A recent increase in
global wave power as a consequence of oceanic warming, Nat. Commun.,
10, 205, https://doi.org/10.1038/s41467-018-08066-0, 2019. a
Roberts, K. J., Pringle, W. J., and Westerink, J. J.: OceanMesh2D 1.0: MATLAB-based software for two-dimensional unstructured mesh generation in coastal ocean modeling, Geosci. Model Dev., 12, 1847–1868, https://doi.org/10.5194/gmd-12-1847-2019, 2019. a, b
Roland, A. and Ardhuin, F.: On the developments of spectral wave models:
numerics and parameterizations for the coastal ocean, Ocean Dynam., 64,
833–846, 2014. a
Saha, S. Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-y., Juang, H.-M. H., Sela, J., Iredell, M., Treadon, R.,, Kleist, D., Van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., and Goldberg, M.: The NCEP climate forecast
system reanalysis, B. Am. Meteorol. Soc., 91,
1015–1058, 2010. a
Squire, V. A., Dugan, J. P., Wadhams, P., Rottier, P. J., and Liu, A. K.: Of
ocean waves and sea ice, Annu. Rev. Fluid Mech., 27, 115–168,
1995. a
Steele, K., Wang, D., Earle, M., Michelena, E., and Dagnall, R.: Buoy pitch and
roll computed using three angular rate sensors, Coast. Eng., 35,
123–139, 1998. a
Stopa, J. E., Ardhuin, F., Babanin, A., and Zieger, S.: Comparison and
validation of physical wave parameterizations in spectral wave models, Ocean
Model., 103, 2–17, 2016. a
Thomson, J. and Rogers, W. E.: Swell and sea in the emerging Arctic Ocean,
Geophys. Res. Lett., 41, 3136–3140, 2014. a
Tolman, H. L.: A third-generation model for wind waves on slowly varying,
unsteady, and inhomogeneous depths and currents, J. Phys.
Oceanogr., 21, 782–797, 1991. a
Tolman, H. L.: Distributed-memory concepts in the wave model WAVEWATCH III,
Parallel Comput., 28, 35–52, 2002. a
Tolman, H. L.: A mosaic approach to wind wave modeling, Ocean Model., 25,
35–47, 2008. a
Ullrich, P. A. and Taylor, M. A.: Arbitrary-order conservative and consistent
remapping and a theory of linear maps: Part I, Mon. Weather Rev., 143,
2419–2440, 2015. a
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Jevrejeva, S.,
Jackson, L. P., and Feyen, L.: Global probabilistic projections of extreme
sea levels show intensification of coastal flood hazard, Nat.
Commun., 9, 2360, https://doi.org/10.1038/s41467-018-04692-w, 2018. a
Wang, D.-P. and Oey, L.-Y.: Hindcast of waves and currents in Hurricane
Katrina, B. Am. Meteorol. Soc., 89, 487–496, 2008. a
Warner, J. C., Armstrong, B., He, R., and Zambon, J. B.: Development of a
coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system,
Ocean Model., 35, 230–244, 2010. a
Whitham, G.: A general approach to linear and non-linear dispersive waves using
a Lagrangian, J. Fluid Mech., 22, 273–283, 1965. a
Wright, J. B., Colling, A., and Park, D.: Waves, tides, and shallow-water
processes, 2. edn., Oxford: Butterworth-Heinemann, in association with the Open
University, ISBN 0750642815, 1999. a
Wu, W.-C., Wang, T., Yang, Z., and García-Medina, G.: Development and
validation of a high-resolution regional wave hindcast model for US West
Coast wave resource characterization, Renewable Energy, 152, 736–753, 2020. a
Young, I.: Seasonal variability of the global ocean wind and wave climate,
International Journal of Climatology: A Journal of the Royal Meteorological
Society, 19, 931–950, 1999. a
Young, I., Zieger, S., and Babanin, A. V.: Global trends in wind speed and wave
height, Science, 332, 451–455, 2011. a
Short summary
Wind-generated waves are an important process in the global climate system. They mediate many interactions between the ocean, atmosphere, and sea ice. Models which describe these waves are computationally expensive and have often been excluded from coupled Earth system models. To address this, we have developed a capability for the WAVEWATCH III model which allows model resolution to be varied globally across the coastal open ocean. This allows for improved accuracy at reduced computing time.
Wind-generated waves are an important process in the global climate system. They mediate many...