Articles | Volume 13, issue 12
https://doi.org/10.5194/gmd-13-6131-2020
https://doi.org/10.5194/gmd-13-6131-2020
Model description paper
 | 
03 Dec 2020
Model description paper |  | 03 Dec 2020

Detection of atmospheric rivers with inline uncertainty quantification: TECA-BARD v1.0.1

Travis A. O'Brien, Mark D. Risser, Burlen Loring, Abdelrahman A. Elbashandy, Harinarayan Krishnan, Jeffrey Johnson, Christina M. Patricola, John P. O'Brien, Ankur Mahesh, Prabhat, Sarahí Arriaga Ramirez, Alan M. Rhoades, Alexander Charn, Héctor Inda Díaz, and William D. Collins

Related authors

Moving beyond post-hoc XAI: Lessons learned from dynamical climate modeling
Ryan O'Loughlin, Dan Li, and Travis O'Brien
EGUsphere, https://doi.org/10.5194/egusphere-2023-2969,https://doi.org/10.5194/egusphere-2023-2969, 2024
Short summary
Scalable Feature Extraction and Tracking (SCAFET): a general framework for feature extraction from large climate data sets
Arjun Babu Nellikkattil, Danielle Lemmon, Travis Allen O'Brien, June-Yi Lee, and Jung-Eun Chu
Geosci. Model Dev., 17, 301–320, https://doi.org/10.5194/gmd-17-301-2024,https://doi.org/10.5194/gmd-17-301-2024, 2024
Short summary
Identifying Atmospheric Rivers and their Poleward Latent Heat Transport with Generalizable Neural Networks: ARCNNv1
Ankur Mahesh, Travis O'Brien, Burlen Loring, Abdelrahman Elbashandy, William Boos, and William Collins
EGUsphere, https://doi.org/10.5194/egusphere-2023-763,https://doi.org/10.5194/egusphere-2023-763, 2023
Short summary
ClimateNet: an expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather
Prabhat, Karthik Kashinath, Mayur Mudigonda, Sol Kim, Lukas Kapp-Schwoerer, Andre Graubner, Ege Karaismailoglu, Leo von Kleist, Thorsten Kurth, Annette Greiner, Ankur Mahesh, Kevin Yang, Colby Lewis, Jiayi Chen, Andrew Lou, Sathyavat Chandran, Ben Toms, Will Chapman, Katherine Dagon, Christine A. Shields, Travis O'Brien, Michael Wehner, and William Collins
Geosci. Model Dev., 14, 107–124, https://doi.org/10.5194/gmd-14-107-2021,https://doi.org/10.5194/gmd-14-107-2021, 2021
Short summary
Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?
Leo J. Donner, Travis A. O'Brien, Daniel Rieger, Bernhard Vogel, and William F. Cooke
Atmos. Chem. Phys., 16, 12983–12992, https://doi.org/10.5194/acp-16-12983-2016,https://doi.org/10.5194/acp-16-12983-2016, 2016
Short summary

Related subject area

Atmospheric sciences
MEXPLORER 1.0.0 – a mechanism explorer for analysis and visualization of chemical reaction pathways based on graph theory
Rolf Sander
Geosci. Model Dev., 17, 2419–2425, https://doi.org/10.5194/gmd-17-2419-2024,https://doi.org/10.5194/gmd-17-2419-2024, 2024
Short summary
Advances and prospects of deep learning for medium-range extreme weather forecasting
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 2347–2358, https://doi.org/10.5194/gmd-17-2347-2024,https://doi.org/10.5194/gmd-17-2347-2024, 2024
Short summary
An overview of the Western United States Dynamically Downscaled Dataset (WUS-D3)
Stefan Rahimi, Lei Huang, Jesse Norris, Alex Hall, Naomi Goldenson, Will Krantz, Benjamin Bass, Chad Thackeray, Henry Lin, Di Chen, Eli Dennis, Ethan Collins, Zachary J. Lebo, Emily Slinskey, Sara Graves, Surabhi Biyani, Bowen Wang, Stephen Cropper, and the UCLA Center for Climate Science Team
Geosci. Model Dev., 17, 2265–2286, https://doi.org/10.5194/gmd-17-2265-2024,https://doi.org/10.5194/gmd-17-2265-2024, 2024
Short summary
cloudbandPy 1.0: an automated algorithm for the detection of tropical–extratropical cloud bands
Romain Pilon and Daniela I. V. Domeisen
Geosci. Model Dev., 17, 2247–2264, https://doi.org/10.5194/gmd-17-2247-2024,https://doi.org/10.5194/gmd-17-2247-2024, 2024
Short summary
PyRTlib: an educational Python-based library for non-scattering atmospheric microwave radiative transfer computations
Salvatore Larosa, Domenico Cimini, Donatello Gallucci, Saverio Teodosio Nilo, and Filomena Romano
Geosci. Model Dev., 17, 2053–2076, https://doi.org/10.5194/gmd-17-2053-2024,https://doi.org/10.5194/gmd-17-2053-2024, 2024
Short summary

Cited articles

Chen, X., Leung, L. R., Gao, Y., Liu, Y., Wigmosta, M., and Richmond, M.: Predictability of Extreme Precipitation in Western U.S. Watersheds Based on Atmospheric River Occurrence, Intensity, and Duration, Geophys. Res. Lett., 45, 11693–11701, https://doi.org/10.1029/2018GL079831, 2018. a
Chen, X., Leung, L. R., Wigmosta, M., and Richmond, M.: Impact of Atmospheric Rivers on Surface Hydrological Processes in Western U.S. Watersheds, J. Geophys. Res.-Atmos., 124, 8896–8916, https://doi.org/10.1029/2019JD030468, 2019. a
Dettinger, M.: Climate change, atmospheric rivers, and floods in California – a multimodel analysis of storm frequency and magnitude changes, J. Am. Water Resour. Assoc., 47, 514–523, https://doi.org/10.1111/j.1752-1688.2011.00546.x, 2011. a
Dong, L., Leung, L. R., Song, F., and Lu, J.: Roles of SST versus internal atmospheric variability in winter extreme precipitation variability along the U.S. West Coast, J. Climate, 32, JCLI–D–18–0062.1, https://doi.org/10.1175/JCLI-D-18-0062.1, 2018. a, b
Espinoza, V., Waliser, D. E., Guan, B., Lavers, D. A., and Ralph, F. M.: Global Analysis of Climate Change Projection Effects on Atmospheric Rivers, Geophys. Res. Lett., 45, 4299–4308, https://doi.org/10.1029/2017GL076968, 2018. a
Download
Short summary
Researchers utilize various algorithms to identify extreme weather features in climate data, and we seek to answer this question: given a plausible weather event detector, how does uncertainty in the detector impact scientific results? We generate a suite of statistical models that emulate expert identification of weather features. We find that the connection between El Niño and atmospheric rivers – a specific extreme weather type – depends systematically on the design of the detector.