Articles | Volume 13, issue 12
https://doi.org/10.5194/gmd-13-6131-2020
https://doi.org/10.5194/gmd-13-6131-2020
Model description paper
 | 
03 Dec 2020
Model description paper |  | 03 Dec 2020

Detection of atmospheric rivers with inline uncertainty quantification: TECA-BARD v1.0.1

Travis A. O'Brien, Mark D. Risser, Burlen Loring, Abdelrahman A. Elbashandy, Harinarayan Krishnan, Jeffrey Johnson, Christina M. Patricola, John P. O'Brien, Ankur Mahesh, Prabhat, Sarahí Arriaga Ramirez, Alan M. Rhoades, Alexander Charn, Héctor Inda Díaz, and William D. Collins

Related authors

Huge Ensembles Part I: Design of Ensemble Weather Forecasts using Spherical Fourier Neural Operators
Ankur Mahesh, William Collins, Boris Bonev, Noah Brenowitz, Yair Cohen, Joshua Elms, Peter Harrington, Karthik Kashinath, Thorsten Kurth, Joshua North, Travis O'Brien, Michael Pritchard, David Pruitt, Mark Risser, Shashank Subramanian, and Jared Willard
EGUsphere, https://doi.org/10.48550/arXiv.2408.03100,https://doi.org/10.48550/arXiv.2408.03100, 2024
Short summary
Huge Ensembles Part II: Properties of a Huge Ensemble of Hindcasts Generated with Spherical Fourier Neural Operators
Ankur Mahesh, William Collins, Boris Bonev, Noah Brenowitz, Yair Cohen, Peter Harrington, Karthik Kashinath, Thorsten Kurth, Joshua North, Travis A. O'Brien, Michael Pritchard, David Pruitt, Mark Risser, Shashank Subramanian, and Jared Willard
EGUsphere, https://doi.org/10.48550/arXiv.2408.01581,https://doi.org/10.48550/arXiv.2408.01581, 2024
Short summary
Evaluation of atmospheric rivers in reanalyses and climate models in a new metrics framework
Bo Dong, Paul Ullrich, Jiwoo Lee, Peter Gleckler, Kristin Chang, and Travis O'Brien
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-142,https://doi.org/10.5194/gmd-2024-142, 2024
Preprint under review for GMD
Short summary
Identifying atmospheric rivers and their poleward latent heat transport with generalizable neural networks: ARCNNv1
Ankur Mahesh, Travis A. O'Brien, Burlen Loring, Abdelrahman Elbashandy, William Boos, and William D. Collins
Geosci. Model Dev., 17, 3533–3557, https://doi.org/10.5194/gmd-17-3533-2024,https://doi.org/10.5194/gmd-17-3533-2024, 2024
Short summary
Moving beyond post-hoc XAI: Lessons learned from dynamical climate modeling
Ryan O'Loughlin, Dan Li, and Travis O'Brien
EGUsphere, https://doi.org/10.5194/egusphere-2023-2969,https://doi.org/10.5194/egusphere-2023-2969, 2024
Short summary

Related subject area

Atmospheric sciences
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024,https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024,https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024,https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Assessment of object-based indices to identify convective organization
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024,https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary
The Global Forest Fire Emissions Prediction System version 1.0
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024,https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary

Cited articles

Chen, X., Leung, L. R., Gao, Y., Liu, Y., Wigmosta, M., and Richmond, M.: Predictability of Extreme Precipitation in Western U.S. Watersheds Based on Atmospheric River Occurrence, Intensity, and Duration, Geophys. Res. Lett., 45, 11693–11701, https://doi.org/10.1029/2018GL079831, 2018. a
Chen, X., Leung, L. R., Wigmosta, M., and Richmond, M.: Impact of Atmospheric Rivers on Surface Hydrological Processes in Western U.S. Watersheds, J. Geophys. Res.-Atmos., 124, 8896–8916, https://doi.org/10.1029/2019JD030468, 2019. a
Dettinger, M.: Climate change, atmospheric rivers, and floods in California – a multimodel analysis of storm frequency and magnitude changes, J. Am. Water Resour. Assoc., 47, 514–523, https://doi.org/10.1111/j.1752-1688.2011.00546.x, 2011. a
Dong, L., Leung, L. R., Song, F., and Lu, J.: Roles of SST versus internal atmospheric variability in winter extreme precipitation variability along the U.S. West Coast, J. Climate, 32, JCLI–D–18–0062.1, https://doi.org/10.1175/JCLI-D-18-0062.1, 2018. a, b
Espinoza, V., Waliser, D. E., Guan, B., Lavers, D. A., and Ralph, F. M.: Global Analysis of Climate Change Projection Effects on Atmospheric Rivers, Geophys. Res. Lett., 45, 4299–4308, https://doi.org/10.1029/2017GL076968, 2018. a
Download
Short summary
Researchers utilize various algorithms to identify extreme weather features in climate data, and we seek to answer this question: given a plausible weather event detector, how does uncertainty in the detector impact scientific results? We generate a suite of statistical models that emulate expert identification of weather features. We find that the connection between El Niño and atmospheric rivers – a specific extreme weather type – depends systematically on the design of the detector.