Articles | Volume 13, issue 12
https://doi.org/10.5194/gmd-13-5897-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-5897-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sensitivity of aerosol optical properties to the aerosol size distribution over central Europe and the Mediterranean Basin using the WRF-Chem v.3.9.1.1 coupled model
Laura Palacios-Peña
CORRESPONDING AUTHOR
Physics of the Earth, Regional Campus of International Excellence (CEIT) “Campus Mare Nostrum”, University of Murcia,
Murcia , Spain
Jerome D. Fast
Pacific Northwest National Laboratory, Richland, WA, USA
Enrique Pravia-Sarabia
Physics of the Earth, Regional Campus of International Excellence (CEIT) “Campus Mare Nostrum”, University of Murcia,
Murcia , Spain
Pedro Jiménez-Guerrero
Physics of the Earth, Regional Campus of International Excellence (CEIT) “Campus Mare Nostrum”, University of Murcia,
Murcia , Spain
Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
Related authors
Patricia Tarín-Carrasco, Ulas Im, Camilla Geels, Laura Palacios-Peña, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 22, 3945–3965, https://doi.org/10.5194/acp-22-3945-2022, https://doi.org/10.5194/acp-22-3945-2022, 2022
Short summary
Short summary
The evidence of the effects of atmospheric pollution (and particularly fine particulate matter, PM2.5) on human mortality is now unquestionable. Here, 895 000 annual premature deaths (PD) are estimated for the present (1991–2010), which increases to 1 540 000 in the year 2050 due to the ageing of the European population. The implementation of a mitigation scenario (80 % of the energy production in Europe from renewable sources) could lead to a decrease of over 60 000 annual PD for the year 2050.
Patricia Tarín-Carrasco, Sofia Augusto, Laura Palacios-Peña, Nuno Ratola, and Pedro Jiménez-Guerrero
Nat. Hazards Earth Syst. Sci., 21, 2867–2880, https://doi.org/10.5194/nhess-21-2867-2021, https://doi.org/10.5194/nhess-21-2867-2021, 2021
Short summary
Short summary
Uncontrolled wildfires have a substantial impact on the environment and local populations. Although most southern European countries have been impacted by wildfires in the last decades, Portugal has the highest percentage of burned area compared to its whole territory. Under this umbrella, associations between large fires, PM10, and all-cause and cause-specific mortality (circulatory and respiratory) have been explored using Poisson regression models for 2001–2016.
Sonia Jerez, Laura Palacios-Peña, Claudia Gutiérrez, Pedro Jiménez-Guerrero, Jose María López-Romero, Enrique Pravia-Sarabia, and Juan Pedro Montávez
Geosci. Model Dev., 14, 1533–1551, https://doi.org/10.5194/gmd-14-1533-2021, https://doi.org/10.5194/gmd-14-1533-2021, 2021
Short summary
Short summary
This research explores the role of aerosols when modeling surface solar radiation at regional scales (over Europe). A set of model experiments was performed with and without dynamical modeling of atmospheric aerosols and their direct and indirect effects on radiation. Results showed significant differences in the simulated solar radiation, mainly driven by the aerosol impact on cloudiness, which calls for caution when interpreting model experiments that do not include aerosols.
José María López-Romero, Juan Pedro Montávez, Sonia Jerez, Raquel Lorente-Plazas, Laura Palacios-Peña, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 21, 415–430, https://doi.org/10.5194/acp-21-415-2021, https://doi.org/10.5194/acp-21-415-2021, 2021
Short summary
Short summary
The effect of aerosols on regional climate simulations presents large uncertainties due to their complex and non-linear interactions with a wide variety of factors, including aerosol–radiation and aerosol–cloud interactions. We show how these interactions are strongly conditioned by the meteorological situation and the type of aerosol. While natural aerosols tend to increase precipitation in some areas, anthropogenic aerosols decrease the number of rainy days in some pollutant regions.
Laura Palacios-Peña, Philip Stier, Raquel Lorente-Plazas, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 20, 9679–9700, https://doi.org/10.5194/acp-20-9679-2020, https://doi.org/10.5194/acp-20-9679-2020, 2020
Short summary
Short summary
It is widely known that the impact of aerosol–radiation and aerosol–cloud interactions on the radiative forcing is subject to large uncertainties. This is mainly due to the lack of understanding of aerosol optical properties and vertical distribution, whose uncertainties come from different processes. This work attempts to quantify the sensitivity of aerosol optical properties and their vertical distribution to key physico-chemical processes.
Patricia Tarín-Carrasco, María Morales-Suárez-Varela, Ulas Im, Jørgen Brandt, Laura Palacios-Peña, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 19, 9385–9398, https://doi.org/10.5194/acp-19-9385-2019, https://doi.org/10.5194/acp-19-9385-2019, 2019
Short summary
Short summary
Air pollution has important implications for human health and external societal costs and is closely related to climate change. This work assesses the impacts of present and future air pollution on several cardiovascular and respiratory pathologies and estimates the costs associated with these health impacts on the European population. Premature deaths are the most important problem in terms of cases and costs (418 700 cases and EUR 158 billion per year, increasing by 17 % in the future).
Laura Palacios-Peña, Pedro Jiménez-Guerrero, Rocío Baró, Alessandra Balzarini, Roberto Bianconi, Gabriele Curci, Tony Christian Landi, Guido Pirovano, Marje Prank, Angelo Riccio, Paolo Tuccella, and Stefano Galmarini
Atmos. Chem. Phys., 19, 2965–2990, https://doi.org/10.5194/acp-19-2965-2019, https://doi.org/10.5194/acp-19-2965-2019, 2019
Short summary
Short summary
The main uncertainties regarding the estimation of changes in the Earth’s energy budget are related to the role of atmospheric aerosols. Our study evaluates the representation of aerosol optical properties by different atmospheric chemistry models against remote-sensing observations in order to reduce this uncertainty. Results show that the representation of aerosol optical properties is strongly dependent on the used model.
Gabriele Curci, Ummugulsum Alyuz, Rocio Barò, Roberto Bianconi, Johannes Bieser, Jesper H. Christensen, Augustin Colette, Aidan Farrow, Xavier Francis, Pedro Jiménez-Guerrero, Ulas Im, Peng Liu, Astrid Manders, Laura Palacios-Peña, Marje Prank, Luca Pozzoli, Ranjeet Sokhi, Efisio Solazzo, Paolo Tuccella, Alper Unal, Marta G. Vivanco, Christian Hogrefe, and Stefano Galmarini
Atmos. Chem. Phys., 19, 181–204, https://doi.org/10.5194/acp-19-181-2019, https://doi.org/10.5194/acp-19-181-2019, 2019
Short summary
Short summary
Atmospheric carbonaceous aerosols are able to absorb solar radiation and they continue to contribute some of the largest uncertainties in projected climate change. One important detail is how the chemical species are arranged inside each particle, i.e. the knowledge of their mixing state. We use an ensemble of regional model simulations to test different mixing state assumptions and found that a combination of internal and external mixing may better reproduce sunphotometer observations.
Rocío Baró, Pedro Jiménez-Guerrero, Martin Stengel, Dominik Brunner, Gabriele Curci, Renate Forkel, Lucy Neal, Laura Palacios-Peña, Nicholas Savage, Martijn Schaap, Paolo Tuccella, Hugo Denier van der Gon, and Stefano Galmarini
Atmos. Chem. Phys., 18, 15183–15199, https://doi.org/10.5194/acp-18-15183-2018, https://doi.org/10.5194/acp-18-15183-2018, 2018
Short summary
Short summary
Particles in the atmosphere, such as pollution, desert dust, and volcanic ash, have an impact on meteorology. They interact with incoming radiation resulting in a cooling effect of the atmosphere. Today, the use of meteorology and chemistry models help us to understand these processes, but there are a lot of uncertainties. The goal of this work is to evaluate how these interactions are represented in the models by comparing them to satellite data to see how close they are to reality.
Ulas Im, Jesper Heile Christensen, Camilla Geels, Kaj Mantzius Hansen, Jørgen Brandt, Efisio Solazzo, Ummugulsum Alyuz, Alessandra Balzarini, Rocio Baro, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Augustin Colette, Gabriele Curci, Aidan Farrow, Johannes Flemming, Andrea Fraser, Pedro Jimenez-Guerrero, Nutthida Kitwiroon, Peng Liu, Uarporn Nopmongcol, Laura Palacios-Peña, Guido Pirovano, Luca Pozzoli, Marje Prank, Rebecca Rose, Ranjeet Sokhi, Paolo Tuccella, Alper Unal, Marta G. Vivanco, Greg Yarwood, Christian Hogrefe, and Stefano Galmarini
Atmos. Chem. Phys., 18, 8929–8952, https://doi.org/10.5194/acp-18-8929-2018, https://doi.org/10.5194/acp-18-8929-2018, 2018
Short summary
Short summary
We evaluate the impact of global and regional anthropogenic emission reductions on major air pollutant levels over Europe and North America, using a multi-model ensemble of regional chemistry and transport models. Results show that ozone levels are largely driven by long-range transport over both continents while other pollutants such as carbon monoxide or aerosols are mainly controlled by domestic sources. Use of multi-model ensembles can help to reduce the uncertainties in individual models.
Stefano Galmarini, Ioannis Kioutsioukis, Efisio Solazzo, Ummugulsum Alyuz, Alessandra Balzarini, Roberto Bellasio, Anna M. K. Benedictow, Roberto Bianconi, Johannes Bieser, Joergen Brandt, Jesper H. Christensen, Augustin Colette, Gabriele Curci, Yanko Davila, Xinyi Dong, Johannes Flemming, Xavier Francis, Andrea Fraser, Joshua Fu, Daven K. Henze, Christian Hogrefe, Ulas Im, Marta Garcia Vivanco, Pedro Jiménez-Guerrero, Jan Eiof Jonson, Nutthida Kitwiroon, Astrid Manders, Rohit Mathur, Laura Palacios-Peña, Guido Pirovano, Luca Pozzoli, Marie Prank, Martin Schultz, Rajeet S. Sokhi, Kengo Sudo, Paolo Tuccella, Toshihiko Takemura, Takashi Sekiya, and Alper Unal
Atmos. Chem. Phys., 18, 8727–8744, https://doi.org/10.5194/acp-18-8727-2018, https://doi.org/10.5194/acp-18-8727-2018, 2018
Short summary
Short summary
An ensemble of model results relating to ozone concentrations in Europe in 2010 has been produced and studied. The novelty consists in the fact that the ensemble is made of results of models working at two different scales (regional and global), therefore contributing in detail two different parts of the atmospheric spectrum. The ensemble defined as a hybrid has been studied in detail and shown to bring additional value to the assessment of air quality.
Laura Palacios-Peña, Rocío Baró, Alexander Baklanov, Alessandra Balzarini, Dominik Brunner, Renate Forkel, Marcus Hirtl, Luka Honzak, José María López-Romero, Juan Pedro Montávez, Juan Luis Pérez, Guido Pirovano, Roberto San José, Wolfram Schröder, Johannes Werhahn, Ralf Wolke, Rahela Žabkar, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 18, 5021–5043, https://doi.org/10.5194/acp-18-5021-2018, https://doi.org/10.5194/acp-18-5021-2018, 2018
Short summary
Short summary
Atmospheric aerosols modify the radiative budget of the Earth, and it is therefore mandatory to have an accurate representation of their optical properties for understanding their climatic role. This work therefore evaluates the skill in the representation of optical properties by different remote-sensing sensors and regional online coupled chemistry–climate models over Europe.
Rocío Baró, Laura Palacios-Peña, Alexander Baklanov, Alessandra Balzarini, Dominik Brunner, Renate Forkel, Marcus Hirtl, Luka Honzak, Juan Luis Pérez, Guido Pirovano, Roberto San José, Wolfram Schröder, Johannes Werhahn, Ralf Wolke, Rahela Žabkar, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 17, 9677–9696, https://doi.org/10.5194/acp-17-9677-2017, https://doi.org/10.5194/acp-17-9677-2017, 2017
Short summary
Short summary
The influence on modeled max., mean and min. temperature over Europe of including aerosol–radiation–cloud interactions has been assessed for two case studies in 2010. Data were taken from an ensemble of online regional chemistry–climate models from EuMetChem COST Action. The results indicate that including these interactions clearly improves the spatiotemporal variability in the temperature signal simulated by the models, with implications for reducing the uncertainty in climate projections.
Laura Palacios-Peña, Rocío Baró, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Dominik Brunner, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 17, 277–296, https://doi.org/10.5194/acp-17-277-2017, https://doi.org/10.5194/acp-17-277-2017, 2017
Short summary
Short summary
The effects of atmospheric aerosols over the Earth’s climate mainly depend on their optical, microphysical and chemical properties, which modify the Earth's radiative budget, the main source of uncertainty in climate change. In this work we have studied the representation of aerosol optical properties using an online coupled model (WRF-Chem) when aerosol–radiation interactions (ARIs) and aerosol–clouds interactions (ACIs) are taken into account over the Iberian Peninsula.
Jerome D. Fast, Adam C. Varble, Fan Mei, Mikhail Pekour, Jason Tomlinson, Alla Zelenyuk, Art J. Sedlacek III, Maria Zawadowicz, and Louisa Emmons
Atmos. Chem. Phys., 24, 13477–13502, https://doi.org/10.5194/acp-24-13477-2024, https://doi.org/10.5194/acp-24-13477-2024, 2024
Short summary
Short summary
Aerosol property measurements recently collected on the ground and by a research aircraft in central Argentina during the Cloud, Aerosol, and Complex Terrain Interactions (CACTI) campaign exhibit large spatial and temporal variability. These measurements coupled with coincident meteorological information provide a valuable data set needed to evaluate and improve model predictions of aerosols in a traditionally data-sparse region of South America.
Fan Mei, Jennifer M. Comstock, Mikhail S. Pekour, Jerome D. Fast, Krista L. Gaustad, Beat Schmid, Shuaiqi Tang, Damao Zhang, John E. Shilling, Jason M. Tomlinson, Adam C. Varble, Jian Wang, L. Ruby Leung, Lawrence Kleinman, Scot Martin, Sebastien C. Biraud, Brian D. Ermold, and Kenneth W. Burk
Earth Syst. Sci. Data, 16, 5429–5448, https://doi.org/10.5194/essd-16-5429-2024, https://doi.org/10.5194/essd-16-5429-2024, 2024
Short summary
Short summary
Our study explores a comprehensive dataset from airborne field studies (2013–2018) conducted using the US Department of Energy's Gulfstream 1 (G-1). The 236 flights span diverse regions, including the Arctic, US Southern Great Plains, US West Coast, eastern North Atlantic, Amazon Basin in Brazil, and Sierras de Córdoba range in Argentina. This dataset provides unique insights into atmospheric dynamics, aerosols, and clouds and makes data available in a more accessible format.
Robert S. Arthur, Alex Rybchuk, Timothy W. Juliano, Gabriel Rios, Sonia Wharton, Julie K. Lundquist, and Jerome D. Fast
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-137, https://doi.org/10.5194/wes-2024-137, 2024
Preprint under review for WES
Short summary
Short summary
This paper evaluates a new model configuration for wind energy forecasting in complex terrain. We compare model results to observations in the Altamont Pass (California, USA), where wind channeling through a mountain pass leads to increased energy production. We show evidence of improved wind speed and turbulence predictions compared to a more established modeling approach. Our work helps to ensure the robustness of the new model configuration for future wind energy applications.
Fan Mei, Qi Zhang, Damao Zhang, Jerome Fast, Gourihar Kulkarni, Mikhail Pekour, Christopher Niedek, Susanne Glienke, Isarel Silber, Beat Schmid, Jason Tomlinson, Hardeep Mehta, Xena Mansoura, Zezhen Cheng, Gregory Vandergrift, Nurun Nahar Lata, Swarup China, and Zihua Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3089, https://doi.org/10.5194/egusphere-2024-3089, 2024
Short summary
Short summary
This study highlights the unique capability of the ArcticShark UAS in measuring vertically resolved atmospheric properties over the Southern Great Plains. Data from 32 research flights in 2023 reveal seasonal patterns and correlations with conventional measurements. The consistency and complementarity of in situ and remote sensing methods are highlighted. The study demonstrates the ArcticShark’s versatility in bridging data gaps and improving the understanding of vertical atmospheric structures.
Matthew W. Christensen, Peng Wu, Adam C. Varble, Heng Xiao, and Jerome D. Fast
Atmos. Chem. Phys., 24, 6455–6476, https://doi.org/10.5194/acp-24-6455-2024, https://doi.org/10.5194/acp-24-6455-2024, 2024
Short summary
Short summary
Clouds are essential to keep Earth cooler by reflecting sunlight back to space. We show that an increase in aerosol concentration suppresses precipitation in clouds, causing them to accumulate water and expand in a polluted environment with stronger turbulence and radiative cooling. This process enhances their reflectance by 51 %. It is therefore prudent to account for cloud fraction changes in assessments of aerosol–cloud interactions to improve predictions of climate change.
Eloisa Raluy-López, Juan Pedro Montávez, and Pedro Jiménez-Guerrero
Geosci. Model Dev., 17, 1469–1495, https://doi.org/10.5194/gmd-17-1469-2024, https://doi.org/10.5194/gmd-17-1469-2024, 2024
Short summary
Short summary
Atmospheric rivers (ARs) represent a significant source of water but are also related to extreme precipitation events. Here, we present a new regional-scale AR identification algorithm and apply it to three simulations that include aerosol interactions at different levels. The results show that aerosols modify the intensity and trajectory of ARs and redistribute the AR-related precipitation. Thus, the correct inclusion of aerosol effects is important in the simulation of AR behavior.
Yang Wang, Chanakya Bagya Ramesh, Scott E. Giangrande, Jerome Fast, Xianda Gong, Jiaoshi Zhang, Ahmet Tolga Odabasi, Marcus Vinicius Batista Oliveira, Alyssa Matthews, Fan Mei, John E. Shilling, Jason Tomlinson, Die Wang, and Jian Wang
Atmos. Chem. Phys., 23, 15671–15691, https://doi.org/10.5194/acp-23-15671-2023, https://doi.org/10.5194/acp-23-15671-2023, 2023
Short summary
Short summary
We report the vertical profiles of aerosol properties over the Southern Great Plains (SGP), a region influenced by shallow convective clouds, land–atmosphere interactions, boundary layer turbulence, and the aerosol life cycle. We examined the processes that drive the aerosol population and distribution in the lower troposphere over the SGP. This study helps improve our understanding of aerosol–cloud interactions and the model representation of aerosol processes.
Shuaiqi Tang, Adam C. Varble, Jerome D. Fast, Kai Zhang, Peng Wu, Xiquan Dong, Fan Mei, Mikhail Pekour, Joseph C. Hardin, and Po-Lun Ma
Geosci. Model Dev., 16, 6355–6376, https://doi.org/10.5194/gmd-16-6355-2023, https://doi.org/10.5194/gmd-16-6355-2023, 2023
Short summary
Short summary
To assess the ability of Earth system model (ESM) predictions, we developed a tool called ESMAC Diags to understand how aerosols, clouds, and aerosol–cloud interactions are represented in ESMs. This paper describes its version 2 functionality. We compared the model predictions with measurements taken by planes, ships, satellites, and ground instruments over four regions across the world. Results show that this new tool can help identify model problems and guide future development of ESMs.
Adam C. Varble, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Shuaiqi Tang, and Jerome Fast
Atmos. Chem. Phys., 23, 13523–13553, https://doi.org/10.5194/acp-23-13523-2023, https://doi.org/10.5194/acp-23-13523-2023, 2023
Short summary
Short summary
We evaluate how clouds change in response to changing atmospheric particle (aerosol) concentrations in a climate model and find that the model-predicted cloud brightness increases too much as aerosols increase because the cloud drop number increases too much. Excessive drizzle in the model mutes this difference. Many differences between observational and model estimates are explained by varying assumptions of how much liquid has been lost in clouds, which impacts the estimated cloud drop number.
Chupeng Zhang, Shangfei Hai, Yang Gao, Yuhang Wang, Shaoqing Zhang, Lifang Sheng, Bin Zhao, Shuxiao Wang, Jingkun Jiang, Xin Huang, Xiaojing Shen, Junying Sun, Aura Lupascu, Manish Shrivastava, Jerome D. Fast, Wenxuan Cheng, Xiuwen Guo, Ming Chu, Nan Ma, Juan Hong, Qiaoqiao Wang, Xiaohong Yao, and Huiwang Gao
Atmos. Chem. Phys., 23, 10713–10730, https://doi.org/10.5194/acp-23-10713-2023, https://doi.org/10.5194/acp-23-10713-2023, 2023
Short summary
Short summary
New particle formation is an important source of atmospheric particles, exerting critical influences on global climate. Numerical models are vital tools to understanding atmospheric particle evolution, which, however, suffer from large biases in simulating particle numbers. Here we improve the model chemical processes governing particle sizes and compositions. The improved model reveals substantial contributions of newly formed particles to climate through effects on cloud condensation nuclei.
Matthew W. Christensen, Po-Lun Ma, Peng Wu, Adam C. Varble, Johannes Mülmenstädt, and Jerome D. Fast
Atmos. Chem. Phys., 23, 2789–2812, https://doi.org/10.5194/acp-23-2789-2023, https://doi.org/10.5194/acp-23-2789-2023, 2023
Short summary
Short summary
An increase in aerosol concentration (tiny airborne particles) is shown to suppress rainfall and increase the abundance of droplets in clouds passing over Graciosa Island in the Azores. Cloud drops remain affected by aerosol for several days across thousands of kilometers in satellite data. Simulations from an Earth system model show good agreement, but differences in the amount of cloud water and its extent remain despite modifications to model parameters that control the warm-rain process.
Siegfried Schobesberger, Emma L. D'Ambro, Lejish Vettikkat, Ben H. Lee, Qiaoyun Peng, David M. Bell, John E. Shilling, Manish Shrivastava, Mikhail Pekour, Jerome Fast, and Joel A. Thornton
Atmos. Meas. Tech., 16, 247–271, https://doi.org/10.5194/amt-16-247-2023, https://doi.org/10.5194/amt-16-247-2023, 2023
Short summary
Short summary
We present a new, highly sensitive technique for measuring atmospheric ammonia, an important trace gas that is emitted mainly by agriculture. We deployed the instrument on an aircraft during research flights over rural Oklahoma. Due to its fast response, we could analyze correlations with turbulent winds and calculate ammonia emissions from nearby areas at 1 to 2 km resolution. We observed high spatial variability and point sources that are not resolved in the US National Emissions Inventory.
Jerome D. Fast, David M. Bell, Gourihar Kulkarni, Jiumeng Liu, Fan Mei, Georges Saliba, John E. Shilling, Kaitlyn Suski, Jason Tomlinson, Jian Wang, Rahul Zaveri, and Alla Zelenyuk
Atmos. Chem. Phys., 22, 11217–11238, https://doi.org/10.5194/acp-22-11217-2022, https://doi.org/10.5194/acp-22-11217-2022, 2022
Short summary
Short summary
Recent aircraft measurements from the HI-SCALE campaign conducted over the Southern Great Plains (SGP) site in Oklahoma are used to quantify spatial variability of aerosol properties in terms of grid spacings typically used by weather and climate models. Surprisingly large horizontal gradients in aerosol properties were frequently observed in this rural area. This spatial variability can be used as an uncertainty range when comparing surface point measurements with model predictions.
Amar Halifa-Marín, Miguel A. Torres-Vázquez, Enrique Pravia-Sarabia, Marc Lemus-Canovas, Pedro Jiménez-Guerrero, and Juan Pedro Montávez
Hydrol. Earth Syst. Sci., 26, 4251–4263, https://doi.org/10.5194/hess-26-4251-2022, https://doi.org/10.5194/hess-26-4251-2022, 2022
Short summary
Short summary
Near-natural Iberian water resources have suddenly decreased since the 1980s. These declines have been promoted by the weakening (enhancement) of wintertime precipitation (the NAOi) in the most humid areas, whereas afforestation and drought intensification have played a crucial role in semi-arid areas. Future water management would benefit from greater knowledge of North Atlantic climate variability and reforestation/afforestation processes in semi-arid catchments.
Fan Mei, Mikhail S. Pekour, Darielle Dexheimer, Gijs de Boer, RaeAnn Cook, Jason Tomlinson, Beat Schmid, Lexie A. Goldberger, Rob Newsom, and Jerome D. Fast
Earth Syst. Sci. Data, 14, 3423–3438, https://doi.org/10.5194/essd-14-3423-2022, https://doi.org/10.5194/essd-14-3423-2022, 2022
Short summary
Short summary
This work focuses on an expanding number of data sets observed using ARM TBS (133 flights) and UAS (seven flights) platforms by the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) user facility. These data streams provide new perspectives on spatial variability of atmospheric and surface parameters, helping to address critical science questions in Earth system science research, such as the aerosol–cloud interaction in the boundary layer.
Shuaiqi Tang, Jerome D. Fast, Kai Zhang, Joseph C. Hardin, Adam C. Varble, John E. Shilling, Fan Mei, Maria A. Zawadowicz, and Po-Lun Ma
Geosci. Model Dev., 15, 4055–4076, https://doi.org/10.5194/gmd-15-4055-2022, https://doi.org/10.5194/gmd-15-4055-2022, 2022
Short summary
Short summary
We developed an Earth system model (ESM) diagnostics package to compare various types of aerosol properties simulated in ESMs with aircraft, ship, and surface measurements from six field campaigns across spatial scales. The diagnostics package is coded and organized to be flexible and modular for future extension to other field campaign datasets and adapted to higher-resolution model simulations. Future releases will include comprehensive cloud and aerosol–cloud interaction diagnostics.
Po-Lun Ma, Bryce E. Harrop, Vincent E. Larson, Richard B. Neale, Andrew Gettelman, Hugh Morrison, Hailong Wang, Kai Zhang, Stephen A. Klein, Mark D. Zelinka, Yuying Zhang, Yun Qian, Jin-Ho Yoon, Christopher R. Jones, Meng Huang, Sheng-Lun Tai, Balwinder Singh, Peter A. Bogenschutz, Xue Zheng, Wuyin Lin, Johannes Quaas, Hélène Chepfer, Michael A. Brunke, Xubin Zeng, Johannes Mülmenstädt, Samson Hagos, Zhibo Zhang, Hua Song, Xiaohong Liu, Michael S. Pritchard, Hui Wan, Jingyu Wang, Qi Tang, Peter M. Caldwell, Jiwen Fan, Larry K. Berg, Jerome D. Fast, Mark A. Taylor, Jean-Christophe Golaz, Shaocheng Xie, Philip J. Rasch, and L. Ruby Leung
Geosci. Model Dev., 15, 2881–2916, https://doi.org/10.5194/gmd-15-2881-2022, https://doi.org/10.5194/gmd-15-2881-2022, 2022
Short summary
Short summary
An alternative set of parameters for E3SM Atmospheric Model version 1 has been developed based on a tuning strategy that focuses on clouds. When clouds in every regime are improved, other aspects of the model are also improved, even though they are not the direct targets for calibration. The recalibrated model shows a lower sensitivity to anthropogenic aerosols and surface warming, suggesting potential improvements to the simulated climate in the past and future.
Patricia Tarín-Carrasco, Ulas Im, Camilla Geels, Laura Palacios-Peña, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 22, 3945–3965, https://doi.org/10.5194/acp-22-3945-2022, https://doi.org/10.5194/acp-22-3945-2022, 2022
Short summary
Short summary
The evidence of the effects of atmospheric pollution (and particularly fine particulate matter, PM2.5) on human mortality is now unquestionable. Here, 895 000 annual premature deaths (PD) are estimated for the present (1991–2010), which increases to 1 540 000 in the year 2050 due to the ageing of the European population. The implementation of a mitigation scenario (80 % of the energy production in Europe from renewable sources) could lead to a decrease of over 60 000 annual PD for the year 2050.
Patricia Tarín-Carrasco, Sofia Augusto, Laura Palacios-Peña, Nuno Ratola, and Pedro Jiménez-Guerrero
Nat. Hazards Earth Syst. Sci., 21, 2867–2880, https://doi.org/10.5194/nhess-21-2867-2021, https://doi.org/10.5194/nhess-21-2867-2021, 2021
Short summary
Short summary
Uncontrolled wildfires have a substantial impact on the environment and local populations. Although most southern European countries have been impacted by wildfires in the last decades, Portugal has the highest percentage of burned area compared to its whole territory. Under this umbrella, associations between large fires, PM10, and all-cause and cause-specific mortality (circulatory and respiratory) have been explored using Poisson regression models for 2001–2016.
Enrique Pravia-Sarabia, Juan José Gómez-Navarro, Pedro Jiménez-Guerrero, and Juan Pedro Montávez
Atmos. Chem. Phys., 21, 13353–13368, https://doi.org/10.5194/acp-21-13353-2021, https://doi.org/10.5194/acp-21-13353-2021, 2021
Short summary
Short summary
Given the hazardous nature of medicanes, studies focused on understanding and quantifying the processes governing their formation have become paramount for present and future disaster risk reduction. Therefore, enhancing the modeling and forecasting capabilities of such events is of crucial importance. In this sense, the authors find that the microphysical processes, and specifically the wind--sea salt aerosol feedback, play a key role in their development and thus should not be neglected.
Maria A. Zawadowicz, Kaitlyn Suski, Jiumeng Liu, Mikhail Pekour, Jerome Fast, Fan Mei, Arthur J. Sedlacek, Stephen Springston, Yang Wang, Rahul A. Zaveri, Robert Wood, Jian Wang, and John E. Shilling
Atmos. Chem. Phys., 21, 7983–8002, https://doi.org/10.5194/acp-21-7983-2021, https://doi.org/10.5194/acp-21-7983-2021, 2021
Short summary
Short summary
This paper describes the results of a recent field campaign in the eastern North Atlantic, where two mass spectrometers were deployed aboard a research aircraft to measure the chemistry of aerosols and trace gases. Very clean conditions were found, dominated by local sulfate-rich acidic aerosol and very aged organics. Evidence of
long-range transport of aerosols from the continents was also identified.
Jiumeng Liu, Liz Alexander, Jerome D. Fast, Rodica Lindenmaier, and John E. Shilling
Atmos. Chem. Phys., 21, 5101–5116, https://doi.org/10.5194/acp-21-5101-2021, https://doi.org/10.5194/acp-21-5101-2021, 2021
Short summary
Short summary
To bridge the gaps in modeling and observational results due to insufficient understanding of aerosol properties, co-located measurements of aerosols and trace gases were conducted at SGP during the HI-SCALE campaign. Organic aerosols at the SGP site exhibited to be highly oxidized, and biogenic emissions appear to largely control the formation of organic aerosols. Seasonal variations of sources and meteorological impacts likely resulted in the highly oxygenated feature of aerosols.
Sonia Jerez, Laura Palacios-Peña, Claudia Gutiérrez, Pedro Jiménez-Guerrero, Jose María López-Romero, Enrique Pravia-Sarabia, and Juan Pedro Montávez
Geosci. Model Dev., 14, 1533–1551, https://doi.org/10.5194/gmd-14-1533-2021, https://doi.org/10.5194/gmd-14-1533-2021, 2021
Short summary
Short summary
This research explores the role of aerosols when modeling surface solar radiation at regional scales (over Europe). A set of model experiments was performed with and without dynamical modeling of atmospheric aerosols and their direct and indirect effects on radiation. Results showed significant differences in the simulated solar radiation, mainly driven by the aerosol impact on cloudiness, which calls for caution when interpreting model experiments that do not include aerosols.
José María López-Romero, Juan Pedro Montávez, Sonia Jerez, Raquel Lorente-Plazas, Laura Palacios-Peña, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 21, 415–430, https://doi.org/10.5194/acp-21-415-2021, https://doi.org/10.5194/acp-21-415-2021, 2021
Short summary
Short summary
The effect of aerosols on regional climate simulations presents large uncertainties due to their complex and non-linear interactions with a wide variety of factors, including aerosol–radiation and aerosol–cloud interactions. We show how these interactions are strongly conditioned by the meteorological situation and the type of aerosol. While natural aerosols tend to increase precipitation in some areas, anthropogenic aerosols decrease the number of rainy days in some pollutant regions.
Enrique Pravia-Sarabia, Juan José Gómez-Navarro, Pedro Jiménez-Guerrero, and Juan Pedro Montávez
Geosci. Model Dev., 13, 6051–6075, https://doi.org/10.5194/gmd-13-6051-2020, https://doi.org/10.5194/gmd-13-6051-2020, 2020
Short summary
Short summary
This work shows TITAM, a time-independent tracking algorithm specifically suited for Mediterranean tropical-like cyclones, often referred to as medicanes. The methodology developed has the capacity to track multiple simultaneous cyclones, the ability to track a medicane in the presence of intense extratropical lows, and the potential to separate the medicane from other similar structures by handling the intermittent loss of structure and managing the tilting of the axis.
Laura Palacios-Peña, Philip Stier, Raquel Lorente-Plazas, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 20, 9679–9700, https://doi.org/10.5194/acp-20-9679-2020, https://doi.org/10.5194/acp-20-9679-2020, 2020
Short summary
Short summary
It is widely known that the impact of aerosol–radiation and aerosol–cloud interactions on the radiative forcing is subject to large uncertainties. This is mainly due to the lack of understanding of aerosol optical properties and vertical distribution, whose uncertainties come from different processes. This work attempts to quantify the sensitivity of aerosol optical properties and their vertical distribution to key physico-chemical processes.
Patricia Tarín-Carrasco, María Morales-Suárez-Varela, Ulas Im, Jørgen Brandt, Laura Palacios-Peña, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 19, 9385–9398, https://doi.org/10.5194/acp-19-9385-2019, https://doi.org/10.5194/acp-19-9385-2019, 2019
Short summary
Short summary
Air pollution has important implications for human health and external societal costs and is closely related to climate change. This work assesses the impacts of present and future air pollution on several cardiovascular and respiratory pathologies and estimates the costs associated with these health impacts on the European population. Premature deaths are the most important problem in terms of cases and costs (418 700 cases and EUR 158 billion per year, increasing by 17 % in the future).
Laura Palacios-Peña, Pedro Jiménez-Guerrero, Rocío Baró, Alessandra Balzarini, Roberto Bianconi, Gabriele Curci, Tony Christian Landi, Guido Pirovano, Marje Prank, Angelo Riccio, Paolo Tuccella, and Stefano Galmarini
Atmos. Chem. Phys., 19, 2965–2990, https://doi.org/10.5194/acp-19-2965-2019, https://doi.org/10.5194/acp-19-2965-2019, 2019
Short summary
Short summary
The main uncertainties regarding the estimation of changes in the Earth’s energy budget are related to the role of atmospheric aerosols. Our study evaluates the representation of aerosol optical properties by different atmospheric chemistry models against remote-sensing observations in order to reduce this uncertainty. Results show that the representation of aerosol optical properties is strongly dependent on the used model.
Gabriele Curci, Ummugulsum Alyuz, Rocio Barò, Roberto Bianconi, Johannes Bieser, Jesper H. Christensen, Augustin Colette, Aidan Farrow, Xavier Francis, Pedro Jiménez-Guerrero, Ulas Im, Peng Liu, Astrid Manders, Laura Palacios-Peña, Marje Prank, Luca Pozzoli, Ranjeet Sokhi, Efisio Solazzo, Paolo Tuccella, Alper Unal, Marta G. Vivanco, Christian Hogrefe, and Stefano Galmarini
Atmos. Chem. Phys., 19, 181–204, https://doi.org/10.5194/acp-19-181-2019, https://doi.org/10.5194/acp-19-181-2019, 2019
Short summary
Short summary
Atmospheric carbonaceous aerosols are able to absorb solar radiation and they continue to contribute some of the largest uncertainties in projected climate change. One important detail is how the chemical species are arranged inside each particle, i.e. the knowledge of their mixing state. We use an ensemble of regional model simulations to test different mixing state assumptions and found that a combination of internal and external mixing may better reproduce sunphotometer observations.
Rocío Baró, Pedro Jiménez-Guerrero, Martin Stengel, Dominik Brunner, Gabriele Curci, Renate Forkel, Lucy Neal, Laura Palacios-Peña, Nicholas Savage, Martijn Schaap, Paolo Tuccella, Hugo Denier van der Gon, and Stefano Galmarini
Atmos. Chem. Phys., 18, 15183–15199, https://doi.org/10.5194/acp-18-15183-2018, https://doi.org/10.5194/acp-18-15183-2018, 2018
Short summary
Short summary
Particles in the atmosphere, such as pollution, desert dust, and volcanic ash, have an impact on meteorology. They interact with incoming radiation resulting in a cooling effect of the atmosphere. Today, the use of meteorology and chemistry models help us to understand these processes, but there are a lot of uncertainties. The goal of this work is to evaluate how these interactions are represented in the models by comparing them to satellite data to see how close they are to reality.
Ulas Im, Jesper Heile Christensen, Camilla Geels, Kaj Mantzius Hansen, Jørgen Brandt, Efisio Solazzo, Ummugulsum Alyuz, Alessandra Balzarini, Rocio Baro, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Augustin Colette, Gabriele Curci, Aidan Farrow, Johannes Flemming, Andrea Fraser, Pedro Jimenez-Guerrero, Nutthida Kitwiroon, Peng Liu, Uarporn Nopmongcol, Laura Palacios-Peña, Guido Pirovano, Luca Pozzoli, Marje Prank, Rebecca Rose, Ranjeet Sokhi, Paolo Tuccella, Alper Unal, Marta G. Vivanco, Greg Yarwood, Christian Hogrefe, and Stefano Galmarini
Atmos. Chem. Phys., 18, 8929–8952, https://doi.org/10.5194/acp-18-8929-2018, https://doi.org/10.5194/acp-18-8929-2018, 2018
Short summary
Short summary
We evaluate the impact of global and regional anthropogenic emission reductions on major air pollutant levels over Europe and North America, using a multi-model ensemble of regional chemistry and transport models. Results show that ozone levels are largely driven by long-range transport over both continents while other pollutants such as carbon monoxide or aerosols are mainly controlled by domestic sources. Use of multi-model ensembles can help to reduce the uncertainties in individual models.
Stefano Galmarini, Ioannis Kioutsioukis, Efisio Solazzo, Ummugulsum Alyuz, Alessandra Balzarini, Roberto Bellasio, Anna M. K. Benedictow, Roberto Bianconi, Johannes Bieser, Joergen Brandt, Jesper H. Christensen, Augustin Colette, Gabriele Curci, Yanko Davila, Xinyi Dong, Johannes Flemming, Xavier Francis, Andrea Fraser, Joshua Fu, Daven K. Henze, Christian Hogrefe, Ulas Im, Marta Garcia Vivanco, Pedro Jiménez-Guerrero, Jan Eiof Jonson, Nutthida Kitwiroon, Astrid Manders, Rohit Mathur, Laura Palacios-Peña, Guido Pirovano, Luca Pozzoli, Marie Prank, Martin Schultz, Rajeet S. Sokhi, Kengo Sudo, Paolo Tuccella, Toshihiko Takemura, Takashi Sekiya, and Alper Unal
Atmos. Chem. Phys., 18, 8727–8744, https://doi.org/10.5194/acp-18-8727-2018, https://doi.org/10.5194/acp-18-8727-2018, 2018
Short summary
Short summary
An ensemble of model results relating to ozone concentrations in Europe in 2010 has been produced and studied. The novelty consists in the fact that the ensemble is made of results of models working at two different scales (regional and global), therefore contributing in detail two different parts of the atmospheric spectrum. The ensemble defined as a hybrid has been studied in detail and shown to bring additional value to the assessment of air quality.
Ulas Im, Jørgen Brandt, Camilla Geels, Kaj Mantzius Hansen, Jesper Heile Christensen, Mikael Skou Andersen, Efisio Solazzo, Ioannis Kioutsioukis, Ummugulsum Alyuz, Alessandra Balzarini, Rocio Baro, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Augustin Colette, Gabriele Curci, Aidan Farrow, Johannes Flemming, Andrea Fraser, Pedro Jimenez-Guerrero, Nutthida Kitwiroon, Ciao-Kai Liang, Uarporn Nopmongcol, Guido Pirovano, Luca Pozzoli, Marje Prank, Rebecca Rose, Ranjeet Sokhi, Paolo Tuccella, Alper Unal, Marta Garcia Vivanco, Jason West, Greg Yarwood, Christian Hogrefe, and Stefano Galmarini
Atmos. Chem. Phys., 18, 5967–5989, https://doi.org/10.5194/acp-18-5967-2018, https://doi.org/10.5194/acp-18-5967-2018, 2018
Short summary
Short summary
The impacts of air pollution on human health and their costs in Europe and the United States for the year 2010 ared modeled by a multi-model ensemble. In Europe, the number of premature deaths is calculated to be 414 000, while in the US it is estimated to be 160 000. Health impacts estimated by individual models can vary up to a factor of 3. Results show that the domestic emissions have the largest impact on premature deaths, compared to foreign sources.
Laura Palacios-Peña, Rocío Baró, Alexander Baklanov, Alessandra Balzarini, Dominik Brunner, Renate Forkel, Marcus Hirtl, Luka Honzak, José María López-Romero, Juan Pedro Montávez, Juan Luis Pérez, Guido Pirovano, Roberto San José, Wolfram Schröder, Johannes Werhahn, Ralf Wolke, Rahela Žabkar, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 18, 5021–5043, https://doi.org/10.5194/acp-18-5021-2018, https://doi.org/10.5194/acp-18-5021-2018, 2018
Short summary
Short summary
Atmospheric aerosols modify the radiative budget of the Earth, and it is therefore mandatory to have an accurate representation of their optical properties for understanding their climatic role. This work therefore evaluates the skill in the representation of optical properties by different remote-sensing sensors and regional online coupled chemistry–climate models over Europe.
Louis Marelle, Jean-Christophe Raut, Kathy S. Law, Larry K. Berg, Jerome D. Fast, Richard C. Easter, Manish Shrivastava, and Jennie L. Thomas
Geosci. Model Dev., 10, 3661–3677, https://doi.org/10.5194/gmd-10-3661-2017, https://doi.org/10.5194/gmd-10-3661-2017, 2017
Short summary
Short summary
We develop the WRF-Chem 3.5.1 model to improve simulations of aerosols and ozone in the Arctic. Both species are important air pollutants and climate forcers, but models often struggle to reproduce observations in the Arctic. Our developments concern pollutant emissions, mixing, chemistry, and removal, including processes related to snow and sea ice. The effect of these changes are quantitatively validated against observations, showing significant improvements compared to the original model.
Jean-Christophe Raut, Louis Marelle, Jerome D. Fast, Jennie L. Thomas, Bernadett Weinzierl, Katharine S. Law, Larry K. Berg, Anke Roiger, Richard C. Easter, Katharina Heimerl, Tatsuo Onishi, Julien Delanoë, and Hans Schlager
Atmos. Chem. Phys., 17, 10969–10995, https://doi.org/10.5194/acp-17-10969-2017, https://doi.org/10.5194/acp-17-10969-2017, 2017
Short summary
Short summary
We study the cross-polar transport of plumes from Siberian fires to the Arctic in summer, both in terms of transport pathways and efficiency of deposition processes. Those plumes containing soot may originate from anthropogenic and biomass burning sources in mid-latitude regions and may impact the Arctic climate by depositing on snow and ice surfaces. We evaluate the role of the respective source contributions, investigate the transport of plumes and treat pathway-dependent removal of particles.
Rocío Baró, Laura Palacios-Peña, Alexander Baklanov, Alessandra Balzarini, Dominik Brunner, Renate Forkel, Marcus Hirtl, Luka Honzak, Juan Luis Pérez, Guido Pirovano, Roberto San José, Wolfram Schröder, Johannes Werhahn, Ralf Wolke, Rahela Žabkar, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 17, 9677–9696, https://doi.org/10.5194/acp-17-9677-2017, https://doi.org/10.5194/acp-17-9677-2017, 2017
Short summary
Short summary
The influence on modeled max., mean and min. temperature over Europe of including aerosol–radiation–cloud interactions has been assessed for two case studies in 2010. Data were taken from an ensemble of online regional chemistry–climate models from EuMetChem COST Action. The results indicate that including these interactions clearly improves the spatiotemporal variability in the temperature signal simulated by the models, with implications for reducing the uncertainty in climate projections.
Joseph Ching, Jerome Fast, Matthew West, and Nicole Riemer
Atmos. Chem. Phys., 17, 7445–7458, https://doi.org/10.5194/acp-17-7445-2017, https://doi.org/10.5194/acp-17-7445-2017, 2017
Short summary
Short summary
The composition of individual aerosols affects their cloud condensation nuclei (CCN) properties, but is challenging to represent in models. This study quantifies the error in CCN calculations when per-particle information is neglected by using a metric for the composition diversity within a population. With more particle-level measurements from field campaigns, the approach is useful for quantifying uncertainties in composition-dependent quantities regarding aerosol–cloud–climate interactions.
Efisio Solazzo, Roberto Bianconi, Christian Hogrefe, Gabriele Curci, Paolo Tuccella, Ummugulsum Alyuz, Alessandra Balzarini, Rocío Baró, Roberto Bellasio, Johannes Bieser, Jørgen Brandt, Jesper H. Christensen, Augistin Colette, Xavier Francis, Andrea Fraser, Marta Garcia Vivanco, Pedro Jiménez-Guerrero, Ulas Im, Astrid Manders, Uarporn Nopmongcol, Nutthida Kitwiroon, Guido Pirovano, Luca Pozzoli, Marje Prank, Ranjeet S. Sokhi, Alper Unal, Greg Yarwood, and Stefano Galmarini
Atmos. Chem. Phys., 17, 3001–3054, https://doi.org/10.5194/acp-17-3001-2017, https://doi.org/10.5194/acp-17-3001-2017, 2017
Short summary
Short summary
As part of the third phase of AQMEII, this study uses timescale analysis to apportion error to the responsible processes, detect causes of model error, and identify the processes and scales that require dedicated investigations. The analysis tackles model performance gauging through measurement-to-model comparison, error decomposition, and time series analysis of model biases for ozone, CO, SO2, NO, NO2, PM10, PM2.5, wind speed, and temperature over Europe and North America.
Laura Palacios-Peña, Rocío Baró, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Dominik Brunner, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 17, 277–296, https://doi.org/10.5194/acp-17-277-2017, https://doi.org/10.5194/acp-17-277-2017, 2017
Short summary
Short summary
The effects of atmospheric aerosols over the Earth’s climate mainly depend on their optical, microphysical and chemical properties, which modify the Earth's radiative budget, the main source of uncertainty in climate change. In this work we have studied the representation of aerosol optical properties using an online coupled model (WRF-Chem) when aerosol–radiation interactions (ARIs) and aerosol–clouds interactions (ACIs) are taken into account over the Iberian Peninsula.
Ioannis Kioutsioukis, Ulas Im, Efisio Solazzo, Roberto Bianconi, Alba Badia, Alessandra Balzarini, Rocío Baró, Roberto Bellasio, Dominik Brunner, Charles Chemel, Gabriele Curci, Hugo Denier van der Gon, Johannes Flemming, Renate Forkel, Lea Giordano, Pedro Jiménez-Guerrero, Marcus Hirtl, Oriol Jorba, Astrid Manders-Groot, Lucy Neal, Juan L. Pérez, Guidio Pirovano, Roberto San Jose, Nicholas Savage, Wolfram Schroder, Ranjeet S. Sokhi, Dimiter Syrakov, Paolo Tuccella, Johannes Werhahn, Ralf Wolke, Christian Hogrefe, and Stefano Galmarini
Atmos. Chem. Phys., 16, 15629–15652, https://doi.org/10.5194/acp-16-15629-2016, https://doi.org/10.5194/acp-16-15629-2016, 2016
Short summary
Short summary
Four ensemble methods are applied to two annual AQMEII datasets and their performance is compared for O3, NO2 and PM10. The goal of the study is to quantify to what extent we can extract predictable signals from an ensemble with superior skill at each station over the single models and the ensemble mean. The promotion of the right amount of accuracy and diversity within the ensemble results in an average additional skill of up to 31 % compared to using the full ensemble in an unconditional way.
Dan Chen, Zhiquan Liu, Jerome Fast, and Junmei Ban
Atmos. Chem. Phys., 16, 10707–10724, https://doi.org/10.5194/acp-16-10707-2016, https://doi.org/10.5194/acp-16-10707-2016, 2016
Short summary
Short summary
Extreme haze events occurred frequently over China recently, and adequately predicting peak PM2.5 concentrations is still challenging. In this study, the sulfate–nitrate–ammonium relevant heterogeneous reactions were parameterized for the first time in the WRF-Chem model. We evaluated the performance of WRF-Chem and used the model to investigate the sensitivity of heterogeneous reactions on simulated peak sulfate, nitrate, and ammonium concentrations in the vicinity of Beijing during October 2014.
Nuno Ratola and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 16, 4271–4282, https://doi.org/10.5194/acp-16-4271-2016, https://doi.org/10.5194/acp-16-4271-2016, 2016
Short summary
Short summary
This original interpretation and application of environmental databases combines biomonitoring and atmospheric field data and state-of-the-art chemistry transport models to study one of the most carcinogenic atmospheric pollutants, benzo[a]pyrene (BaP). A comparison of ways to estimate air concentrations of BaP from its levels in vegetation is also a strong asset of this study. The whole methodology proposed here is versatile and can easily be applied to other regions and chemicals of interest.
J. A. García-Valero, J. P. Montávez, J. J. Gómez-Navarro, and P. Jiménez-Guerrero
Nat. Hazards Earth Syst. Sci., 15, 2143–2159, https://doi.org/10.5194/nhess-15-2143-2015, https://doi.org/10.5194/nhess-15-2143-2015, 2015
Short summary
Short summary
This paper presents a study of extremely hot days (EHDs) in Spain and their connection with atmospheric dynamics. In addition, this work proposes a method that allows the detection of trends in the frequency of extreme events and their attribution to changes in atmospheric dynamics characterized through circulation types (CTs). The main CT-driven EHDs are identified. The increase in the EHD appearance is linked to the increase of the extreme CTs; however this only partially explains the trends.
S. Jerez, P. Jimenez-Guerrero, J. P. Montávez, and R. M. Trigo
Atmos. Chem. Phys., 13, 11195–11207, https://doi.org/10.5194/acp-13-11195-2013, https://doi.org/10.5194/acp-13-11195-2013, 2013
Related subject area
Atmospheric sciences
Simulation of the heat mitigation potential of unsealing measures in cities by parameterizing grass grid pavers for urban microclimate modelling with ENVI-met (V5)
AI-NAOS: an AI-based nonspherical aerosol optical scheme for the chemical weather model GRAPES_Meso5.1/CUACE
Orbital-Radar v1.0.0: a tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
The Modular and Integrated Data Assimilation System at Environment and Climate Change Canada (MIDAS v3.9.1)
Modeling of polycyclic aromatic hydrocarbons (PAHs) from global to regional scales: model development (IAP-AACM_PAH v1.0) and investigation of health risks in 2013 and 2018 in China
LIMA (v2.0): A full two-moment cloud microphysical scheme for the mesoscale non-hydrostatic model Meso-NH v5-6
SLUCM+BEM (v1.0): a simple parameterisation for dynamic anthropogenic heat and electricity consumption in WRF-Urban (v4.3.2)
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
Observational operator for fair model evaluation with ground NO2 measurements
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
Assessment of object-based indices to identify convective organization
The Global Forest Fire Emissions Prediction System version 1.0
NEIVAv1.0: Next-generation Emissions InVentory expansion of Akagi et al. (2011) version 1.0
FLEXPART version 11: improved accuracy, efficiency, and flexibility
Challenges of high-fidelity air quality modeling in urban environments – PALM sensitivity study during stable conditions
Air quality modeling intercomparison and multiscale ensemble chain for Latin America
Recommended coupling to global meteorological fields for long-term tracer simulations with WRF-GHG
Selecting CMIP6 global climate models (GCMs) for Coordinated Regional Climate Downscaling Experiment (CORDEX) dynamical downscaling over Southeast Asia using a standardised benchmarking framework
Improved definition of prior uncertainties in CO2 and CO fossil fuel fluxes and its impact on multi-species inversion with GEOS-Chem (v12.5)
RASCAL v1.0: an open-source tool for climatological time series reconstruction and extension
Introducing graupel density prediction in Weather Research and Forecasting (WRF) double-moment 6-class (WDM6) microphysics and evaluation of the modified scheme during the ICE-POP field campaign
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Atmospheric-river-induced precipitation in California as simulated by the regionally refined Simple Convective Resolving E3SM Atmosphere Model (SCREAM) Version 0
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
Recent improvements and maximum covariance analysis of aerosol and cloud properties in the EC-Earth3-AerChem model
GPU-HADVPPM4HIP V1.0: using the heterogeneous-compute interface for portability (HIP) to speed up the piecewise parabolic method in the CAMx (v6.10) air quality model on China's domestic GPU-like accelerator
Preliminary evaluation of the effect of electro-coalescence with conducting sphere approximation on the formation of warm cumulus clouds using SCALE-SDM version 0.2.5–2.3.0
Similarity-Based Analysis of Atmospheric Organic Compounds for Machine Learning Applications
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
Improving the EnSRF in the Community Inversion Framework: a case study with ICON-ART 2024.01
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Impact of ITCZ width on global climate: ITCZ-MIP
Deep-learning-driven simulations of boundary layer clouds over the Southern Great Plains
Mixed-precision computing in the GRIST dynamical core for weather and climate modelling
A conservative immersed boundary method for the multi-physics urban large-eddy simulation model uDALES v2.0
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
RCEMIP-II: mock-Walker simulations as phase II of the radiative–convective equilibrium model intercomparison project
The MESSy DWARF (based on MESSy v2.55.2)
Objective identification of meteorological fronts and climatologies from ERA-Interim and ERA5
A Bayesian method for predicting background radiation at environmental monitoring stations
TAMS: a tracking, classifying, and variable-assigning algorithm for mesoscale convective systems in simulated and satellite-derived datasets
Nils Eingrüber, Alina Domm, Wolfgang Korres, and Karl Schneider
Geosci. Model Dev., 18, 141–160, https://doi.org/10.5194/gmd-18-141-2025, https://doi.org/10.5194/gmd-18-141-2025, 2025
Short summary
Short summary
Climate change adaptation measures like unsealings can reduce urban heat stress. As grass grid pavers have never been parameterized for microclimate model simulations with ENVI-met, a new parameterization was developed based on field measurements. To analyse the cooling potential, scenario analyses were performed for a densely developed area in Cologne. Statistically significant average cooling effects of up to −11.1 K were found for surface temperature and up to −2.9 K for 1 m air temperature.
Xuan Wang, Lei Bi, Hong Wang, Yaqiang Wang, Wei Han, Xueshun Shen, and Xiaoye Zhang
Geosci. Model Dev., 18, 117–139, https://doi.org/10.5194/gmd-18-117-2025, https://doi.org/10.5194/gmd-18-117-2025, 2025
Short summary
Short summary
The Artificial-Intelligence-based Nonspherical Aerosol Optical Scheme (AI-NAOS) was developed to improve the estimation of the aerosol direct radiation effect and was coupled online with a chemical weather model. The AI-NAOS scheme considers black carbon as fractal aggregates and soil dust as super-spheroids, encapsulated with hygroscopic aerosols. Real-case simulations emphasize the necessity of accurately representing nonspherical and inhomogeneous aerosols in chemical weather models.
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev., 18, 101–115, https://doi.org/10.5194/gmd-18-101-2025, https://doi.org/10.5194/gmd-18-101-2025, 2025
Short summary
Short summary
The Python tool Orbital-Radar transfers suborbital radar data (ground-based, airborne, and forward-simulated numerical weather prediction model) into synthetic spaceborne cloud profiling radar data, mimicking platform-specific instrument characteristics, e.g. EarthCARE or CloudSat. The tool's novelty lies in simulating characteristic errors and instrument noise. Thus, existing data sets are transferred into synthetic observations and can be used for satellite calibration–validation studies.
Mark Buehner, Jean-Francois Caron, Ervig Lapalme, Alain Caya, Ping Du, Yves Rochon, Sergey Skachko, Maziar Bani Shahabadi, Sylvain Heilliette, Martin Deshaies-Jacques, Weiguang Chang, and Michael Sitwell
Geosci. Model Dev., 18, 1–18, https://doi.org/10.5194/gmd-18-1-2025, https://doi.org/10.5194/gmd-18-1-2025, 2025
Short summary
Short summary
The Modular and Integrated Data Assimilation System (MIDAS) software is described. The flexible design of MIDAS enables both deterministic and ensemble prediction applications for the atmosphere and several other Earth system components. It is currently used for all main operational weather prediction systems in Canada and also for sea ice and sea surface temperature analysis. The use of MIDAS for multiple Earth system components will facilitate future research on coupled data assimilation.
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024, https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary
Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional scales. The model can reproduce PAH distribution well. The concentration of BaP (indicator species for PAHs) could exceed the target values of 1 ng m-3 over some areas (e.g., in central Europe, India, and eastern China). The change in BaP is lower than that in PM2.5 from 2013 to 2018. China still faces significant potential health risks posed by BaP although the Action Plan has been implemented.
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
Geosci. Model Dev., 17, 8773–8798, https://doi.org/10.5194/gmd-17-8773-2024, https://doi.org/10.5194/gmd-17-8773-2024, 2024
Short summary
Short summary
We have developed a complete two-moment version of the LIMA (Liquid Ice Multiple Aerosols) microphysics scheme. We have focused on collection processes, where the hydrometeor number transfer is often estimated in proportion to the mass transfer. The impact of these parameterizations on a convective system and the prospects for more realistic estimates of secondary parameters (reflectivity, hydrometeor size) are shown in a first test on an idealized case.
Yuya Takane, Yukihiro Kikegawa, Ko Nakajima, and Hiroyuki Kusaka
Geosci. Model Dev., 17, 8639–8664, https://doi.org/10.5194/gmd-17-8639-2024, https://doi.org/10.5194/gmd-17-8639-2024, 2024
Short summary
Short summary
A new parameterisation for dynamic anthropogenic heat and electricity consumption is described. The model reproduced the temporal variation in and spatial distributions of electricity consumption and temperature well in summer and winter. The partial air conditioning was the most critical factor, significantly affecting the value of anthropogenic heat emission.
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024, https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Short summary
To accurately characterize the spatiotemporal distribution of particulate matter <2.5 µm chemical components, we developed the Nested Air Quality Prediction Model System with the Parallel Data Assimilation Framework (NAQPMS-PDAF) v2.0 for chemical components with non-Gaussian and nonlinear properties. NAQPMS-PDAF v2.0 has better computing efficiency, excels when used with a small ensemble size, and can significantly improve the simulation performance of chemical components.
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024, https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary
Short summary
Chemical transport model simulations are combined with ozone observations to estimate the bias in ozone attributable to US anthropogenic sources and individual sources of US background ozone: natural sources, non-US anthropogenic sources, and stratospheric ozone. Results indicate a positive bias correlated with US anthropogenic emissions during summer in the eastern US and a negative bias correlated with stratospheric ozone during spring.
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024, https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary
Short summary
Model evaluations against ground observations are usually unfair. The former simulates mean status over coarse grids and the latter the surrounding atmosphere. To solve this, we proposed the new land-use-based representative (LUBR) operator that considers intra-grid variance. The LUBR operator is validated to provide insights that align with satellite measurements. The results highlight the importance of considering fine-scale urban–rural differences when comparing models and observation.
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024, https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
Short summary
The ensemble Kalman filter (EnKF) improves dust storm forecasts but faces challenges with position errors. The valid time shifting EnKF (VTS-EnKF) addresses this by adjusting for position errors, enhancing accuracy in forecasting dust storms, as proven in tests on 2021 events, even with smaller ensembles and time intervals.
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024, https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
Short summary
Inadequate representation of surface–atmosphere interaction processes is a major source of uncertainty in numerical weather prediction models. Here, an effort has been made to improve the Weather Research and Forecasting (WRF) model version 4.2.2 by introducing a unique theoretical framework under convective conditions. In addition, to enhance the potential applicability of the WRF modeling system, various commonly used similarity functions under convective conditions have also been installed.
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024, https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
Short summary
Supercooled liquid clouds (liquid clouds colder than 0°C) are common at higher latitudes (especially over the Southern Ocean) and are critical for constraining climate projections. We compare a single-column version of a weather model to observations with two different cloud schemes and find that both the dynamical environment and atmospheric aerosols are important for reproducing observations.
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024, https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Short summary
This study updates the CESM's aerosol schemes, focusing on dust, marine aerosol emissions, and secondary organic aerosol (SOA) . Dust emission modifications make deflation areas more continuous, improving results in North America and the sub-Arctic. Humidity correction to sea-salt emissions has a minor effect. Introducing marine organic aerosol emissions, coupled with ocean biogeochemical processes, and adding aqueous reactions for SOA formation advance the CESM's aerosol modelling results.
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024, https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Short summary
Marine cloud brightening (MCB) is a climate intervention technique to potentially cool the climate. Climate models used to gauge regional climate impacts associated with MCB often assume large areas of the ocean are uniformly perturbed. However, a more realistic representation of MCB application would require information about how an injected particle plume spreads. This work aims to develop such a plume-spreading model.
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024, https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Short summary
Data-driven models are becoming a viable alternative to physics-based models for weather forecasting up to 15 d into the future. However, it is unclear whether they are as reliable as physics-based models when forecasting weather extremes. We evaluate their performance in forecasting near-surface cold, hot, and windy extremes globally. We find that data-driven models can compete with physics-based models and that the choice of the best model mainly depends on the region and type of extreme.
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024, https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Short summary
This work describe how we linked the meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction at a global scale. This new model scales well in high-performance computing environments and performs well with respect to ground surface networks in terms of ozone and PM2.5.
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024, https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary
Short summary
In recent years, several studies focused their attention on the disposition of convection. Lots of methods, called indices, have been developed to quantify the amount of convection clustering. These indices are evaluated in this study by defining criteria that must be satisfied and then evaluating the indices against these standards. None of the indices meet all criteria, with some only partially meeting them.
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024, https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary
Short summary
The Global Forest Fire Emissions Prediction System (GFFEPS) is a model that predicts smoke and carbon emissions from wildland fires. The model calculates emissions from the ground up based on satellite-detected fires, modelled weather and fire characteristics. Unlike other global models, GFFEPS uses daily weather conditions to capture changing burning conditions on a day-to-day basis. GFFEPS produced lower carbon emissions due to the changing weather not captured by the other models.
Samiha Binte Shahid, Forrest G. Lacey, Christine Wiedinmyer, Robert J. Yokelson, and Kelley C. Barsanti
Geosci. Model Dev., 17, 7679–7711, https://doi.org/10.5194/gmd-17-7679-2024, https://doi.org/10.5194/gmd-17-7679-2024, 2024
Short summary
Short summary
The Next-generation Emissions InVentory expansion of Akagi (NEIVA) v.1.0 is a comprehensive biomass burning emissions database that allows integration of new data and flexible querying. Data are stored in connected datasets, including recommended averages of ~1500 constituents for 14 globally relevant fire types. Individual compounds were mapped to common model species to allow better attribution of emissions in modeling studies that predict the effects of fires on air quality and climate.
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024, https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Short summary
Computer models are essential for improving our understanding of how gases and particles move in the atmosphere. We present an update of the atmospheric transport model FLEXPART. FLEXPART 11 is more accurate due to a reduced number of interpolations and a new scheme for wet deposition. It can simulate non-spherical aerosols and includes linear chemical reactions. It is parallelised using OpenMP and includes new user options. A new user manual details how to use FLEXPART 11.
Jaroslav Resler, Petra Bauerová, Michal Belda, Martin Bureš, Kryštof Eben, Vladimír Fuka, Jan Geletič, Radek Jareš, Jan Karel, Josef Keder, Pavel Krč, William Patiño, Jelena Radović, Hynek Řezníček, Matthias Sühring, Adriana Šindelářová, and Ondřej Vlček
Geosci. Model Dev., 17, 7513–7537, https://doi.org/10.5194/gmd-17-7513-2024, https://doi.org/10.5194/gmd-17-7513-2024, 2024
Short summary
Short summary
Detailed modeling of urban air quality in stable conditions is a challenge. We show the unprecedented sensitivity of a large eddy simulation (LES) model to meteorological boundary conditions and model parameters in an urban environment under stable conditions. We demonstrate the crucial role of boundary conditions for the comparability of results with observations. The study reveals a strong sensitivity of the results to model parameters and model numerical instabilities during such conditions.
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
David Ho, Michał Gałkowski, Friedemann Reum, Santiago Botía, Julia Marshall, Kai Uwe Totsche, and Christoph Gerbig
Geosci. Model Dev., 17, 7401–7422, https://doi.org/10.5194/gmd-17-7401-2024, https://doi.org/10.5194/gmd-17-7401-2024, 2024
Short summary
Short summary
Atmospheric model users often overlook the impact of the land–atmosphere interaction. This study accessed various setups of WRF-GHG simulations that ensure consistency between the model and driving reanalysis fields. We found that a combination of nudging and frequent re-initialization allows certain improvement by constraining the soil moisture fields and, through its impact on atmospheric mixing, improves atmospheric transport.
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev., 17, 7285–7315, https://doi.org/10.5194/gmd-17-7285-2024, https://doi.org/10.5194/gmd-17-7285-2024, 2024
Short summary
Short summary
We use a comprehensive approach to select a subset of CMIP6 models for dynamical downscaling over Southeast Asia, taking into account model performance, model independence, data availability and the range of future climate projections. The standardised benchmarking framework is applied to assess model performance through both statistical and process-based metrics. Ultimately, we identify two independent model groups that are suitable for dynamical downscaling in the Southeast Asian region.
Ingrid Super, Tia Scarpelli, Arjan Droste, and Paul I. Palmer
Geosci. Model Dev., 17, 7263–7284, https://doi.org/10.5194/gmd-17-7263-2024, https://doi.org/10.5194/gmd-17-7263-2024, 2024
Short summary
Short summary
Monitoring greenhouse gas emission reductions requires a combination of models and observations, as well as an initial emission estimate. Each component provides information with a certain level of certainty and is weighted to yield the most reliable estimate of actual emissions. We describe efforts for estimating the uncertainty in the initial emission estimate, which significantly impacts the outcome. Hence, a good uncertainty estimate is key for obtaining reliable information on emissions.
Álvaro González-Cervera and Luis Durán
Geosci. Model Dev., 17, 7245–7261, https://doi.org/10.5194/gmd-17-7245-2024, https://doi.org/10.5194/gmd-17-7245-2024, 2024
Short summary
Short summary
RASCAL is an open-source Python tool designed for reconstructing daily climate observations, especially in regions with complex local phenomena. It merges large-scale weather patterns with local weather using the analog method. Evaluations in central Spain show that RASCAL outperforms ERA20C reanalysis in reconstructing precipitation and temperature. RASCAL offers opportunities for broad scientific applications, from short-term forecasts to local-scale climate change scenarios.
Sun-Young Park, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, and Jason A. Milbrandt
Geosci. Model Dev., 17, 7199–7218, https://doi.org/10.5194/gmd-17-7199-2024, https://doi.org/10.5194/gmd-17-7199-2024, 2024
Short summary
Short summary
We enhance the WDM6 scheme by incorporating predicted graupel density. The modification affects graupel characteristics, including fall velocity–diameter and mass–diameter relationships. Simulations highlight changes in graupel distribution and precipitation patterns, potentially influencing surface snow amounts. The study underscores the significance of integrating predicted graupel density for a more realistic portrayal of microphysical properties in weather models.
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024, https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary
Short summary
We present a summary of enabling high-performance computing of the Community Multiscale Air Quality Model (CMAQ) – a state-of-the-science community multiscale air quality model – on two cloud computing platforms through documenting the technologies, model performance, scaling and relative merits. This may be a new paradigm for computationally intense future model applications. We initiated this work due to a need to leverage cloud computing advances and to ease the learning curve for new users.
Peter A. Bogenschutz, Jishi Zhang, Qi Tang, and Philip Cameron-Smith
Geosci. Model Dev., 17, 7029–7050, https://doi.org/10.5194/gmd-17-7029-2024, https://doi.org/10.5194/gmd-17-7029-2024, 2024
Short summary
Short summary
Using high-resolution and state-of-the-art modeling techniques we simulate five atmospheric river events for California to test the capability to represent precipitation for these events. We find that our model is able to capture the distribution of precipitation very well but suffers from overestimating the precipitation amounts over high elevation. Increasing the resolution further has no impact on reducing this bias, while increasing the domain size does have modest impacts.
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-145, https://doi.org/10.5194/gmd-2024-145, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
The effect of the assumed atmospheric nucleation mechanism on particle number concentrations and size distribution was investigated. Two quite different mechanisms involving sulfuric acid and ammonia or a biogenic organic vapor gave quite similar results which were consistent with measurements in 26 measurement stations across Europe. The number of larger particles that serve as cloud condensation nuclei showed little sensitivity to the assumed nucleation mechanism.
Manu Anna Thomas, Klaus Wyser, Shiyu Wang, Marios Chatziparaschos, Paraskevi Georgakaki, Montserrat Costa-Surós, Maria Gonçalves Ageitos, Maria Kanakidou, Carlos Pérez García-Pando, Athanasios Nenes, Twan van Noije, Philippe Le Sager, and Abhay Devasthale
Geosci. Model Dev., 17, 6903–6927, https://doi.org/10.5194/gmd-17-6903-2024, https://doi.org/10.5194/gmd-17-6903-2024, 2024
Short summary
Short summary
Aerosol–cloud interactions occur at a range of spatio-temporal scales. While evaluating recent developments in EC-Earth3-AerChem, this study aims to understand the extent to which the Twomey effect manifests itself at larger scales. We find a reduction in the warm bias over the Southern Ocean due to model improvements. While we see footprints of the Twomey effect at larger scales, the negative relationship between cloud droplet number and liquid water drives the shortwave radiative effect.
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024, https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary
Short summary
AMD’s heterogeneous-compute interface for portability was implemented to port the piecewise parabolic method solver from NVIDIA GPUs to China's GPU-like accelerators. The results show that the larger the model scale, the more acceleration effect on the GPU-like accelerator, up to 28.9 times. The multi-level parallelism achieves a speedup of 32.7 times on the heterogeneous cluster. By comparing the results, the GPU-like accelerators have more accuracy for the geoscience numerical models.
Ruyi Zhang, Limin Zhou, Shin-ichiro Shima, and Huawei Yang
Geosci. Model Dev., 17, 6761–6774, https://doi.org/10.5194/gmd-17-6761-2024, https://doi.org/10.5194/gmd-17-6761-2024, 2024
Short summary
Short summary
Solar activity weakly ionises Earth's atmosphere, charging cloud droplets. Electro-coalescence is when oppositely charged droplets stick together. We introduce an analytical expression of electro-coalescence probability and use it in a warm-cumulus-cloud simulation. Results show that charge cases increase rain and droplet size, with the new method outperforming older ones. The new method requires longer computation time, but its impact on rain justifies inclusion in meteorology models.
Hilda Sandström and Patrick Rinke
EGUsphere, https://doi.org/10.48550/arXiv.2406.18171, https://doi.org/10.48550/arXiv.2406.18171, 2024
Short summary
Short summary
Machine learning has the potential to aid the identification organic molecules involved in aerosol formation. Yet, progress is stalled by a lack of curated atmospheric molecular datasets. Here, we compared atmospheric compounds with large molecular datasets used in machine learning and found minimal overlap with similarity algorithms. Our result underlines the need for collaborative efforts to curate atmospheric molecular data to facilitate machine learning model in atmospheric sciences.
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024, https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Short summary
Satellite observations provide crucial information about atmospheric constituents in a global distribution that helps to better predict the weather over sparsely observed regions like the Arctic. However, the use of satellite data is usually conservative and imperfect. In this study, a better spatial representation of satellite observations is discussed and explored by a so-called footprint function or operator, highlighting its added value through a case study and diagnostics.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024, https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Short summary
The forecast error growth of atmospheric phenomena is caused by initial and model errors. When studying the initial error growth, it may turn out that small-scale phenomena, which contribute little to the forecast product, significantly affect the ability to predict this product. With a negative result, we investigate in the extended Lorenz (2005) system whether omitting these phenomena will improve predictability. A theory explaining and describing this behavior is developed.
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024, https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
Short summary
In this study, we present VERT (Vehicular Emissions from Road Traffic), an R package designed to estimate transport emissions using traffic estimates and vehicle fleet composition data. Compared to other tools available in the literature, VERT stands out for its user-friendly configuration and flexibility of user input. Case studies demonstrate its accuracy in both urban and regional contexts, making it a valuable tool for air quality management and transport scenario planning.
Joël Thanwerdas, Antoine Berchet, Lionel Constantin, Aki Tsuruta, Michael Steiner, Friedemann Reum, Stephan Henne, and Dominik Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2197, https://doi.org/10.5194/egusphere-2024-2197, 2024
Short summary
Short summary
The Community Inversion Framework (CIF) brings together methods for estimating greenhouse gas fluxes from atmospheric observations. The initial ensemble method implemented in CIF was found to be incomplete and could hardly be compared to other ensemble methods employed in the inversion community. In this paper, we present and evaluate a more efficient implementation of the serial and batch versions of the Ensemble Square Root Filter (EnSRF) algorithm in CIF.
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024, https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Short summary
A Python successor to the aerosol module of the OPAC model, named AeroMix, has been developed, with enhanced capabilities to better represent real atmospheric aerosol mixing scenarios. AeroMix’s performance in modeling aerosol mixing states has been evaluated against field measurements, substantiating its potential as a versatile aerosol optical model framework for next-generation algorithms to infer aerosol mixing states and chemical composition.
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024, https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary
Short summary
The width of the tropical rain belt affects many aspects of our climate, yet we do not understand what controls it. To better understand it, we present a method to change it in numerical model experiments. We show that the method works well in four different models. The behavior of the width is unexpectedly simple in some ways, such as how strong the winds are as it changes, but in other ways, it is more complicated, especially how temperature increases with carbon dioxide.
Tianning Su and Yunyan Zhang
Geosci. Model Dev., 17, 6319–6336, https://doi.org/10.5194/gmd-17-6319-2024, https://doi.org/10.5194/gmd-17-6319-2024, 2024
Short summary
Short summary
Using 2 decades of field observations over the Southern Great Plains, this study developed a deep-learning model to simulate the complex dynamics of boundary layer clouds. The deep-learning model can serve as the cloud parameterization within reanalysis frameworks, offering insights into improving the simulation of low clouds. By quantifying biases due to various meteorological factors and parameterizations, this deep-learning-driven approach helps bridge the observation–modeling divide.
Siyuan Chen, Yi Zhang, Yiming Wang, Zhuang Liu, Xiaohan Li, and Wei Xue
Geosci. Model Dev., 17, 6301–6318, https://doi.org/10.5194/gmd-17-6301-2024, https://doi.org/10.5194/gmd-17-6301-2024, 2024
Short summary
Short summary
This study explores strategies and techniques for implementing mixed-precision code optimization within an atmosphere model dynamical core. The coded equation terms in the governing equations that are sensitive (or insensitive) to the precision level have been identified. The performance of mixed-precision computing in weather and climate simulations was analyzed.
Sam O. Owens, Dipanjan Majumdar, Chris E. Wilson, Paul Bartholomew, and Maarten van Reeuwijk
Geosci. Model Dev., 17, 6277–6300, https://doi.org/10.5194/gmd-17-6277-2024, https://doi.org/10.5194/gmd-17-6277-2024, 2024
Short summary
Short summary
Designing cities that are resilient, sustainable, and beneficial to health requires an understanding of urban climate and air quality. This article presents an upgrade to the multi-physics numerical model uDALES, which can simulate microscale airflow, heat transfer, and pollutant dispersion in urban environments. This upgrade enables it to resolve realistic urban geometries more accurately and to take advantage of the resources available on current and future high-performance computing systems.
Felipe Cifuentes, Henk Eskes, Folkert Boersma, Enrico Dammers, and Charlotte Bryan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2225, https://doi.org/10.5194/egusphere-2024-2225, 2024
Short summary
Short summary
We tested the capability of the flux divergence approach (FDA) to reproduce known NOX emissions using synthetic NO2 satellite column retrievals derived from high-resolution model simulations. The FDA accurately reproduced NOX emissions when column observations were limited to the boundary layer and when the variability of NO2 lifetime, NOX:NO2 ratio, and NO2 profile shapes were correctly modeled. This introduces a strong model dependency, reducing the simplicity of the original FDA formulation.
Allison A. Wing, Levi G. Silvers, and Kevin A. Reed
Geosci. Model Dev., 17, 6195–6225, https://doi.org/10.5194/gmd-17-6195-2024, https://doi.org/10.5194/gmd-17-6195-2024, 2024
Short summary
Short summary
This paper presents the experimental design for a model intercomparison project to study tropical clouds and climate. It is a follow-up from a prior project that used a simplified framework for tropical climate. The new project adds one new component – a specified pattern of sea surface temperatures as the lower boundary condition. We provide example results from one cloud-resolving model and one global climate model and test the sensitivity to the experimental parameters.
Astrid Kerkweg, Timo Kirfel, Doung H. Do, Sabine Griessbach, Patrick Jöckel, and Domenico Taraborrelli
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-117, https://doi.org/10.5194/gmd-2024-117, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This article introduces the MESSy DWARF. Usually, the Modular Earth Submodel System (MESSy) is linked to full dynamical models to build chemistry climate models. However, due to the modular concept of MESSy, and the newly developed DWARF component, it is now possible to create simplified models containing just one or some process descriptions. This renders very useful for technical optimisation (e.g., GPU porting) and can be used to create less complex models, e.g., a chemical box model.
Philip G. Sansom and Jennifer L. Catto
Geosci. Model Dev., 17, 6137–6151, https://doi.org/10.5194/gmd-17-6137-2024, https://doi.org/10.5194/gmd-17-6137-2024, 2024
Short summary
Short summary
Weather fronts bring a lot of rain and strong winds to many regions of the mid-latitudes. We have developed an updated method of identifying these fronts in gridded data that can be used on new datasets with small grid spacing. The method can be easily applied to different datasets due to the use of open-source software for its development and shows improvements over similar previous methods. We present an updated estimate of the average frequency of fronts over the past 40 years.
Jens Peter K. W. Frankemölle, Johan Camps, Pieter De Meutter, and Johan Meyers
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-137, https://doi.org/10.5194/gmd-2024-137, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
To detect anomalous radioactivity in the environment, it is paramount that we understand the natural background level. In this work, we propose a statistical model to describe the most likely background level and the associated uncertainty in a network of dose rate detectors. We train, verify and validate the model using real environmental data. Using the model, we show that we can correctly predict the background level in a subset of the detector network during a known `anomalous’ event.
Kelly M. Núñez Ocasio and Zachary L. Moon
Geosci. Model Dev., 17, 6035–6049, https://doi.org/10.5194/gmd-17-6035-2024, https://doi.org/10.5194/gmd-17-6035-2024, 2024
Short summary
Short summary
TAMS is an open-source Python-based package for tracking and classifying mesoscale convective systems that can be used to study observed and simulated systems. Each step of the algorithm is described in this paper with examples showing how to make use of visualization and post-processing tools within the package. A unique and valuable feature of this tracker is its support for unstructured grids in the identification stage and grid-independent tracking.
Cited articles
Ackerman, T. P. and Toon, O. B.: Absorption of visible radiation in atmosphere
containing mixtures of absorbing and nonabsorbing particles, Appl. Opt.,
20, 3661–3668, https://doi.org/10.1364/AO.20.003661, 1981. a
Ackermann, I. J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F. S., and
Shankar, U.: Modal aerosol dynamics model for Europe: Development and
first applications, Atmos. Environ., 32, 2981–2999, https://doi.org/10.1016/S1352-2310(98)00006-5, 1998. a
Andreae, M. and Rosenfeld, D.: Aerosol–cloud–precipitation interactions.
Part 1. The nature and sources of cloud-active aerosols, Earth-Sci.
Rev., 89, 13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008. a
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from
biomass burning, Global Biogeochem. Cy., 15, 955–966, https://doi.org/10.1029/2000GB001382, 2001. a
Andreae, T. W., Andreae, M. O., Ichoku, C., Maenhaut, W., Cafmeyer, J.,
Karnieli, A., and Orlovsky, L.: Light scattering by dust and anthropogenic
aerosol at a remote site in the Negev desert, Israel, J.
Geophys. Res.-Atmos., 107, 4008, https://doi.org/10.1029/2001JD900252,
2002. a
Balzarini, A., Pirovano, G., Honzak, L., Ẑabkar, R., Curci, G., Forkel, R.,
Hirtl, M., San José, R., Tuccella, P., and Grell, G.: WRF-Chem model
sensitivity to chemical mechanisms choice in reconstructing aerosol optical
properties, Atmos. Environ., 115, 604–619, https://doi.org/10.1016/j.atmosenv.2014.12.033, 2015. a
Barnard, J. C., Fast, J. D., Paredes-Miranda, G., Arnott, W. P., and Laskin, A.: Technical Note: Evaluation of the WRF-Chem ”Aerosol Chemical to Aerosol Optical Properties” Module using data from the MILAGRO campaign, Atmos. Chem. Phys., 10, 7325–7340, https://doi.org/10.5194/acp-10-7325-2010, 2010. a, b
Bian, H., Tie, X., Cao, J., Ying, Z., Han, S., and Xue, Y.: Analysis of a
Severe Dust Storm Event over China: Application of the WRF-Dust Model,
Aerosol Air Qual. Res., 11, 419–428,
https://doi.org/10.4209/aaqr.2011.04.0053, 2011. a
Bohren, C. F. and Huffman, D. R.: Absorption and Scattering of Light by
Small Particles, John Wiley & Sons, Ltd, 530 pp., https://doi.org/10.1002/9783527618156, 2007. a
Boucher, O.: Atmospheric Aerosols: Properties and Climate Impacts,
Springer Netherlands, xVII, 311 pp., https://doi.org/10.1007/978-94-017-9649-1,
2015. a
Boucher, O. and Anderson, T. L.: General circulation model assessment of the
sensitivity of direct climate forcing by anthropogenic sulfate aerosols to
aerosol size and chemistry, J. Geophys. Res.-Atmos.,
100, 26117–26134, https://doi.org/10.1029/95JD02531, 1995. a
Boucher, O., Schwartz, S. E., Ackerman, T. P., Anderson, T. L., Bergstrom, B.,
Bonnel, B., Chýlek, P., Dahlback, A., Fouquart, Y., Fu, Q., Halthore, R. N.,
Haywood, J. M., Iversen, T., Kato, S., Kinne, S., Kirkevåg, A., Knapp,
K. R., Lacis, A., Laszlo, I., Mishchenko, M. I., Nemesure, S., Ramaswamy, V.,
Roberts, D. L., Russell, P., Schlesinger, M. E., Stephens, G. L., Wagener,
R., Wang, M., Wong, J., and Yang, F.: Intercomparison of models representing
direct shortwave radiative forcing by sulfate aerosols, J.
Geophys. Res.-Atmos., 103, 16979–16998, https://doi.org/10.1029/98JD00997, 1998. a
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S., Sherwood, S., Stevens, B., and Zhang, X.: Clouds and aerosols, in:
Climate Change 2013: The Physical Science Basis. Contribution of
Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T.,
Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A.,
Xia, Y., Bex, V., , and Midgley, P., 571–657, Cambridge University
Press, Cambridge University Press, Cambridge, United Kingdom and New York,
NY, USA, 2013. a
Brock, C. A., Cozic, J., Bahreini, R., Froyd, K. D., Middlebrook, A. M., McComiskey, A., Brioude, J., Cooper, O. R., Stohl, A., Aikin, K. C., de Gouw, J. A., Fahey, D. W., Ferrare, R. A., Gao, R.-S., Gore, W., Holloway, J. S., Hübler, G., Jefferson, A., Lack, D. A., Lance, S., Moore, R. H., Murphy, D. M., Nenes, A., Novelli, P. C., Nowak, J. B., Ogren, J. A., Peischl, J., Pierce, R. B., Pilewskie, P., Quinn, P. K., Ryerson, T. B., Schmidt, K. S., Schwarz, J. P., Sodemann, H., Spackman, J. R., Stark, H., Thomson, D. S., Thornberry, T., Veres, P., Watts, L. A., Warneke, C., and Wollny, A. G.: Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project, Atmos. Chem. Phys., 11, 2423–2453, https://doi.org/10.5194/acp-11-2423-2011, 2011. a, b
Brock, C. A., Wagner, N. L., Anderson, B. E., Beyersdorf, A., Campuzano-Jost, P., Day, D. A., Diskin, G. S., Gordon, T. D., Jimenez, J. L., Lack, D. A., Liao, J., Markovic, M. Z., Middlebrook, A. M., Perring, A. E., Richardson, M. S., Schwarz, J. P., Welti, A., Ziemba, L. D., and Murphy, D. M.: Aerosol optical properties in the southeastern United States in summer – Part 2: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters, Atmos. Chem. Phys., 16, 5009–5019, https://doi.org/10.5194/acp-16-5009-2016, 2016. a
Buseck, P. and Schwartz, S.: 4.04 – Tropospheric Aerosols, in: Treatise on
Geochemistry, edited by: Holland, H. D. and Turekian, K. K., 91–142,
Pergamon, Oxford, https://doi.org/10.1016/B0-08-043751-6/04178-5, 2003. a
Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A.,
Hansen, J. E., and Hofmann, D. J.: Climate Forcing by Anthropogenic Aerosols,
Science, 255, 423–430, https://doi.org/10.1126/science.255.5043.423, 1992. a
Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N.,
Martin, R. V., Logan, J. A., Higurashi, A., and Nakajima, T.: Tropospheric
aerosol optical thickness from the GOCART model and comparisons with
satellite and Sun photometer measurements, J. Atmos.
Sci., 59, 461–483, https://doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2, 2002. a, b, c, d, e
Claquin, T., Schulz, M., Balkanski, Y., and Boucher, O.: Uncertainties in
assessing radiative forcing by mineral dust, Tellus B, 50, 491–505, https://doi.org/10.1034/j.1600-0889.1998.t01-2-00007.x, 1998. a
Covert, D. S., Wiedensohler, A., Aalto, P., Heintzenberg, J., Mcmurry, P. H.,
and Leck, C.: Aerosol number size distributions from 3 to 500 nm diameter in
the arctic marine boundary layer during summer and autumn, Tellus B, 48, 197–212, https://doi.org/10.3402/tellusb.v48i2.15886,
1996. a, b, c
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart,
F.: The ERA-Interim reanalysis: Configuration and performance of the
data assimilation system, Q. J. Roy. Meteorol.
Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Deshler, T., Hervig, M. E., Hofmann, D. J., Rosen, J. M., and Liley, J. B.:
Thirty years of in situ stratospheric aerosol size distribution measurements
from Laramie, Wyoming (41∘ N), using balloon-borne instruments,
J. Geophys. Res.-Atmos., 108, 4167,
https://doi.org/10.1029/2002JD002514, 2003. a
Dipu, S., Prabha, T. V., Pandithurai, G., Dudhia, J., Pfister, G., Rajesh, K.,
and Goswami, B.: Impact of elevated aerosol layer on the cloud macrophysical
properties prior to monsoon onset, Atmos. Environ., 70, 454–467,
https://doi.org/10.1016/j.atmosenv.2012.12.036, 2013. a
Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O'Neill,
N. T., Slutsker, I., and Kinne, S.: Wavelength dependence of the optical
depth of biomass burning, urban, and desert dust aerosols, J.
Geophys. Res.-Atmos., 104, 31333–31349, https://doi.org/10.1029/1999JD900923, 1999. a
Geiger, H., Barnes, I., Bejan, I., Benter, T., and Spittler, M.: The
tropospheric degradation of isoprene: an updated module for the regional
atmospheric chemistry mechanism, Atmos. Environ., 37, 1503–1519,
https://doi.org/10.1016/S1352-2310(02)01047-6, 2003. a
Ghan, S., Laulainen, N., Easter, R., Wagener, R., Nemesure, S., Chapman, E.,
Zhang, Y., and Leung, R.: Evaluation of aerosoladirect radiative forcing in
MIRAGE, J. Geophys. Res.-Atmos., 106, 5295–5316,
https://doi.org/10.1029/2000JD900502, 2001. a
Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33,
L08707, https://doi.org/10.1029/2006GL025734, 2006. a
Grell, G. A. and Freitas, S. R.: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmos. Chem. Phys., 14, 5233–5250, https://doi.org/10.5194/acp-14-5233-2014, 2014. a
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock,
W. C., and Eder, B.: Fully coupled “online” chemistry within the WRF
model, Atmos. Environ., 39, 6957–6975, https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005. a
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006. a
Haywood, J. and Boucher, O.: Estimates of the direct and indirect radiative
forcing due to tropospheric aerosols: A review, Rev. Geophys., 38,
513–543, https://doi.org/10.1029/1999RG000078, 2000. a
Heintzenberg, J.: Properties of the Log-Normal Particle Size Distribution,
Aerosol Sci. Technol., 21, 46–48, https://doi.org/10.1080/02786829408959695,
1994. a
Hinds, W. C.: Aerosol technology: properties, behavior, and measurement of
airborne particles, John Wiley & Sons, 2nd Edn., 504 pp., 2012. a
Hong, S.-Y., Noh, Y., and Dudhia, J.: A New Vertical Diffusion Package
with an Explicit Treatment of Entrainment Processes, Mon. Weather
Rev., 134, 2318–2341, https://doi.org/10.1175/MWR3199.1, 2006. a
Hu, Z., Huang, J., Zhao, C., Jin, Q., Ma, Y., and Yang, B.: Modeling dust sources, transport, and radiative effects at different altitudes over the Tibetan Plateau, Atmos. Chem. Phys., 20, 1507–1529, https://doi.org/10.5194/acp-20-1507-2020, 2020. a
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A.,
and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys.
Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008. a
Janssens-Maenhout, G., Dentener, F., Van Aardenne, J., Monni, S., Pagliari, V.,
Orlandini, L., Klimont, Z., Kurokawa, J.-i., Akimoto, H., Ohara, T., Wankmüller, R., Battye, B., Grano, D., Zuber, A., and Keating, T.:
EDGAR-HTAP: a harmonized gridded air pollution emission dataset based on national inventories, Tech. rep., European Commission Joint Research Centre
Institute for Environment and Sustainability, Luxembourg, #JRC58434,
42 pp., https://doi.org/10.2788/14102, 2012. a
Jish Prakash, P., Stenchikov, G., Kalenderski, S., Osipov, S., and Bangalath, H.: The impact of dust storms on the Arabian Peninsula and the Red Sea, Atmos. Chem. Phys., 15, 199–222, https://doi.org/10.5194/acp-15-199-2015, 2015. a
Kalenderski, S. and Stenchikov, G.: High-resolution regional modeling of
summertime transport and impact of African dust over the Red Sea and Arabian
Peninsula, J. Geophys. Res.-Atmos., 121, 6435–6458,
https://doi.org/10.1002/2015JD024480, 2016. a
Kok, J. F.: A scaling theory for the size distribution of emitted dust aerosols
suggests climate models underestimate the size of the global dust cycle,
P. Natl. Acad. Sci. USA, 108, 1016–1021,
https://doi.org/10.1073/pnas.1014798108, 2011. a
Kumar, R., Barth, M. C., Pfister, G. G., Naja, M., and Brasseur, G. P.: WRF-Chem simulations of a typical pre-monsoon dust storm in northern India: influences on aerosol optical properties and radiation budget, Atmos. Chem. Phys., 14, 2431–2446, https://doi.org/10.5194/acp-14-2431-2014, 2014. a
LeGrand, S. L., Polashenski, C., Letcher, T. W., Creighton, G. A., Peckham, S. E., and Cetola, J. D.: The AFWA dust emission scheme for the GOCART aerosol model in WRF-Chem v3.8.1, Geosci. Model Dev., 12, 131–166, https://doi.org/10.5194/gmd-12-131-2019, 2019. a
Lennartson, E. M., Wang, J., Gu, J., Castro Garcia, L., Ge, C., Gao, M., Choi, M., Saide, P. E., Carmichael, G. R., Kim, J., and Janz, S. J.: Diurnal variation of aerosol optical depth and PM2.5 in South Korea: a synthesis from AERONET, satellite (GOCI), KORUS-AQ observation, and the WRF-Chem model, Atmos. Chem. Phys., 18, 15125–15144, https://doi.org/10.5194/acp-18-15125-2018, 2018. a
Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., Lamarque, J.-F., Gettelman, A., Morrison, H., Vitt, F., Conley, A., Park, S., Neale, R., Hannay, C., Ekman, A. M. L., Hess, P., Mahowald, N., Collins, W., Iacono, M. J., Bretherton, C. S., Flanner, M. G., and Mitchell, D.: Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5, Geosci. Model Dev., 5, 709–739, https://doi.org/10.5194/gmd-5-709-2012, 2012. a
Mäkelä, J. M., Koponen, I. K., Aalto, P., and Kulmala, M.: ONE-YEAR DATA OF
SUBMICRON SIZE MODES OF TROPOSPHERIC BACKGROUND AEROSOL IN SOUTHERN
FINLAND, J. Aerosol Sci., 31, 595–611,
https://doi.org/10.1016/S0021-8502(99)00545-5, 2000. a, b, c
Marinescu, P. J., Levin, E. J. T., Collins, D., Kreidenweis, S. M., and van den Heever, S. C.: Quantifying aerosol size distributions and their temporal variability in the Southern Great Plains, USA, Atmos. Chem. Phys., 19, 11985–12006, https://doi.org/10.5194/acp-19-11985-2019, 2019. a, b, c, d
Maring, H., Savoie, D. L., Izaguirre, M. A., Custals, L., and Reid, J. S.:
Mineral dust aerosol size distribution change during atmospheric transport,
J. Geophys. Res.-Atmos., 108, 8592, https://doi.org/10.1029/2002JD002536, 2003. a, b
Millán, M. M., Salvador, R., Mantilla, E., and Kallos, G.: Photooxidant
dynamics in the Mediterranean basin in summer: results from European
research projects, J. Geophys. Res.-Atmos., 102, 8811–8823, https://doi.org/10.1029/96JD03610, 1997. a
Morrison, H., Thompson, G., and Tatarskii, V.: Impact of Cloud Microphysics
on the Development of Trailing Stratiform Precipitation in a
Simulated Squall Line: Comparison of One- and Two-Moment
Schemes, Mon. Weather Rev., 137, 991–1007, https://doi.org/10.1175/2008MWR2556.1, 2009. a, b
Myhre, G. and Stordal, F.: Global sensitivity experiments of the radiative
forcing due to mineral aerosols, J. Geophys. Res.-Atmos., 106, 18193–18204, https://doi.org/10.1029/2000JD900536, 2001. a
Nabat, P., Somot, S., Mallet, M., Sevault, F., Chiacchio, M., and Wild, M.:
Direct and semi-direct aerosol radiative effect on the Mediterranean climate
variability using a coupled regional climate system model, Clim. Dynam.,
44, 1127–1155, https://doi.org/10.1007/s00382-014-2205-6, 2015. a
Obiso, V. and Jorba, O.: Aerosol-radiation interaction in atmospheric models:
Idealized sensitivity study of simulated short-wave direct radiative effects
to particle microphysical properties, J. Aerosol Sci., 115, 46–61, https://doi.org/10.1016/j.jaerosci.2017.10.004, 2018. a
Obiso, V., Pandolfi, M., Ealo, M., and Jorba, O.: Impact of aerosol
microphysical properties on mass scattering cross sections, J.
Aerosol Sci., 112, 68–82, https://doi.org/10.1016/j.jaerosci.2017.03.001,
2017. a
Palacios-Peña, L., Baró, R., Guerrero-Rascado, J. L., Alados-Arboledas, L., Brunner, D., and Jiménez-Guerrero, P.: Evaluating the representation of aerosol optical properties using an online coupled model over the Iberian Peninsula, Atmos. Chem. Phys., 17, 277–296, https://doi.org/10.5194/acp-17-277-2017, 2017. a
Palacios-Peña, L., Baró, R., Baklanov, A., Balzarini, A., Brunner, D., Forkel, R., Hirtl, M., Honzak, L., López-Romero, J. M., Montávez, J. P., Pérez, J. L., Pirovano, G., San José, R., Schröder, W., Werhahn, J., Wolke, R., Žabkar, R., and Jiménez-Guerrero, P.: An assessment of aerosol optical properties from remote-sensing observations and regional chemistry–climate coupled models over Europe, Atmos. Chem. Phys., 18, 5021–5043, https://doi.org/10.5194/acp-18-5021-2018, 2018. a
Palacios-Peña, L., Jiménez-Guerrero, P., Baró, R., Balzarini, A., Bianconi, R., Curci, G., Landi, T. C., Pirovano, G., Prank, M., Riccio, A., Tuccella, P., and Galmarini, S.: Aerosol optical properties over Europe: an evaluation of the AQMEII Phase 3 simulations against satellite observations, Atmos. Chem. Phys., 19, 2965–2990, https://doi.org/10.5194/acp-19-2965-2019, 2019a. a
Palacios-Peña, L., Montávez, J. P., López-Romero, J. M., Jerez, S., Gómez-Navarro, J. J., Lorente-Plazas, R., Ruiz, J., and Jiménez-Guerrero, P.: Added Value of Aerosol-Cloud Interactions for Representing Aerosol Optical Depth in an
Online Coupled Climate-Chemistry Model over Europe, Atmosphere, 11, 360, 2020a. a
Palacios-Peña, L., Fast, J. D., Pravia-Sarabia, E., and Jiménez-Guerrero, P.: Data and code of the GMD for review publication Sensitivity of aerosol optical properties to the aerosol size distribution over central Europe and the Mediterranean Basin, Zenodo, https://doi.org/10.5281/zenodo.3768076, 2020b. a
Papadimas, C. D., Hatzianastassiou, N., Matsoukas, C., Kanakidou, M., Mihalopoulos, N., and Vardavas, I.: The direct effect of aerosols on solar radiation over the broader Mediterranean basin, Atmos. Chem. Phys., 12, 7165–7185, https://doi.org/10.5194/acp-12-7165-2012, 2012. a
Pérez, C., Sicard, M., Jorba, O., Comerón, A., and Baldasano, J. M.:
Summertime re-circulations of air pollutants over the north-eastern Iberian
coast observed from systematic EARLINET lidar measurements in Barcelona,
Atmos. Environ., 38, 3983–4000, https://doi.org/10.1016/j.atmosenv.2004.04.010, 2004. a
Petzold, A., Weinzierl, B., Huntrieser, H., Stohl, A., Real, E., Cozic, J., Fiebig, M., Hendricks, J., Lauer, A., Law, K., Roiger, A., Schlager, H., and Weingartner, E.: Perturbation of the European free troposphere aerosol by North American forest fire plumes during the ICARTT-ITOP experiment in summer 2004, Atmos. Chem. Phys., 7, 5105–5127, https://doi.org/10.5194/acp-7-5105-2007, 2007. a
Porter, J. N. and Clarke, A. D.: Aerosol size distribution models based on in
situ measurements, J. Geophys. Res.-Atmos., 102, 6035–6045, https://doi.org/10.1029/96JD03403, 1997. a, b, c
Querol, X., Alastuey, A., Pey, J., Cusack, M., Pérez, N., Mihalopoulos, N., Theodosi, C., Gerasopoulos, E., Kubilay, N., and Koçak, M.: Variability in regional background aerosols within the Mediterranean, Atmos. Chem. Phys., 9, 4575–4591, https://doi.org/10.5194/acp-9-4575-2009, 2009. a
Rissler, J., Vestin, A., Swietlicki, E., Fisch, G., Zhou, J., Artaxo, P., and Andreae, M. O.: Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia, Atmos. Chem. Phys., 6, 471–491, https://doi.org/10.5194/acp-6-471-2006, 2006. a, b, c, d
Romakkaniemi, S., Arola, A., Kokkola, H., Birmili, W., Tuch, T., Kerminen,
V.-M., Räisänen, P., Smith, J. N., Korhonen, H., and Laaksonen, A.:
Effect of aerosol size distribution changes on AOD, CCN and cloud droplet
concentration: Case studies from Erfurt and Melpitz, Germany, J. Geophys. Res.-Atmos., 117, D07202, https://doi.org/10.1029/2011JD017091, 2012. a, b
Saide, P. E., Gao, M., Lu, Z., Goldberg, D. L., Streets, D. G., Woo, J.-H., Beyersdorf, A., Corr, C. A., Thornhill, K. L., Anderson, B., Hair, J. W., Nehrir, A. R., Diskin, G. S., Jimenez, J. L., Nault, B. A., Campuzano-Jost, P., Dibb, J., Heim, E., Lamb, K. D., Schwarz, J. P., Perring, A. E., Kim, J., Choi, M., Holben, B., Pfister, G., Hodzic, A., Carmichael, G. R., Emmons, L., and Crawford, J. H.: Understanding and improving model representation of aerosol optical properties for a Chinese haze event measured during KORUS-AQ, Atmos. Chem. Phys., 20, 6455–6478, https://doi.org/10.5194/acp-20-6455-2020, 2020. a
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics:
From Air Pollution to Climate Change, John Wiley & Sons, INC.,
Second edn., 1225 pp., 2006. a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda,
M. G., Huang, X.-Y., Wang, W., and Powers, J. G.: A Description of the
Advanced Research WRF Version 3 (No. NCAR/TN-475+STR), https://doi.org/10.1029/97JD01810, 2008. a
Soares, J., Sofiev, M., and Hakkarainen, J.: Uncertainties of wild-land fires
emission in AQMEII phase 2 case study, Atmos. Environ., 115, 361–370, https://doi.org/10.1016/j.atmosenv.2015.01.068, 2015. a
Sofiev, M., Vankevich, R., Lotjonen, M., Prank, M., Petukhov, V., Ermakova, T., Koskinen, J., and Kukkonen, J.: An operational system for the assimilation of the satellite information on wild-land fires for the needs of air quality modelling and forecasting, Atmos. Chem. Phys., 9, 6833–6847, https://doi.org/10.5194/acp-9-6833-2009, 2009. a
Sprent, P. and Smeeton, N. C.: Applied nonparametric statistical methods, CRC
press, New York, 2016. a
Stephens, M. A.: EDF Statistics for Goodness of Fit and Some
Comparisons, J. Am. Stat. Assoc., 69, 730–737, https://doi.org/10.1080/01621459.1974.10480196, 1974. a, b
Stockwell, W. R., Kirchner, F., Kuhn, M., and Seefeld, S.: A new mechanism for
regional atmospheric chemistry modeling, J. Geophys. Res.-Atmos., 102, 25847–25879, https://doi.org/10.1029/97JD00849, 1997. a
Stuefer, M., Freitas, S. R., Grell, G., Webley, P., Peckham, S., McKeen, S. A., and Egan, S. D.: Inclusion of ash and SO2 emissions from volcanic eruptions in WRF-Chem: development and some applications, Geosci. Model Dev., 6, 457–468, https://doi.org/10.5194/gmd-6-457-2013, 2013. a
Tegen, I. and Lacis, A. A.: Modeling of particle size distribution and its
influence on the radiative properties of mineral dust aerosol, J.
Geophys. Res.-Atmos., 101, 19237–19244, https://doi.org/10.1029/95JD03610, 1996. a
Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M., Mitchell, K., Ek, M.,
Gayno, G., Wegiel, J., and Cuenca, R.: Implementation and verification of the
unified NOAH land surface model in the WRF model, in: 20th conference on
weather analysis and forecasting/16th conference on numerical weather
prediction, 11–15, 12–16 January 2004, Seattle, Washington, 2004. a
Tunved, P., Hansson, H.-C., Kulmala, M., Aalto, P., Viisanen, Y., Karlsson, H., Kristensson, A., Swietlicki, E., Dal Maso, M., Ström, J., and Komppula, M.: One year boundary layer aerosol size distribution data from five nordic background stations, Atmos. Chem. Phys., 3, 2183–2205, https://doi.org/10.5194/acp-3-2183-2003, 2003. a, b, c, d
Vakkari, V., Beukes, J. P., Laakso, H., Mabaso, D., Pienaar, J. J., Kulmala, M., and Laakso, L.: Long-term observations of aerosol size distributions in semi-clean and polluted savannah in South Africa, Atmos. Chem. Phys., 13, 1751–1770, https://doi.org/10.5194/acp-13-1751-2013, 2013. a, b, c, d
Wesely, M. L.: Parameterization of surface resistances to gaseous dry
deposition in regional-scale numerical models, Atmos. Environ., 23, 1293–1304, https://doi.org/10.1016/0004-6981(89)90153-4, 1989. a
Whitby, K., Husar, R., and Liu, B.: The aerosol size distribution of Los
Angeles smog, J. Colloid Interf. Sci., 39, 177–204,
https://doi.org/10.1016/0021-9797(72)90153-1, 1972. a, b
Whitby, K. T.: The physical characteristics of sulfur aerosols, Atmos.
Environ., 12, 135–159, https://doi.org/10.1016/0004-6981(78)90196-8, 1978. a, b
Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning, Geosci. Model Dev., 4, 625–641, https://doi.org/10.5194/gmd-4-625-2011, 2011. a
Wild, O., Zhu, X., and Prather, M. J.: Fast-J: Accurate Simulation of In- and
Below-Cloud Photolysis in Tropospheric Chemical Models, J.
Atmos. Chem., 37, 245–282, https://doi.org/10.1023/A:1006415919030, 2000. a
Yang, J., Kang, S., and Ji, Z.: Sensitivity Analysis of Chemical Mechanisms in
the WRF-Chem Model in Reconstructing Aerosol Concentrations and Optical
Properties in the Tibetan Plateau, Aerosol Air Qual. Res., 18,
505–521, https://doi.org/10.4209/aaqr.2017.05.0156, 2018. a
Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical mechanism
for large-scale applications, J. Geophys. Res.-Atmos.,
104, 30387–30415, https://doi.org/10.1029/1999JD900876, 1999. a
Zhang, Y., Liu, Y., Kucera, P. A., Alharbi, B. H., Pan, L., and Ghulam, A.:
Dust modeling over Saudi Arabia using WRF-Chem: March 2009 severe dust case,
Atmos. Environ., 119, 118–130,
https://doi.org/10.1016/j.atmosenv.2015.08.032, 2015.
a
Zhao, C., Liu, X., Leung, L. R., Johnson, B., McFarlane, S. A., Gustafson Jr., W. I., Fast, J. D., and Easter, R.: The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: modeling sensitivities to dust emissions and aerosol size treatments, Atmos. Chem. Phys., 10, 8821–8838, https://doi.org/10.5194/acp-10-8821-2010, 2010. a
Zhao, C., Liu, X., Ruby Leung, L., and Hagos, S.: Radiative impact of mineral dust on monsoon precipitation variability over West Africa, Atmos. Chem. Phys., 11, 1879–1893, https://doi.org/10.5194/acp-11-1879-2011, 2011. a
Zhao, C., Chen, S., Leung, L. R., Qian, Y., Kok, J. F., Zaveri, R. A., and Huang, J.: Uncertainty in modeling dust mass balance and radiative forcing from size parameterization, Atmos. Chem. Phys., 13, 10733–10753, https://doi.org/10.5194/acp-13-10733-2013, 2013. a
Short summary
The main objective of this work is to study the impact of the representation of aerosol size distribution on aerosol optical properties over central Europe and the Mediterranean Basin during a summertime aerosol episode using the WRF-Chem online model. Results reveal that the reduction in the standard deviation of the accumulation mode leads to the largest impacts on aerosol optical depth (AOD) representation due to a transfer of particles from the accumulation mode to the coarse mode.
The main objective of this work is to study the impact of the representation of aerosol size...