Articles | Volume 13, issue 12
https://doi.org/10.5194/gmd-13-6131-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-6131-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Detection of atmospheric rivers with inline uncertainty quantification: TECA-BARD v1.0.1
Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, Indiana, USA
Climate and Ecosystem Sciences Division, Lawrence Berkeley National Lab, Berkeley, California, USA
Mark D. Risser
Climate and Ecosystem Sciences Division, Lawrence Berkeley National Lab, Berkeley, California, USA
Burlen Loring
Computational Sciences Division, Lawrence Berkeley National Lab, Berkeley, California, USA
Abdelrahman A. Elbashandy
Computational Sciences Division, Lawrence Berkeley National Lab, Berkeley, California, USA
Harinarayan Krishnan
Computational Sciences Division, Lawrence Berkeley National Lab, Berkeley, California, USA
Jeffrey Johnson
Cohere Consulting LLC, Seattle, Washington, USA
Christina M. Patricola
Climate and Ecosystem Sciences Division, Lawrence Berkeley National Lab, Berkeley, California, USA
Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa, USA
John P. O'Brien
Climate and Ecosystem Sciences Division, Lawrence Berkeley National Lab, Berkeley, California, USA
Department of Earth and Planetary Science, University of California, Santa Cruz, California, USA
Ankur Mahesh
Climate and Ecosystem Sciences Division, Lawrence Berkeley National Lab, Berkeley, California, USA
Prabhat
National Energy Research Scientific Computing Center, Lawrence Berkeley National Lab, Berkeley, California, USA
Sarahí Arriaga Ramirez
Climate and Ecosystem Sciences Division, Lawrence Berkeley National Lab, Berkeley, California, USA
Department of Land, Air and Water Resources, University of California, Davis, California, USA
Alan M. Rhoades
Climate and Ecosystem Sciences Division, Lawrence Berkeley National Lab, Berkeley, California, USA
Alexander Charn
Climate and Ecosystem Sciences Division, Lawrence Berkeley National Lab, Berkeley, California, USA
Department of Earth and Planetary Science, University of California, Berkeley, California, USA
Héctor Inda Díaz
Climate and Ecosystem Sciences Division, Lawrence Berkeley National Lab, Berkeley, California, USA
Department of Land, Air and Water Resources, University of California, Davis, California, USA
William D. Collins
Climate and Ecosystem Sciences Division, Lawrence Berkeley National Lab, Berkeley, California, USA
Department of Earth and Planetary Science, University of California, Berkeley, California, USA
Related authors
Ankur Mahesh, William D. Collins, Boris Bonev, Noah Brenowitz, Yair Cohen, Joshua Elms, Peter Harrington, Karthik Kashinath, Thorsten Kurth, Joshua North, Travis O'Brien, Michael Pritchard, David Pruitt, Mark Risser, Shashank Subramanian, and Jared Willard
Geosci. Model Dev., 18, 5575–5603, https://doi.org/10.5194/gmd-18-5575-2025, https://doi.org/10.5194/gmd-18-5575-2025, 2025
Short summary
Short summary
Simulating extreme weather events in a warming world is a challenging task for current weather and climate models. These models' computational cost poses a challenge in studying low-probability extreme weather. We use machine learning to construct a new probabilistic system. We give an in-depth explanation of how we constructed this system. We present a thorough pipeline to validate our method. Our method requires fewer computational resources than existing weather and climate models.
Ankur Mahesh, William D. Collins, Boris Bonev, Noah Brenowitz, Yair Cohen, Peter Harrington, Karthik Kashinath, Thorsten Kurth, Joshua North, Travis A. O'Brien, Michael Pritchard, David Pruitt, Mark Risser, Shashank Subramanian, and Jared Willard
Geosci. Model Dev., 18, 5605–5633, https://doi.org/10.5194/gmd-18-5605-2025, https://doi.org/10.5194/gmd-18-5605-2025, 2025
Short summary
Short summary
We use machine learning emulators to create a massive ensemble of simulated weather extremes. This ensemble provides a large sample size, which is essential to characterize the statistics of extreme weather events and study their physical mechanisms. Also, these ensembles can be beneficial to accurately forecast the probability of low-likelihood extreme weather.
Bo Dong, Paul Ullrich, Jiwoo Lee, Peter Gleckler, Kristin Chang, and Travis A. O'Brien
Geosci. Model Dev., 18, 961–976, https://doi.org/10.5194/gmd-18-961-2025, https://doi.org/10.5194/gmd-18-961-2025, 2025
Short summary
Short summary
A metrics package designed for easy analysis of atmospheric river (AR) characteristics and statistics is presented. The tool is efficient for diagnosing systematic AR bias in climate models and useful for evaluating new AR characteristics in model simulations. In climate models, landfalling AR precipitation shows dry biases globally, and AR tracks are farther poleward (equatorward) in the North and South Atlantic (South Pacific and Indian Ocean).
Ryan J. O'Loughlin, Dan Li, Richard Neale, and Travis A. O'Brien
Geosci. Model Dev., 18, 787–802, https://doi.org/10.5194/gmd-18-787-2025, https://doi.org/10.5194/gmd-18-787-2025, 2025
Short summary
Short summary
We draw from traditional climate modeling practices to make recommendations for machine-learning (ML)-driven climate science. Our intended audience is climate modelers who are relatively new to ML. We show how component-level understanding – obtained when scientists can link model behavior to parts within the overall model – should guide the development and evaluation of ML models. Better understanding yields a stronger basis for trust in the models. We highlight several examples to demonstrate.
Ankur Mahesh, Travis A. O'Brien, Burlen Loring, Abdelrahman Elbashandy, William Boos, and William D. Collins
Geosci. Model Dev., 17, 3533–3557, https://doi.org/10.5194/gmd-17-3533-2024, https://doi.org/10.5194/gmd-17-3533-2024, 2024
Short summary
Short summary
Atmospheric rivers (ARs) are extreme weather events that can alleviate drought or cause billions of US dollars in flood damage. We train convolutional neural networks (CNNs) to detect ARs with an estimate of the uncertainty. We present a framework to generalize these CNNs to a variety of datasets of past, present, and future climate. Using a simplified simulation of the Earth's atmosphere, we validate the CNNs. We explore the role of ARs in maintaining energy balance in the Earth system.
Arjun Babu Nellikkattil, Danielle Lemmon, Travis Allen O'Brien, June-Yi Lee, and Jung-Eun Chu
Geosci. Model Dev., 17, 301–320, https://doi.org/10.5194/gmd-17-301-2024, https://doi.org/10.5194/gmd-17-301-2024, 2024
Short summary
Short summary
This study introduces a new computational framework called Scalable Feature Extraction and Tracking (SCAFET), designed to extract and track features in climate data. SCAFET stands out by using innovative shape-based metrics to identify features without relying on preconceived assumptions about the climate model or mean state. This approach allows more accurate comparisons between different models and scenarios.
Prabhat, Karthik Kashinath, Mayur Mudigonda, Sol Kim, Lukas Kapp-Schwoerer, Andre Graubner, Ege Karaismailoglu, Leo von Kleist, Thorsten Kurth, Annette Greiner, Ankur Mahesh, Kevin Yang, Colby Lewis, Jiayi Chen, Andrew Lou, Sathyavat Chandran, Ben Toms, Will Chapman, Katherine Dagon, Christine A. Shields, Travis O'Brien, Michael Wehner, and William Collins
Geosci. Model Dev., 14, 107–124, https://doi.org/10.5194/gmd-14-107-2021, https://doi.org/10.5194/gmd-14-107-2021, 2021
Short summary
Short summary
Detecting extreme weather events is a crucial step in understanding how they change due to climate change. Deep learning (DL) is remarkable at pattern recognition; however, it works best only when labeled datasets are available. We create
ClimateNet– an expert-labeled curated dataset – to train a DL model for detecting weather events and predicting changes in extreme precipitation. This work paves the way for DL-based automated, high-fidelity, and highly precise analytics of climate data.
Ankur Mahesh, William D. Collins, Boris Bonev, Noah Brenowitz, Yair Cohen, Joshua Elms, Peter Harrington, Karthik Kashinath, Thorsten Kurth, Joshua North, Travis O'Brien, Michael Pritchard, David Pruitt, Mark Risser, Shashank Subramanian, and Jared Willard
Geosci. Model Dev., 18, 5575–5603, https://doi.org/10.5194/gmd-18-5575-2025, https://doi.org/10.5194/gmd-18-5575-2025, 2025
Short summary
Short summary
Simulating extreme weather events in a warming world is a challenging task for current weather and climate models. These models' computational cost poses a challenge in studying low-probability extreme weather. We use machine learning to construct a new probabilistic system. We give an in-depth explanation of how we constructed this system. We present a thorough pipeline to validate our method. Our method requires fewer computational resources than existing weather and climate models.
Ankur Mahesh, William D. Collins, Boris Bonev, Noah Brenowitz, Yair Cohen, Peter Harrington, Karthik Kashinath, Thorsten Kurth, Joshua North, Travis A. O'Brien, Michael Pritchard, David Pruitt, Mark Risser, Shashank Subramanian, and Jared Willard
Geosci. Model Dev., 18, 5605–5633, https://doi.org/10.5194/gmd-18-5605-2025, https://doi.org/10.5194/gmd-18-5605-2025, 2025
Short summary
Short summary
We use machine learning emulators to create a massive ensemble of simulated weather extremes. This ensemble provides a large sample size, which is essential to characterize the statistics of extreme weather events and study their physical mechanisms. Also, these ensembles can be beneficial to accurately forecast the probability of low-likelihood extreme weather.
Bo Dong, Paul Ullrich, Jiwoo Lee, Peter Gleckler, Kristin Chang, and Travis A. O'Brien
Geosci. Model Dev., 18, 961–976, https://doi.org/10.5194/gmd-18-961-2025, https://doi.org/10.5194/gmd-18-961-2025, 2025
Short summary
Short summary
A metrics package designed for easy analysis of atmospheric river (AR) characteristics and statistics is presented. The tool is efficient for diagnosing systematic AR bias in climate models and useful for evaluating new AR characteristics in model simulations. In climate models, landfalling AR precipitation shows dry biases globally, and AR tracks are farther poleward (equatorward) in the North and South Atlantic (South Pacific and Indian Ocean).
Ryan J. O'Loughlin, Dan Li, Richard Neale, and Travis A. O'Brien
Geosci. Model Dev., 18, 787–802, https://doi.org/10.5194/gmd-18-787-2025, https://doi.org/10.5194/gmd-18-787-2025, 2025
Short summary
Short summary
We draw from traditional climate modeling practices to make recommendations for machine-learning (ML)-driven climate science. Our intended audience is climate modelers who are relatively new to ML. We show how component-level understanding – obtained when scientists can link model behavior to parts within the overall model – should guide the development and evaluation of ML models. Better understanding yields a stronger basis for trust in the models. We highlight several examples to demonstrate.
Colin M. Zarzycki, Benjamin D. Ascher, Alan M. Rhoades, and Rachel R. McCrary
Nat. Hazards Earth Syst. Sci., 24, 3315–3335, https://doi.org/10.5194/nhess-24-3315-2024, https://doi.org/10.5194/nhess-24-3315-2024, 2024
Short summary
Short summary
We developed an automated workflow to detect rain-on-snow events, which cause flooding in the northeastern United States, in climate data. Analyzing the Susquehanna River basin, this technique identified known events affecting river flow. Comparing four gridded datasets revealed variations in event frequency and severity, driven by different snowmelt and runoff estimates. This highlights the need for accurate climate data in flood management and risk prediction for these compound extremes.
Ankur Mahesh, Travis A. O'Brien, Burlen Loring, Abdelrahman Elbashandy, William Boos, and William D. Collins
Geosci. Model Dev., 17, 3533–3557, https://doi.org/10.5194/gmd-17-3533-2024, https://doi.org/10.5194/gmd-17-3533-2024, 2024
Short summary
Short summary
Atmospheric rivers (ARs) are extreme weather events that can alleviate drought or cause billions of US dollars in flood damage. We train convolutional neural networks (CNNs) to detect ARs with an estimate of the uncertainty. We present a framework to generalize these CNNs to a variety of datasets of past, present, and future climate. Using a simplified simulation of the Earth's atmosphere, we validate the CNNs. We explore the role of ARs in maintaining energy balance in the Earth system.
Arjun Babu Nellikkattil, Danielle Lemmon, Travis Allen O'Brien, June-Yi Lee, and Jung-Eun Chu
Geosci. Model Dev., 17, 301–320, https://doi.org/10.5194/gmd-17-301-2024, https://doi.org/10.5194/gmd-17-301-2024, 2024
Short summary
Short summary
This study introduces a new computational framework called Scalable Feature Extraction and Tracking (SCAFET), designed to extract and track features in climate data. SCAFET stands out by using innovative shape-based metrics to identify features without relying on preconceived assumptions about the climate model or mean state. This approach allows more accurate comparisons between different models and scenarios.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Zexuan Xu, Erica R. Siirila-Woodburn, Alan M. Rhoades, and Daniel Feldman
Hydrol. Earth Syst. Sci., 27, 1771–1789, https://doi.org/10.5194/hess-27-1771-2023, https://doi.org/10.5194/hess-27-1771-2023, 2023
Short summary
Short summary
The goal of this study is to understand the uncertainties of different modeling configurations for simulating hydroclimate responses in the mountainous watershed. We run a group of climate models with various configurations and evaluate them against various reference datasets. This paper integrates a climate model and a hydrology model to have a full understanding of the atmospheric-through-bedrock hydrological processes.
Fadji Z. Maina, Alan Rhoades, Erica R. Siirila-Woodburn, and Peter-James Dennedy-Frank
Hydrol. Earth Syst. Sci., 26, 3589–3609, https://doi.org/10.5194/hess-26-3589-2022, https://doi.org/10.5194/hess-26-3589-2022, 2022
Short summary
Short summary
In this work, we assess the effects of end-of-century extreme dry and wet conditions on the hydrology of California. Our results, derived from cutting-edge and high-resolution climate and hydrologic models, highlight that (1) water storage will be larger and increase earlier in the year, yet the summer streamflow will decrease as a result of high evapotranspiration rates, and that (2) groundwater and lower-order streams are very sensitive to decreases in snowmelt and higher evapotranspiration.
Benjamin J. Hatchett, Alan M. Rhoades, and Daniel J. McEvoy
Nat. Hazards Earth Syst. Sci., 22, 869–890, https://doi.org/10.5194/nhess-22-869-2022, https://doi.org/10.5194/nhess-22-869-2022, 2022
Short summary
Short summary
Snow droughts, or below-average snowpack, can result from either dry conditions and/or rainfall instead of snowfall. Monitoring snow drought through time and across space is important to evaluate when snow drought onset occurred, its duration, spatial extent, and severity as well as what conditions created it or led to its termination. We present visualization techniques, including a web-based snow-drought-tracking tool, to evaluate snow droughts and assess their impacts in the western US.
Benjamin A. Toms, Karthik Kashinath, Prabhat, and Da Yang
Geosci. Model Dev., 14, 4495–4508, https://doi.org/10.5194/gmd-14-4495-2021, https://doi.org/10.5194/gmd-14-4495-2021, 2021
Short summary
Short summary
We test whether a type of machine learning called neural networks can be used trustfully within the geosciences. We do so by challenging the networks to understand the spatial patterns of a commonly studied geoscientific phenomenon. The neural networks can correctly identify the spatial patterns, which lends confidence that similar networks can be used for more uncertain problems. The results of this study may give geoscientists confidence when using neural networks in their research.
Prabhat, Karthik Kashinath, Mayur Mudigonda, Sol Kim, Lukas Kapp-Schwoerer, Andre Graubner, Ege Karaismailoglu, Leo von Kleist, Thorsten Kurth, Annette Greiner, Ankur Mahesh, Kevin Yang, Colby Lewis, Jiayi Chen, Andrew Lou, Sathyavat Chandran, Ben Toms, Will Chapman, Katherine Dagon, Christine A. Shields, Travis O'Brien, Michael Wehner, and William Collins
Geosci. Model Dev., 14, 107–124, https://doi.org/10.5194/gmd-14-107-2021, https://doi.org/10.5194/gmd-14-107-2021, 2021
Short summary
Short summary
Detecting extreme weather events is a crucial step in understanding how they change due to climate change. Deep learning (DL) is remarkable at pattern recognition; however, it works best only when labeled datasets are available. We create
ClimateNet– an expert-labeled curated dataset – to train a DL model for detecting weather events and predicting changes in extreme precipitation. This work paves the way for DL-based automated, high-fidelity, and highly precise analytics of climate data.
Mark D. Risser and Michael F. Wehner
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 115–139, https://doi.org/10.5194/ascmo-6-115-2020, https://doi.org/10.5194/ascmo-6-115-2020, 2020
Short summary
Short summary
Evaluation of modern high-resolution global climate models often does not account for the geographic location of the underlying weather station data. In this paper, we quantify the impact of geographic sampling on the relative performance of climate model representations of precipitation extremes over the United States. We find that properly accounting for the geographic sampling of weather stations can significantly change the assessment of model performance.
Cited articles
Chen, X., Leung, L. R., Gao, Y., Liu, Y., Wigmosta, M., and Richmond, M.:
Predictability of Extreme Precipitation in Western U.S. Watersheds Based on
Atmospheric River Occurrence, Intensity, and Duration, Geophys. Res.
Lett., 45, 11693–11701, https://doi.org/10.1029/2018GL079831, 2018. a
Chen, X., Leung, L. R., Wigmosta, M., and Richmond, M.: Impact of Atmospheric
Rivers on Surface Hydrological Processes in Western U.S. Watersheds, J. Geophys. Res.-Atmos., 124, 8896–8916,
https://doi.org/10.1029/2019JD030468, 2019. a
Dettinger, M.: Climate change, atmospheric rivers, and floods in California –
a multimodel analysis of storm frequency and magnitude changes, J.
Am. Water Resour. Assoc., 47, 514–523,
https://doi.org/10.1111/j.1752-1688.2011.00546.x, 2011. a
Dong, L., Leung, L. R., Song, F., and Lu, J.: Roles of SST versus internal
atmospheric variability in winter extreme precipitation variability along the
U.S. West Coast, J. Climate, 32, JCLI–D–18–0062.1,
https://doi.org/10.1175/JCLI-D-18-0062.1,
2018. a, b
Espinoza, V., Waliser, D. E., Guan, B., Lavers, D. A., and Ralph, F. M.:
Global Analysis of Climate Change Projection Effects on Atmospheric Rivers,
Geophys. Res. Lett., 45, 4299–4308, https://doi.org/10.1029/2017GL076968,
2018. a
Foreman-Mackey, D., Hogg, D. W., Lang, D., and Goodman, J.: emcee : The MCMC
Hammer, Publ. Astron. Soc. Pac., 125,
306–312, https://doi.org/10.1086/670067, 2013. a, b, c
Gao, Y., Lu, J., Leung, L. R., Yang, Q., Hagos, S., and Qian, Y.: Dynamical
and thermodynamical modulations on future changes of landfalling atmospheric
rivers over western North America, Geophys. Res. Lett., 42,
7179–7186, https://doi.org/10.1002/2015GL065435, 2015. a, b
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert,
S. D., Sienkiewicz, M., and Zhao, B.: The modern-era retrospective analysis
for research and applications, version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a
Gelman, A.: Prior distributions for variance parameters in hierarchical models
(comment on article by Browne and Draper), Bayesian Analysis, 1, 515–534,
https://doi.org/10.1214/06-BA117A, 2006. a
Gershunov, A., Shulgina, T., Ralph, F. M., Lavers, D. A., and Rutz, J. J.:
Assessing the climate-scale variability of atmospheric rivers affecting
western North America, Geophys. Res. Lett., 44, 7900–7908,
https://doi.org/10.1002/2017GL074175, 2017. a, b
Gershunov, A., Shulgina, T., Clemesha, R. E. S., Guirguis, K., Pierce, D. W.,
Dettinger, M. D., Lavers, D. A., Cayan, D. R., Polade, S. D., Kalansky, J.,
and Ralph, F. M.: Precipitation regime change in Western North America: The
role of Atmospheric Rivers, Sci. Rep.-UK, 9, 9944,
https://doi.org/10.1038/s41598-019-46169-w,
2019a. a, b
Gershunov, A., Shulgina, T., Clemesha, R. E. S., Guirguis, K., Pierce, D. W.,
Dettinger, M. D., Lavers, D. A., Cayan, D. R., Polade, S. D., Kalansky, J.,
and Ralph, F. M.: Precipitation regime change in Western North America: The
role of Atmospheric Rivers, Sci. Rep.-UK, 9, 9944,
https://doi.org/10.1038/s41598-019-46169-w, 2019b. a
Goldenson, N., Leung, L. R., Bitz, C. M., and Blanchard-Wrigglesworth, E.:
Influence of Atmospheric Rivers on Mountain Snowpack in the Western United
States, J. Climate, 31, 9921–9940, https://doi.org/10.1175/JCLI-D-18-0268.1,
2018. a, b
Goodman, J. and Weare, J.: Ensemble samplers with affine invariance,
Comm. App. Math. Com. Sc., 5, 65–80,
https://doi.org/10.2140/camcos.2010.5.65, 2010. a, b
Gorodetskaya, I. V., Tsukernik, M., Claes, K., Ralph, M. F., Neff, W. D., and
Van Lipzig, N. P. M.: The role of atmospheric rivers in anomalous snow
accumulation in East Antarctica, Geophys. Res. Lett., 41,
6199–6206, https://doi.org/10.1002/2014GL060881, 2014. a
Guan, B. and Waliser, D. E.: Detection of atmospheric rivers: Evaluation and
application of an algorithm for global studies, J. Geophys.
Res.-Atmos., 120, 12514–12535, https://doi.org/10.1002/2015JD024257,
2015a. a, b
Guan, B. and Waliser, D. E.: Detection of atmospheric rivers: Evaluation and
application of an algorithm for global studies, J. Geophys.
Res.-Atmos., 120, 12514–12535, https://doi.org/10.1002/2015JD024257,
2015b. a, b, c
Hu, H., Dominguez, F., Wang, Z., Lavers, D. A., Zhang, G., and Ralph, F. M.:
Linking Atmospheric River Hydrological Impacts on the U.S. West Coast to
Rossby Wave Breaking, J. Climate, 30, 3381–3399,
https://doi.org/10.1175/JCLI-D-16-0386.1, 2017. a
Huning, L. S., Margulis, S. A., Guan, B., Waliser, D. E., and Neiman, P. J.:
Implications of Detection Methods on Characterizing Atmospheric River
Contribution to Seasonal Snowfall Across Sierra Nevada, USA, Geophys. Res. Lett., 44, 10,445–10,453, https://doi.org/10.1002/2017GL075201, 2017. a, b
Huning, L. S., Guan, B., Waliser, D. E., and Lettenmaier, D. P.: Sensitivity
of Seasonal Snowfall Attribution to Atmospheric Rivers and Their
Reanalysis-Based Detection, Geophys. Res. Lett., 46, 794–803,
https://doi.org/10.1029/2018GL080783, 2019. a
Kunkel, K. E., Easterling, D. R., Kristovich, D. A. R., Gleason, B., Stoecker,
L., and Smith, R.: Meteorological Causes of the Secular Variations in
Observed Extreme Precipitation Events for the Conterminous United States,
J. Hydrometeorol., 13, 1131–1141, https://doi.org/10.1175/JHM-D-11-0108.1,
2012. a
Leung, L.-R. and Qian, Y.: Atmospheric rivers induced heavy precipitation
and flooding in the western U.S. simulated by the WRF regional climate
model, Geophys. Res. Lett., 36, 1–6, https://doi.org/10.1029/2008GL036445,
2009. a
Loring, B., O'Brien, T. A., Elbashandy, A. E., Johnson, J. N., Krishnan, H.,
Keen, N., Prabhat, and SFA, C.: Toolkit for Extreme Climate Analysis – TECA
Bayesian AR Detector v1.0.1, Zenodo, https://doi.org/10.5281/zenodo.4130468, 2020. a, b
Neiman, P. J., Ralph, F. M., Wick, G. A., Lundquist, J. D., and Dettinger,
M. D.: Meteorological characteristics and overland precipitation impacts of
atmospheric rivers affecting the West coast of North America based on eight
years of SSM/I satellite observations, J. Hydrometeorol., 9,
22–47, https://doi.org/10.1175/2007JHM855.1, 2008. a
Neu, U., Akperov, M., Bellenbaum, N., Benestad, R., Blender, R., Caballero, R.,
Cocozza, A., Dacre, H., Feng, Y., Fraedrich, K., Grieger, J., Gulev, S.,
Hanley, J., Hewson, T., Inatsu, M., Keay, K., Kew, S., Kindem, I.,
Leckebusch, G. C., Liberato, M., Lionello, P., Mokhov, I., Pinto, J., Raible,
C., Reale, M., Rudeva, I., Schuster, M., Simmonds, I., Sinclair, M.,
Sprenger, M., Tilinina, N., Trigo, I., Ulbrich, S., Ulbrich, U., Wang, X.,
and Wernli, H.: IMILAST: A Community Effort to Intercompare Extratropical
Cyclone Detection and Tracking Algorithms, B. Am.
Meteorol. Soc., 94, 529–547, https://doi.org/10.1175/BAMS-D-11-00154.1, 2013. a, b
O'Brien, T. A.: TECA Bayesian AR Detector Training, Zenodo,
https://doi.org/10.5281/zenodo.4130486, 2020. a
O'Brien, T. A., Kashinath, K., Cavanaugh, N. R., Collins, W. D., and O'Brien,
J. P.: A fast and objective multidimensional kernel density estimation
method: FastKDE, Computational Statistics and Data Analysis, 101, 148–160,
https://doi.org/10.1016/j.csda.2016.02.014,
2016. a
O'Brien, T. A., Patricola, C. M., O'Brien, J. P., Mahesh, A., Arriaga-Ramirez,
S., Rhoades, A. M., Charn, A., and Inda-Diaz, H.: Expert AR Detector Counts, Zenodo,
https://doi.org/10.5281/zenodo.4130559, 2020a. a
O'Brien, T. A., Payne, A. E., Shields, C. A., Rutz, J., Brands, S., Castellano,
C., Chen, J., Cleveland, W., DeFlorio, M. J., Goldenson, N., Gorodetskaya,
I. V., Díaz, H. I., Kashinath, K., Kawzenuk, B., Kim, S., Krinitskiy,
M., Lora, J. M., McClenny, B., Michaelis, A., O'Brien, J. P., Patricola,
C. M., Ramos, A. M., Shearer, E. J., Tung, W.-w., Ullrich, P. A., Wehner,
M. F., Yang, K., Zhang, R., Zhang, Z., and Zhou, Y.: Detection Uncertainty
Matters for Understanding Atmospheric Rivers, B. Am.
Meteorol. Soc., 101, E790–E796, https://doi.org/10.1175/BAMS-D-19-0348.1,
2020b. a
Patricola, C. M., O'Brien, J. P., Risser, M. D., Rhoades, A. M., O'Brien, T. A., Ullrich, P. A., Stone, D. A., and Collins, W. D.: Maximizing ENSO as a source of western US hydroclimate predictability, Clim. Dynam., 54, 351–372, https://doi.org/10.1007/s00382-019-05004-8, 2020. a
Payne, A. E. and Magnusdottir, G.: An evaluation of atmospheric rivers over
the North Pacific in CMIP5 and their response to warming under RCP 8.5,
J. Geophys. Res., 120, 11173–11190,
https://doi.org/10.1002/2015JD023586, 2015. a
Payne, A. E., Demory, M.-E., Leung, L. R., Ramos, A. M., Shields, C. A., Rutz,
J. J., Siler, N., Villarini, G., Hall, A., and Ralph, F. M.: Responses and
impacts of atmospheric rivers to climate change, Nat. Rev. Earth
Environ., 1, 143–157, https://doi.org/10.1038/s43017-020-0030-5, 2020. a, b, c
Prabhat, Kashinath, K., Mudigonda, M., Kim, S., Kapp-Schwoerer, L., Graubner, A., Karaismailoglu, E., von Kleist, L., Kurth, T., Greiner, A., Yang, K., Lewis, C., Chen, J., Lou, A., Chandran, S., Toms, B., Chapman, W., Dagon, K., Shields, C. A., O'Brien, T., Wehner, M., and Collins, W.: ClimateNet: an expert-labelled open dataset and Deep Learning architecture for enabling high-precision analyses of extreme weather, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-72, in review, 2020. a, b, c
Ralph, F. M., Coleman, T., Neiman, P. J., Zamora, R. J., and Dettinger, M. D.:
Observed Impacts of Duration and Seasonality of Atmospheric-River Landfalls
on Soil Moisture and Runoff in Coastal Northern California, J.
Hydrometeorol., 14, 443–459, https://doi.org/10.1175/JHM-D-12-076.1,
2013. a
Ralph, F. M., Dettinger, M. D., Cairns, M. M., Galarneau, T. J., and Eylander,
J.: Defining “Atmospheric River”: How the Glossary of Meteorology Helped
Resolve a Debate, B. Am. Meteorol. Soc., 99,
837–839, https://doi.org/10.1175/BAMS-D-17-0157.1, 2018. a
Ralph, F. M., Rutz, J. J., Cordeira, J. M., Dettinger, M., Anderson, M.,
Reynolds, D., Schick, L. J., and Smallcomb, C.: A Scale to Characterize the
Strength and Impacts of Atmospheric Rivers, B. Am.
Meteorol. Soc., 100, 269–289, https://doi.org/10.1175/BAMS-D-18-0023.1,
2019a. a
Ralph, F. M., Wilson, A. M., Shulgina, T., Kawzenuk, B., Sellars, S., Rutz,
J. J., Lamjiri, M. A., Barnes, E. A., Gershunov, A., Guan, B., Nardi, K. M.,
Osborne, T., and Wick, G. A.: ARTMIP-early start comparison of atmospheric
river detection tools: how many atmospheric rivers hit northern California's
Russian River watershed?, Clim. Dynam., 52, 4973–4994,
https://doi.org/10.1007/s00382-018-4427-5, 2019b. a, b, c, d, e
Rutz, J. J., Steenburgh, W. J., and Ralph, F. M.: Climatological
Characteristics of Atmospheric Rivers and Their Inland Penetration over the
Western United States, Mon. Weather Rev., 142, 905–921,
https://doi.org/10.1175/MWR-D-13-00168.1,
2014. a, b
Rutz, J. J., Shields, C. A., Lora, J. M., Payne, A. E., Guan, B., Ullrich, P.,
O'Brien, T., Leung, L. R., Ralph, F. M., Wehner, M., Brands, S., Collow, A.,
Goldenson, N., Gorodetskaya, I., Griffith, H., Kashinath, K., Kawzenuk, B.,
Krishnan, H., Kurlin, V., Lavers, D., Magnusdottir, G., Mahoney, K.,
McClenny, E., Muszynski, G., Nguyen, P. D., Prabhat, Qian, Y., Ramos, A. M.,
Sarangi, C., Sellars, S., Shulgina, T., Tome, R., Waliser, D., Walton, D.,
Wick, G., Wilson, A. M., and Viale, M.: The Atmospheric River Tracking
Method Intercomparison Project (ARTMIP): Quantifying Uncertainties in
Atmospheric River Climatology, J. Geophys. Res.-Atmos.,
53, 2019JD030936, https://doi.org/10.1029/2019JD030936,
2019. a, b, c
Schemm, S., Sprenger, M., and Wernli, H.: When during Their Life Cycle Are
Extratropical Cyclones Attended by Fronts?, B. Am.
Meteorol. Soc., 99, 149–165, https://doi.org/10.1175/BAMS-D-16-0261.1,
2018. a, b
Sellars, S. L., Kawzenuk, B., Nguyen, P., Ralph, F. M., and Sorooshian, S.:
Genesis, Pathways, and Terminations of Intense Global Water Vapor Transport
in Association with Large-Scale Climate Patterns, Geophys. Res. Lett., 44, 12465–12475, https://doi.org/10.1002/2017GL075495, 2017. a
Shields, C. A. and Kiehl, J. T.: Simulating the Pineapple Express in the half
degree Community Climate System Model, CCSM4, Geophys. Res. Lett.,
43, 7767–7773, https://doi.org/10.1002/2016GL069476, 2016. a
Shields, C. A., Rutz, J. J., Leung, L.-Y., Ralph, F. M., Wehner, M., Kawzenuk, B., Lora, J. M., McClenny, E., Osborne, T., Payne, A. E., Ullrich, P., Gershunov, A., Goldenson, N., Guan, B., Qian, Y., Ramos, A. M., Sarangi, C., Sellars, S., Gorodetskaya, I., Kashinath, K., Kurlin, V., Mahoney, K., Muszynski, G., Pierce, R., Subramanian, A. C., Tome, R., Waliser, D., Walton, D., Wick, G., Wilson, A., Lavers, D., Prabhat, Collow, A., Krishnan, H., Magnusdottir, G., and Nguyen, P.: Atmospheric River Tracking Method Intercomparison Project (ARTMIP): project goals and experimental design, Geosci. Model Dev., 11, 2455–2474, https://doi.org/10.5194/gmd-11-2455-2018, 2018. a, b, c, d, e
Shields, C. A., Rosenbloom, N., Bates, S., Hannay, C., Hu, A., Payne, A. E.,
Rutz, J. J., and Truesdale, J.: Meridional Heat Transport During Atmospheric
Rivers in High-Resolution CESM Climate Projections, Geophys. Res. Lett., 46, 14702–14712, https://doi.org/10.1029/2019GL085565,
2019a. a
Shields, C. A., Rutz, J. J., Leung, L. R., Ralph, F. M., Wehner, M., O'Brien,
T., and Pierce, R.: Defining Uncertainties through Comparison of Atmospheric
River Tracking Methods, Bulletin of the American Meteorological Society,
100, ES93–ES96, https://doi.org/10.1175/BAMS-D-18-0200.1,
2019b. a
Vishnu, S., Boos, W. R., Ullrich, P. A., and O'Brien, T. A.: Assessing Historical Variability of South Asian Monsoon Lows and Depressions With an Optimized Tracking Algorithm, J. Geophys. Res.-Atmos., 125, e2020JD032977, https://doi.org/10.1029/2020JD032977, 2020. a, b
Waliser, D. E., Moncrieff, M. W., Burridge, D., Fink, A. H., Gochis, D.,
Goswami, B. N., Guan, B., Harr, P., Heming, J., Hsu, H.-H., Jakob, C.,
Janiga, M., Johnson, R., Jones, S., Knippertz, P., Marengo, J., Nguyen, H.,
Pope, M., Serra, Y., Thorncroft, C., Wheeler, M., Wood, R., and Yuter, S.:
The “Year” of Tropical Convection (May 2008–April 2010): Climate
Variability and Weather Highlights, B. Am. Meteorol.
Soc., 93, 1189–1218, https://doi.org/10.1175/2011BAMS3095.1,
2012.
a
Walsh, K., Camargo, S., Vecchi, G., Daloz, A., Elsner, J., Emanuel, K., Horn,
M., Lim, Y.-K., Roberts, M., Patricola, C., Scoccimarro, E., Sobel, A.,
Strazzo, S., Villarini, G., Wehner, M., Zhao, M., Kossin, J., LaRow, T.,
Oouchi, K., Schubert, S., Wang, H., Bacmeister, J., Chang, P., Chauvin, F.,
Jablonowski, C., Kumar, A., Murakami, H., Ose, T., Reed, K., Saravanan, R.,
Yamada, Y., Zarzycki, C., Vidale, P., Jonas, J., and Henderson, N.:
Hurricanes and Climate: The U.S. CLIVAR Working Group on Hurricanes,
B. Am. Meteorol. Soc., 96, 997–1017,
https://doi.org/10.1175/BAMS-D-13-00242.1, 2015. a, b
Warner, M. D., Mass, C. F., and Salathé, E. P.: Changes in Winter
Atmospheric Rivers along the North American West Coast in CMIP5 Climate
Models, J. Hydrometeorol., 16, 118–128,
https://doi.org/10.1175/JHM-D-14-0080.1,
2015. a
Wehner, M. F., Reed, K. A., Loring, B., Stone, D., and Krishnan, H.: Changes in tropical cyclones under stabilized 1.5 and 2.0 ∘C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols, Earth Syst. Dynam., 9, 187–195, https://doi.org/10.5194/esd-9-187-2018, 2018. a
Williams, I. N. and Patricola, C. M.: Diversity of ENSO Events Unified by
Convective Threshold Sea Surface Temperature: A Nonlinear ENSO Index,
Geophys. Res. Lett., 45, 9236–9244, https://doi.org/10.1029/2018GL079203, 2018. a
Zarzycki, C. M. and Ullrich, P. A.: Assessing sensitivities in algorithmic
detection of tropical cyclones in climate data, Geophys. Res. Lett., 44, 1141–1149, https://doi.org/10.1002/2016GL071606, 2017. a, b
Zarzycki, C. M., Thatcher, D. R., and Jablonowski, C.: Objective tropical
cyclone extratropical transition detection in high-resolution reanalysis and
climate model data, J. Adv. Model. Earth Syst., 9,
130–148, https://doi.org/10.1002/2016MS000775, 2017. a
Zhou, Y., O'Brien, T. A., Ullrich, P. A., Collins, W. D., Patricola, C. M., and Rhoades, A. M.: Uncertainties in Atmospheric River Life Cycles by Detection Algorithms: Climatology and Variability, J. Geophys. Res.-Atmos., in review, https://doi.org/10.1002/essoar.10504174.1, 2020. a
Zhu, Y. and Newell, R. E.: A Proposed Algorithm for Moisture Fluxes from
Atmospheric Rivers, Mon. Weather Rev., 126, 725–735,
https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2,
1998. a, b, c, d
Short summary
Researchers utilize various algorithms to identify extreme weather features in climate data, and we seek to answer this question: given a
plausibleweather event detector, how does uncertainty in the detector impact scientific results? We generate a suite of statistical models that emulate expert identification of weather features. We find that the connection between El Niño and atmospheric rivers – a specific extreme weather type – depends systematically on the design of the detector.
Researchers utilize various algorithms to identify extreme weather features in climate data, and...