Articles | Volume 14, issue 5
https://doi.org/10.5194/gmd-14-2747-2021
https://doi.org/10.5194/gmd-14-2747-2021
Model description paper
 | 
18 May 2021
Model description paper |  | 18 May 2021

Combining homogeneous and heterogeneous chemistry to model inorganic compound concentrations in indoor environments: the H2I model (v1.0)

Eve-Agnès Fiorentino, Henri Wortham, and Karine Sartelet

Related authors

Combining homogeneous and heterogeneous chemistry to model inorganic compounds concentrations in indoor environments: the H2I model (v1.0)
Eve-Agnès Fiorentino, Henri Wortham, and Karine Sartelet
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-192,https://doi.org/10.5194/gmd-2020-192, 2020
Preprint withdrawn

Related subject area

Atmospheric sciences
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
Felipe Cifuentes, Henk Eskes, Enrico Dammers, Charlotte Bryan, and Folkert Boersma
Geosci. Model Dev., 18, 621–649, https://doi.org/10.5194/gmd-18-621-2025,https://doi.org/10.5194/gmd-18-621-2025, 2025
Short summary
Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025,https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary
Quantifying uncertainties in satellite NO2 superobservations for data assimilation and model evaluation
Pieter Rijsdijk, Henk Eskes, Arlene Dingemans, K. Folkert Boersma, Takashi Sekiya, Kazuyuki Miyazaki, and Sander Houweling
Geosci. Model Dev., 18, 483–509, https://doi.org/10.5194/gmd-18-483-2025,https://doi.org/10.5194/gmd-18-483-2025, 2025
Short summary
ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025,https://doi.org/10.5194/gmd-18-433-2025, 2025
Short summary
Coupling the urban canopy model TEB (SURFEXv9.0) with the radiation model SPARTACUS-Urbanv0.6.1 for more realistic urban radiative exchange calculation
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025,https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary

Cited articles

Alvarez, E. G., Amedro, D., Afif, C., Gligorovski, S., Schoemaecker, C., Fittschen, C., Doussin, J.-F., and Wortham, H.: Unexpectedly high indoor hydroxyl radical concentrations associated with nitrous acid, P. Natl. Acad. Sci. USA, 110, 13294–13299, 2013. a
Alwarda, R., Zhou, S., and Abbatt, J. P.: Heterogeneous oxidation of indoor surfaces by gas-phase hydroxyl radicals, Indoor Air, 28, 655–664, 2018. a
Ascher, U. and Petzold, L.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, ISBN 978-0-89871-412-8, Society for Industrial and Applied Mathematics, Philadelphia, 1998. a
Carslaw, N.: A new detailed chemical model for indoor air pollution, Atmos. Environ., 41, 1164–1179, 2007. a, b, c, d, e, f, g, h, i, j
Carter, W.: Development of the SAPRC-07 chemical mechanism, Atmos. Environ., 44, 5324–5335, 2010. a, b
Download
Short summary
Indoor air quality (IAQ) is strongly influenced by reactivity with surfaces, which is called heterogeneous reactivity. To date, this reactivity is barely integrated into numerical models due to the strong uncertainties it is subjected to. In this work, an open-source IAQ model, called the H2I model, is developed to consider both gas-phase and heterogeneous reactivity and simulate indoor concentrations of inorganic compounds.
Share