Articles | Volume 13, issue 11
https://doi.org/10.5194/gmd-13-5609-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/gmd-13-5609-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multi-layer coupling between SURFEX-TEB-v9.0 and Meso-NH-v5.3 for modelling the urban climate of high-rise cities
Robert Schoetter
CORRESPONDING AUTHOR
CNRM, Université de Toulouse, Météo-France, CNRS, 42 avenue Gaspard Coriolis, 31057, CEDEX 1, Toulouse, France
Yu Ting Kwok
School of Architecture, The Chinese University of Hong Kong, Hong Kong, China
Cécile de Munck
CNRM, Université de Toulouse, Météo-France, CNRS, 42 avenue Gaspard Coriolis, 31057, CEDEX 1, Toulouse, France
Kevin Ka Lun Lau
Institute of Future Cities, The Chinese University of Hong Kong, Hong Kong, China
Wai Kin Wong
Hong Kong Observatory, Hong Kong, China
Valéry Masson
CNRM, Université de Toulouse, Météo-France, CNRS, 42 avenue Gaspard Coriolis, 31057, CEDEX 1, Toulouse, France
Related authors
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025, https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary
Short summary
Radiation is relevant to the atmospheric impact on people and infrastructure in cities as it can influence the urban heat island, building energy consumption, and human thermal comfort. A new urban radiation model, assuming a more realistic form of urban morphology, is coupled to the urban climate model Town Energy Balance (TEB). The new TEB is evaluated with a reference radiation model for a variety of urban morphologies, and an improvement in the simulated radiative observables is found.
Aurélien Mirebeau, Cécile de Munck, Bertrand Bonan, Christine Delire, Aude Lemonsu, Valéry Masson, and Stephan Weber
Geosci. Model Dev., 18, 5329–5349, https://doi.org/10.5194/gmd-18-5329-2025, https://doi.org/10.5194/gmd-18-5329-2025, 2025
Short summary
Short summary
The greening of cities is recommended to limit the effects of climate change. In particular, green roofs can provide numerous environmental benefits, such as urban cooling, water retention, and carbon sequestration. The aim of this research is to develop a new module for calculating green roof CO2 fluxes within a model that can already simulate hydrological and thermal processes of such roofs. The calibration and evaluation of this module take advantage of long-term experimental data.
Gabriel Colas, Valéry Masson, François Bouttier, and Ludovic Bouilloud
EGUsphere, https://doi.org/10.5194/egusphere-2025-2777, https://doi.org/10.5194/egusphere-2025-2777, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Each vehicle from road traffic is a source of heat and an obstacle that induce wind when it passes. It directly impacts the local atmospheric conditions and the road surface temperature. These impacts are included in the numerical model of the Town Energy Balance, used to simulate local conditions in urbanised environments. Simulations show that road traffic has a significant impact on the road surface temperature up to several degrees, and on local variables.
Gabriel Colas, Valéry Masson, François Bouttier, Ludovic Bouilloud, Laura Pavan, and Virve Karsisto
Geosci. Model Dev., 18, 3453–3472, https://doi.org/10.5194/gmd-18-3453-2025, https://doi.org/10.5194/gmd-18-3453-2025, 2025
Short summary
Short summary
In winter, snow- and ice-covered artificial surfaces are important aspects of the urban climate. They may influence the magnitude of the urban heat island effect, but this is still unclear. In this study, we improved the representation of the snow and ice cover in the Town Energy Balance (TEB) urban climate model. Evaluations have shown that the results are promising for using TEB to study the climate of cold cities.
William Morrison, Dana Looschelders, Jonnathan Céspedes, Bernie Claxton, Marc-Antoine Drouin, Jean-Charles Dupont, Aurélien Faucheux, Martial Haeffelin, Christopher C. Holst, Simone Kotthaus, Valéry Masson, James McGregor, Jeremy Price, Matthias Zeeman, Sue Grimmond, and Andreas Christen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-167, https://doi.org/10.5194/essd-2025-167, 2025
Preprint under review for ESSD
Short summary
Short summary
We conducted research using sophisticated wind sensors to better understand wind patterns in Paris. By installing these sensors across the city, we gathered detailed data on wind speeds and directions from 2022 to 2024. This information helps improve weather and climate models, making them more accurate for city environments. Our findings offer valuable insights for scientists studying urban air and weather, improving predictions and understanding of city-scale atmospheric processes.
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025, https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary
Short summary
Radiation is relevant to the atmospheric impact on people and infrastructure in cities as it can influence the urban heat island, building energy consumption, and human thermal comfort. A new urban radiation model, assuming a more realistic form of urban morphology, is coupled to the urban climate model Town Energy Balance (TEB). The new TEB is evaluated with a reference radiation model for a variety of urban morphologies, and an improvement in the simulated radiative observables is found.
Martial Haeffelin, Jean-François Ribaud, Jonnathan Céspedes, Jean-Charles Dupont, Aude Lemonsu, Valéry Masson, Tim Nagel, and Simone Kotthaus
Atmos. Chem. Phys., 24, 14101–14122, https://doi.org/10.5194/acp-24-14101-2024, https://doi.org/10.5194/acp-24-14101-2024, 2024
Short summary
Short summary
This study highlights how the state of the urban atmospheric boundary layer impacts urban park cooling effect intensity at night. Under summertime heat wave conditions, the urban atmosphere becomes stable at night, which inhibits turbulent motions. Under those specific conditions, urban parks and woods cool much more efficiently than the surrounding built-up neighbourhoods in the evening and through the night, providing cooler air temperatures by 4 to 6° C depending on park size.
Perrine Hamel, Martí Bosch, Léa Tardieu, Aude Lemonsu, Cécile de Munck, Chris Nootenboom, Vincent Viguié, Eric Lonsdorf, James A. Douglass, and Richard P. Sharp
Geosci. Model Dev., 17, 4755–4771, https://doi.org/10.5194/gmd-17-4755-2024, https://doi.org/10.5194/gmd-17-4755-2024, 2024
Short summary
Short summary
The InVEST Urban Cooling model estimates the cooling effect of vegetation in cities. We further developed an algorithm to facilitate model calibration and evaluation. Applying the algorithm to case studies in France and in the United States, we found that nighttime air temperature estimates compare well with reference datasets. Estimated change in temperature from a land cover scenario compares well with an alternative model estimate, supporting the use of the model for urban planning decisions.
Erwan Jézéquel, Frédéric Blondel, and Valéry Masson
Wind Energ. Sci., 9, 97–117, https://doi.org/10.5194/wes-9-97-2024, https://doi.org/10.5194/wes-9-97-2024, 2024
Short summary
Short summary
Wind turbine wakes affect the production and lifecycle of downstream turbines. They can be predicted with the dynamic wake meandering (DWM) method. In this paper, the authors break down the velocity and turbulence in the wake of a wind turbine into several terms. They show that it is implicitly assumed in the DWM that some of these terms are neglected. With high-fidelity simulations, it is shown that this can lead to some errors, in particular for the maximum turbulence added by the wake.
Erwan Jézéquel, Frédéric Blondel, and Valéry Masson
Wind Energ. Sci., 9, 119–139, https://doi.org/10.5194/wes-9-119-2024, https://doi.org/10.5194/wes-9-119-2024, 2024
Short summary
Short summary
Analytical models allow us to quickly compute the decreased power output and lifetime induced by wakes in a wind farm. This is achieved by evaluating the modified velocity and turbulence in the wake. In this work, we present a new model based on the velocity and turbulence breakdowns presented in Part 1. This new model is physically based, allows us to compute the whole turbulence profile (rather than the maximum value) and is built to take atmospheric stability into account.
Mathew Lipson, Sue Grimmond, Martin Best, Winston T. L. Chow, Andreas Christen, Nektarios Chrysoulakis, Andrew Coutts, Ben Crawford, Stevan Earl, Jonathan Evans, Krzysztof Fortuniak, Bert G. Heusinkveld, Je-Woo Hong, Jinkyu Hong, Leena Järvi, Sungsoo Jo, Yeon-Hee Kim, Simone Kotthaus, Keunmin Lee, Valéry Masson, Joseph P. McFadden, Oliver Michels, Wlodzimierz Pawlak, Matthias Roth, Hirofumi Sugawara, Nigel Tapper, Erik Velasco, and Helen Claire Ward
Earth Syst. Sci. Data, 14, 5157–5178, https://doi.org/10.5194/essd-14-5157-2022, https://doi.org/10.5194/essd-14-5157-2022, 2022
Short summary
Short summary
We describe a new openly accessible collection of atmospheric observations from 20 cities around the world, capturing 50 site years. The observations capture local meteorology (temperature, humidity, wind, etc.) and the energy fluxes between the land and atmosphere (e.g. radiation and sensible and latent heat fluxes). These observations can be used to improve our understanding of urban climate processes and to test the accuracy of urban climate models.
Jérémy Bernard, Erwan Bocher, Elisabeth Le Saux Wiederhold, François Leconte, and Valéry Masson
Geosci. Model Dev., 15, 7505–7532, https://doi.org/10.5194/gmd-15-7505-2022, https://doi.org/10.5194/gmd-15-7505-2022, 2022
Short summary
Short summary
OpenStreetMap is a collaborative project aimed at creaing a free dataset containing topographical information. Since these data are available worldwide, they can be used as standard data for geoscience studies. However, most buildings miss the height information that constitutes key data for numerous fields (urban climate, noise propagation, air pollution). In this work, the building height is estimated using statistical modeling using indicators that characterize the building's environment.
Cited articles
Aflaki, A., Mirnezhad, M., Ghaffarianhoseini, A., Ghaffarianhoseini, A.,
Omrany, H., Wang, Z.-H., and Akbari, H.: Urban heat island mitigation
strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong
Kong, Cities, 62, 13–145,
https://doi.org/10.1016/j.cities.2016.09.003, 2017. a
AOD: TERRA/MODIS Aerosol Optical Thickness, available at:
https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MODAL2_M_AER_OD,
last access: 4 September 2020. a
Arnfield, A. J.: Two decades of urban climate research: a review of turbulence,
exchanges of energy and water, and the urban heat island, Int.
J. Climatol., 23, 1–26, https://doi.org/10.1002/joc.859, 2003. a
Aumond, P., Masson, V., Lac, C., Gauvreau, B., Dupont, S., and Berengier, M.:
Including the Drag Effects of Canopies: Real Case Large-Eddy Simulation
Studies, Bound.-Lay. Meteorol., 146, 65–80,
https://doi.org/10.1007/s10546-012-9758-x, 2013. a
Barlow, J., Best, M., Bohnenstengel, S. I., Clark, P., Grimmond, S., Lean, H.,
Christen, A., Emeis, S., Haeffelin, M., Harman, I. N., Lemonsu, A., Martilli,
A., Pardyjak, E., Rotach, M. W., Ballard, S., Boutle, I., Brown, A., Cai, X.,
Carpentieri, M., Coceal, O., Crawford, B., Di Sabatino, S., Dou, J., Drew,
D. R., Edwards, J. M., Fallmann, J., Fortuniak, K., Gornall, J., Gronemeier,
T., Halios, C. H., Hertwig, D., Hirano, K., Holtslag, A. A. M., Luo, Z.,
Mills, G., Nakayoshi, M., Pain, K., Schlünzen, K. H., Smith, S., Soulhac,
L., Steeneveld, G.-J., Sun, T., Theeuwes, N. E., Thomson, D., Voogt, J. A.,
Ward, H. C., Xie, Z.-T., and Zhong, J.: Developing a Research Strategy to
Better Understand, Observe, and Simulate Urban Atmospheric Processes at
Kilometer to Subkilometer Scales, B. Am. Meteorol. Soc., 98, ES261–ES264, https://doi.org/10.1175/BAMS-D-17-0106.1, 2017. a
Best, M. J., Beljaars, A., Polcher, J., and Viterbo, P.: A Proposed Structure
for Coupling Tiled Surfaces with the Planetary Boundary Layer, J.
Hydrometeorol., 5, 1271–1278, https://doi.org/10.1175/JHM-382.1, 2004. a
Bougeault, P. and Lacarrère, P.: Parameterization of orographic
induced turbulence in a mesobeta scale model, Mon. Weather Rev., 117,
1872–1890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2, 1989. a, b, c
Bueno, B., Pigeon, G., Norford, L. K., Zibouche, K., and Marchadier, C.: Development and evaluation of a building energy model integrated in the TEB scheme, Geosci. Model Dev., 5, 433–448, https://doi.org/10.5194/gmd-5-433-2012, 2012. a
Champeaux, J. L., Masson, V., and Chauvin, F.: ECOCLIMAP: a global database
of land surface parameters at 1 km resolution, Meteorol. Appl.,
12, 29–32, https://doi.org/10.1017/S1350482705001519, 2005. a
Chen, F. and Dudhia, J.: Coupling an Advanced Land Surface–Hydrology Model
with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation
and Sensitivity, Mon. Weather Rev., 129, 569–585,
https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2, 2001. a, b
Chen, F., Kusaka, H., Bornstein, R., Ching, J., Grimmond, C. S. B.,
Grossman-Clarke, S., Loridan, T., Manning, K. W., Martilli, A., Miao, S.,
Sailor, D., Salamanca, F. P., Taha, H., Tewari, M., Wang, X., Wyszogrodzki,
A. A., and Zhang, C.: The integrated WRF/urban modelling system: development,
evaluation, and applications to urban environmental problems, Int.
J. Climatol., 31, 273–288, https://doi.org/10.1002/joc.2158, 2011. a, b
Chin, H.-N. S., Leach, M. J., Sugiyama, G. A., Leone, J. M., Walker, H.,
Nasstrom, J. S., and Brown, M. J.: Evaluation of an Urban Canopy
Parameterization in a Mesoscale Model Using VTMX and URBAN 2000 Data, Mon.
Weather Rev., 133, 2043–2068, https://doi.org/10.1175/MWR2962.1, 2005. a
Ching, J., Mills, G., Bechtel, B., See, L., Feddema, J., Wang, X., Ren, C.,
Brousse, O., Martilli, A., Neophytou, M., Mouzourides, P., Stewart, I.,
Hanna, A., Ng, E., Foley, M., Alexander, P., Aliaga, D., Niyogi, D.,
Shreevastava, A., Bhalachandran, P., Masson, V., Hidalgo, J., Fung, J.,
Andrade, M., Baklanov, A., Dai, W., Milcinski, G., Demuzere, M., Brunsell,
N., Pesaresi, M., Miao, S., Mu, Q., Chen, F., and Theeuwes, N.: WUDAPT: An
Urban Weather, Climate, and Environmental Modeling Infrastructure for the
Anthropocene, B. Am. Meteorol. Soc., 99,
1907–1924, https://doi.org/10.1175/BAMS-D-16-0236.1, 2018. a
Deardorff, J. W.: Stratocumulus-capped mixed layers derived from a
three-dimensional model, Bound.-Lay. Meteorol, 18, 495–527,
https://doi.org/10.1007/BF00119502, 1980. a, b
Garuma, G. F.: Review of urban surface parameterizations for numerical climate models, Urban Climate, 24, 830–851,
https://doi.org/10.1016/j.uclim.2017.10.006, 2018. a
Giorgi, F. and Avissar, R.: Representation of heterogeneity effects in Earth
system modeling: Experience from land surface modeling, Rev.
Geophys., 35, 413–437, https://doi.org/10.1029/97RG01754, 1997. a
Guo, Z., Dirmeyer, P. A., Koster, R. D., Sud, Y. C., Bonan, G., Oleson, K. W.,
Chan, E., Verseghy, D., Cox, P., Gordon, C. T., McGregor, J. L., Kanae, S.,
Kowalczyk, E., Lawrence, D., Liu, P., Mocko, D., Lu, C.-H., Mitchell, K.,
Malyshev, S., McAvaney, B., Oki, T., Yamada, T., Pitman, A., Taylor, C. M.,
Vasic, R., and Xue, Y.: GLACE: The Global Land–Atmosphere Coupling
Experiment. Part II: Analysis, J. Hydrometeorol., 7, 611–625,
https://doi.org/10.1175/JHM511.1, 2006. a
Gutiérrez, E., Martilli, A., Santiago, J. L., and González, J. E.: A
Mechanical Drag Coefficient Formulation and Urban Canopy Parameter
Assimilation Technique for Complex Urban Environments, Bound.-Lay.
Meteorol., 157, 333–341, https://doi.org/10.1007/s10546-015-0051-7, 2015. a, b
HKCensus: https://www.censtatd.gov.hk/hkstat/sub/sp90.jsp (last access: 30 June 2020), 2018. a
HKO (Hong Kong Observatory): available at:
https://www.hko.gov.hk/en/Observatorys-Blog/101818/Will-2018-be-as-dry-as-1963
(last access: 30 June 2020), 2018. a
HKO (Hong Kong Observatory): available at: https://www.hko.gov.hk/en/cis/popup.htm (last access: 30 June 2020), 2020. a
Hogan, R. J.: An Exponential Model of Urban Geometry for Use in Radiative
Transfer Applications, Bound.-Lay. Meteorol., 170,
357–372, https://doi.org/10.1007/s10546-018-0409-8,
2019a. a, b
Hogan, R. J.: Flexible Treatment of Radiative Transfer in Complex Urban
Canopies for Use in Weather and Climate Models, Bound.-Lay. Meteorol.,
173, 1–26, https://doi.org/10.1007/s10546-019-00457-0, 2019b. a, b
Kain, J. S. and Fritsch, J. M.: A One-Dimensional Entraining/Detraining Plume
Model and Its Application in Convective Parameterization, J. Atmos. Sci., 47, 2784–2802,
https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2, 1990. a
Kondo, H. and Liu, F.: Study on the urban thermal environment obtained through one-dimensional urban canopy model, Taiki Kankyo Gakkaishi, 33, 179–192, https://doi.org/10.11298/taiki1995.33.3_179, 1998. a
Koster, R. D., Sud, Y. C., Guo, Z., Dirmeyer, P. A., Bonan, G., Oleson, K. W.,
Chan, E., Verseghy, D., Cox, P., Davies, H., Kowalczyk, E., Gordon, C. T.,
Kanae, S., Lawrence, D., Liu, P., Mocko, D., Lu, C.-H., Mitchell, K.,
Malyshev, S., McAvaney, B., Oki, T., Yamada, T., Pitman, A., Taylor, C. M.,
Vasic, R., and Xue, Y.: GLACE: The Global Land–Atmosphere Coupling
Experiment. Part I: Overview, J. Hydrometeorol., 7, 590–610,
https://doi.org/10.1175/JHM510.1, 2006. a
Krayenhoff, E. S., Jiang, T., Christen, A., Martilli, A., Oke, T. R., Bailey,
B. N., Nazarian, N., Voogt, J. A., Giometto, M. G., Stastny, A., and
Crawford, B. R.: A multi-layer urban canopy meteorological model with trees
(BEP-Tree): Street tree impacts on pedestrian-level climate, Urban Climate,
32, 100590, https://doi.org/10.1016/j.uclim.2020.100590, 2020 a
Kusaka, H., Kondo, H., Kikegawa, Y., and Kimura, F.: A Simple Single-Layer
Urban Canopy Model For Atmospheric Models: Comparison With Multi-Layer And
Slab Models, Bound.-Lay. Meteorol., 101, 329–358,
https://doi.org/10.1023/A:1019207923078, 2001. a, b
Kwok, Y. T., De Munck, C., Schoetter, R., Ren, C., and Lau, K. K.-L.: Refined
dataset to describe the complex urban environment of Hong Kong for urban
climate modelling studies at the mesoscale, Theor. Appl.
Climatol., 142, 129–150,
https://doi.org/10.1007/s00704-020-03298-x, 2020. a, b
Lac, C., Chaboureau, J.-P., Masson, V., Pinty, J.-P., Tulet, P., Escobar, J., Leriche, M., Barthe, C., Aouizerats, B., Augros, C., Aumond, P., Auguste, F., Bechtold, P., Berthet, S., Bielli, S., Bosseur, F., Caumont, O., Cohard, J.-M., Colin, J., Couvreux, F., Cuxart, J., Delautier, G., Dauhut, T., Ducrocq, V., Filippi, J.-B., Gazen, D., Geoffroy, O., Gheusi, F., Honnert, R., Lafore, J.-P., Lebeaupin Brossier, C., Libois, Q., Lunet, T., Mari, C., Maric, T., Mascart, P., Mogé, M., Molinié, G., Nuissier, O., Pantillon, F., Peyrillé, P., Pergaud, J., Perraud, E., Pianezze, J., Redelsperger, J.-L., Ricard, D., Richard, E., Riette, S., Rodier, Q., Schoetter, R., Seyfried, L., Stein, J., Suhre, K., Taufour, M., Thouron, O., Turner, S., Verrelle, A., Vié, B., Visentin, F., Vionnet, V., and Wautelet, P.: Overview of the Meso-NH model version 5.4 and its applications, Geosci. Model Dev., 11, 1929–1969, https://doi.org/10.5194/gmd-11-1929-2018, 2018. a, b
Lafore, J. P., Stein, J., Asencio, N., Bougeault, P., Ducrocq, V., Duron, J., Fischer, C., Héreil, P., Mascart, P., Masson, V., Pinty, J. P., Redelsperger, J. L., Richard, E., and Vilà-Guerau de Arellano, J.: The Meso-NH Atmospheric Simulation System. Part I: adiabatic formulation and control simulations, Ann. Geophys., 16, 90–109, https://doi.org/10.1007/s00585-997-0090-6, 1998. a, b
Lam, J., Lau, A., and Fung, J.: Application of Refined Land-Use Categories for
High Resolution Mesoscale Atmospheric Modelling, Bound.-Lay. Meteorol.,
119, 263–288, https://doi.org/10.1007/s10546-005-9027-3, 2006. a, b, c
Lemonsu, A., Masson, V., Shashua-Bar, L., Erell, E., and Pearlmutter, D.: Inclusion of vegetation in the Town Energy Balance model for modelling urban green areas, Geosci. Model Dev., 5, 1377–1393, https://doi.org/10.5194/gmd-5-1377-2012, 2012. a, b
Lin, W., Sui, C.-H., Yang, L., Wang, X., Deng, R., Fan, S., Wu, C., Wang, A.,
Fong, S., and Lin, H.: A numerical study of the influence of urban expansion
on monthly climate in dry autumn over the Pearl River Delta, China,
Theor. Appl. Climatol., 89, 63–72,
https://doi.org/10.1007/s00704-006-0244-6, 2007. a
Lin, W., Zhang, L., Du, D., Yang, L., Lin, H., Zhang, Y., and Li, J.:
Quantification of land use/land cover changes in Pearl River Delta and its
impact on regional climate in summer using numerical modeling, Reg.
Environ. Change, 9, 75–82, https://doi.org/10.1007/s10113-008-0057-5, 2009. a
Lo, J. C. F., Lau, A. K. H., Chen, F., Fung, J. C. H., and Leung, K. K. M.:
Urban Modification in a Mesoscale Model and the Effects on the Local
Circulation in the Pearl River Delta Region, J. Appl. Meteorol. Clim., 46, 457–476, https://doi.org/10.1175/JAM2477.1, 2007. a, b, c, d
Luo, M. and Lau, N.-C.: Heat Waves in Southern China: Synoptic Behavior,
Long-Term Change, and Urbanization Effects, J. Climate, 30, 703–720, https://doi.org/10.1175/JCLI-D-16-0269.1, 2017. a
Masson, V.: A Physically-Based Scheme For The Urban Energy Budget In
Atmospheric Models, Bound.-Lay. Meteorol., 94, 357–397,
https://doi.org/10.1023/A:1002463829265, 2000. a, b
Masson, V.: Urban surface modeling and the meso-scale impact of cities,
Theor. Appl. Climatol., 84, 35–45,
https://doi.org/10.1007/s00704-005-0142-3,2006. a, b
Masson, V. and Seity, Y.: Including Atmospheric Layers in Vegetation and Urban
Offline Surface Schemes, J. Appl. Meteorol. Clim., 48,
1377–1397, https://doi.org/10.1175/2009JAMC1866.1, 2009. a
Masson, V., Champeaux, J.-L., Chauvin, F., Meriguet, C., and Lacaze, R.: A
Global Database of Land Surface Parameters at 1-km Resolution in
Meteorological and Climate Models, J. Climate, 16, 1261–1282,
https://doi.org/10.1175/1520-0442-16.9.1261, 2003. a
Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P., Brun, E., Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M., Kerdraon, G., Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G., Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B., Vionnet, V., and Voldoire, A.: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes, Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, 2013. a, b
Masson, V., Heldens, W., Bocher, E., Bonhomme, M., Bucher, B., Burmeister, C.,
de Munck, C., Esch, T., Hidalgo, J., Kanani-Sühring, F., Kwok, Y.-T.,
Lemonsu, A., Lévy, J.-P., Maronga, B., Pavlik, D., Petit, G., See, L.,
Schoetter, R., Tornay, N., Votsis, A., and Zeidler, J.: City-descriptive
input data for urban climate models: Model requirements, data sources and
challenges, Urban Climate, 31, 100536, https://doi.org/10.1016/j.uclim.2019.100536,
2020. a
Moonen, P., Defraeye, T., Dorer, V., Blocken, B., and Carmeliet, J.: Urban
physics : effect of the micro-climate on comfort, health and energy demand,
Frontiers of Architectural Research, 1, 197–228,
https://doi.org/10.1016/j.foar.2012.05.002, 2012. a
Ng, Y. Y., Wong, K. S., Ho, B., Yau, R., Tse, T., and Ren, C.: Final Report and
Appendices, Urban Climatic Map and Standards for Wind Environment –
Feasibility Study, Technical Report for Planning Department HKSAR, p. 1685,
2012. a
Noilhan, J. and Planton, S.: A Simple Parameterization of Land Surface
Processes for Meteorological Models, Mon. Weather Rev., 117, 536–549,
https://doi.org/10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2, 1989. a
Oleson, K. W., Bonan, G. B., Feddema, J., Vertenstein, M., and Grimmond, C.
S. B.: An Urban Parameterization for a Global Climate Model. Part I:
Formulation and Evaluation for Two Cities, J. Appl. Meteorol. Clim., 47, 1038–1060, https://doi.org/10.1175/2007JAMC1597.1, 2008. a
Oleson, K. W., Lawrence, D. M., B, G., Flanner, M. G., Kluzek, E., J, P.,
Levis, S., Swenson, S. C., Thornton, E., Feddema, J., Heald, C. L., Francois Lamarque, J., Yue Niu, G., Qian, T., Running, S., Sakaguchi, K., Yang, L.,
Zeng, X., Zeng, X., and Decker, M.: Technical Description of version 4.0 of
the Community Land Model (CLM), University Corporation for Atmospheric Research, 257 pp., https://doi.org/10.5065/D6FB50WZ,
2010. a
Pergaud, J., Masson, V., Malardel, S., and Couvreux, F.: A Parameterization of
Dry Thermals and Shallow Cumuli for Mesoscale Numerical Weather Prediction,
Bound.-Lay. Meteorol., 132, 83, https://doi.org/10.1007/s10546-009-9388-0, 2009. a, b, c
Pigeon, G., Zibouche, K., Bueno, B., Bras, J. L., and Masson, V.: Improving the
capabilities of the Town Energy Balance model with up-to-date building
energy simulation algorithms: an application to a set of representative
buildings in Paris, Energ. Buildings, 76, 1–14,
https://doi.org/10.1016/j.enbuild.2013.10.038, 2014. a
Raupach, R.: Drag and drag partition on rough surfaces, Bound.-Lay.
Meteorol., 60, 375–395, https://doi.org/10.1007/BF00155203, 1992. a, b
Redon, E., Lemonsu, A., and Masson, V.: An urban trees parameterization for modeling microclimatic variables and thermal comfort conditions at street level with the Town Energy Balance model (TEB-SURFEX v8.0), Geosci. Model Dev., 13, 385–399, https://doi.org/10.5194/gmd-13-385-2020, 2020. a
Roth, M.: Review of atmospheric turbulence over cities, Q. J. Roy. Meteor. Soc., 126, 941–990,
https://doi.org/10.1002/qj.49712656409, 2000. a
Sailor, D. J.: A review of methods for estimating anthropogenic heat and
moisture emissions in the urban environment, Int. J.
Climatol., 31, 189–199, https://doi.org/10.1002/joc.2106, 2011. a
Salamanca, F., Krpo, A., Martilli, A., and Clappier, A.: A new building energy
model coupled with an urban canopy parameterization for urban climate
simulations – part I. formulation, verification, and sensitivity analysis of
the model, Theor. Appl. Climatol., 99, 331,
https://doi.org/10.1007/s00704-009-0142-9, 2009 a
Salgado, R. and Le Moigne, P.: Coupling of the FLake model to the Surfex
externalized surface model, Boreal Environ. Res., 15, 231–244,
2010. a
Santiago, J. and Martilli, A.: A Dynamic Urban Canopy Parameterization for
Mesoscale Models Based on Computational Fluid Dynamics Reynolds-Averaged
Navier–Stokes Microscale Simulations, Bound.-Lay. Meteorol., 137,
417–439, https://doi.org/10.1007/s10546-010-9538-4, 2010. a, b, c, d, e, f, g, h, i, j
Santiago, J., Coceal, O., and Martilli, A.: How to Parametrize Urban-Canopy
Drag to Reproduce Wind-Direction Effects Within the Canopy, Bound.-Lay.
Meteorol., 149, 43–63, https://doi.org/10.1007/s10546-013-9833-y, 2013. a
Santiago, J., Krayenhoff, E., and Martilli, A.: Flow simulations for simplified
urban configurations with microscale distributions of surface thermal
forcing, Urban Climate, 9, 115–133,
https://doi.org/10.1016/j.uclim.2014.07.008, 2014. a
Santiago, J.-L., Buccolieri, R., Rivas, E., Calvete-Sogo, H., Sanchez, B.,
Martilli, A., Alonso, R., Elustondo, D., Santamaría, J. M., and Martin, F.:
CFD modelling of vegetation barrier effects on the reduction of
traffic-related pollutant concentration in an avenue of Pamplona, Spain,
Sustain. Cities Soc., 48, 101559,
https://doi.org/10.1016/j.scs.2019.101559, 2019. a
Schoetter, R., Kwok, Y. T., de Munck, C., Lau, K. K. L., Wong, W. K., and Masson, V.: Overview of the source code modifications, numerical simulations, and postprocessing scripts described in the research article “Multi-layer coupling between SURFEX-TEB-v9.0 and Meso-NH-v5.3 for modelling the urban climate of high-rise cities”, Zenodo, available at: https://zenodo.org/record/3937222#.X64kiVDTWUk, 2020. a
Seity, Y., Brousseau, P., Malardel, S., Hello, G., Bénard, P., Bouttier, F.,
Lac, C., and Masson, V.: The AROME-France Convective-Scale Operational
Model, Mon. Weather Rev., 139, 976–991, https://doi.org/10.1175/2010MWR3425.1, 2011. a
Shepherd, J. M.: A Review of Current Investigations of Urban-Induced Rainfall
and Recommendations for the Future, Earth Interact., 9, 1–27,
https://doi.org/10.1175/EI156.1, 2005. a
Simón-Moral, A., Santiago, J., Krayenhoff, E., and Martilli, A.: Streamwise
Versus Spanwise Spacing of Obstacle Arrays: Parametrization of the Effects on
Drag and Turbulence, Bound.-Lay. Meteorol., 151, 579–596,
https://doi.org/10.1007/s10546-013-9901-3, 2014. a
Simón-Moral, A., Santiago, J., and Martilli, A.: Effects of Unstable Thermal
Stratification on Vertical Fluxes of Heat and Momentum in Urban Areas,
Bound.-Lay. Meteorol., 163, 103–121, https://doi.org/10.1007/s10546-016-0211-4, 2017. a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda,
M. G., Huang, X.-Y., Wang, W., and Powers, J. G.: A Description of the
Advanced Research WRF Version 3, Tech. rep., National Center for Atmospheric
Research Boulder, Colorado, USA, 2008. a
Séférian, R., Nabat, P., Michou, M., Saint-Martin, D., Voldoire, A., Colin,
J., Decharme, B., Delire, C., Berthet, S., Chevallier, M., Sénési, S.,
Franchisteguy, L., Vial, J., Mallet, M., Joetzjer, E., Geoffroy, O.,
Guérémy, J.-F., Moine, M.-P., Msadek, R., Ribes, A., Rocher, M., Roehrig,
R., Salas-y Mélia, D., Sanchez, E., Terray, L., Valcke, S., Waldman, R.,
Aumont, O., Bopp, L., Deshayes, J., Éthé, C., and Madec, G.: Evaluation of
CNRM Earth System Model, CNRM-ESM2-1: Role of Earth System Processes in
Present-Day and Future Climate, J. Adv. Model. Earth
Sy., 11, 4182–4227, https://doi.org/10.1029/2019MS001791, 2019. a
Termonia, P., Fischer, C., Bazile, E., Bouyssel, F., Brožková, R., Bénard, P., Bochenek, B., Degrauwe, D., Derková, M., El Khatib, R., Hamdi, R., Mašek, J., Pottier, P., Pristov, N., Seity, Y., Smolíková, P., Španiel, O., Tudor, M., Wang, Y., Wittmann, C., and Joly, A.: The ALADIN System and its canonical model configurations AROME CY41T1 and ALARO CY40T1, Geosci. Model Dev., 11, 257–281, https://doi.org/10.5194/gmd-11-257-2018, 2018. a
Trusilova, K., Schubert, S., Wouters, H., Früh, B., Grossman-Clarke, S.,
Demuzere, M., and Becker, P.: The urban land use in the COSMO-CLM model: a
comparison of three parameterizations for Berlin, Meteorol.
Z., 25, 231–244, https://doi.org/10.1127/metz/2015/0587, 2016. a
Unger, J.: Urban-rural air humidity differences in Szeged, Hungary,
Int. J. Climatol., 19, 1509–1515, 1999. a
Uno, I., Ueda, H., and Wakamatsu, S.: Numerical modeling of the nocturnal urban
boundary layer, Bound.-Lay. Meteorol., 49, 77–98,
https://doi.org/10.1007/BF00116406, 1989. a
Voldoire, A., Decharme, B., Pianezze, J., Lebeaupin Brossier, C., Sevault, F., Seyfried, L., Garnier, V., Bielli, S., Valcke, S., Alias, A., Accensi, M., Ardhuin, F., Bouin, M.-N., Ducrocq, V., Faroux, S., Giordani, H., Léger, F., Marsaleix, P., Rainaud, R., Redelsperger, J.-L., Richard, E., and Riette, S.: SURFEX v8.0 interface with OASIS3-MCT to couple atmosphere with hydrology, ocean, waves and sea-ice models, from coastal to global scales, Geosci. Model Dev., 10, 4207–4227, https://doi.org/10.5194/gmd-10-4207-2017, 2017. a
Vu, C. T., Asaeda, T., and Ashie, Y.: Development of a numerical model for the
evaluation of the urban thermal environment, J. Wind Eng. Ind. Aerod., 81, 181–196,
https://doi.org/10.1016/S0167-6105(99)00016-1, 1999. a
Vu, C. T., Asaeda, T., and Ashie, Y.: A k-*epsiv Turbulence Closure Model For
The Atmospheric Boundary Layer Including Urban Canopy, Bound.-Lay.
Meteorol., 102, 459–490, https://doi.org/10.1023/A:1013878907309, 2002. a
Wang, D., Lau, K. K.-L., Ren, C., Goggins, W. B. I., Shi, Y., Ho, H. C., Lee,
T.-C., Lee, L.-S., Woo, J., and Ng, E.: The impact of extremely hot weather
events on all-cause mortality in a highly urbanized and densely populated
subtropical city: A 10-year time-series study (2006–2015), Sci.
Total Environ., 690, 923–931,
https://doi.org/10.1016/j.scitotenv.2019.07.039, 2019. a
Wang, X., Liao, J., Zhang, J., Shen, C., Chen, W., Xia, B., and Wang, T.: A
Numeric Study of Regional Climate Change Induced by Urban Expansion in the
Pearl River Delta, China, J. Appl. Meteorol. Clim., 53,
346–362, https://doi.org/10.1175/JAMC-D-13-054.1, 2014. a, b, c, d
Wang, Y., Di Sabatino, S., Martilli, A., Li, Y., Wong, M. S., Gutiérrez, E.,
and Chan, P. W.: Impact of land surface heterogeneity on urban heat island
circulation and sea-land breeze circulation in Hong Kong, J.
Geophys. Res.-Atmos., 122, 4332–4352,
https://doi.org/10.1002/2017JD026702, 2017. a, b, c, d, e, f, g
Wang, Y., Li, Y., Sabatino, S. D., Martilli, A., and Chan, P. W.: Effects of
anthropogenic heat due to air-conditioning systems on an extreme high
temperature event in Hong Kong, Environ. Res. Lett., 13, 034015,
https://doi.org/10.1088/1748-9326/aaa848, 2018. a, b
Wong, M. M. F., Fung, J. C. H., Ching, J., Yeung, P. P. S., Tse, J. W. P., Ren,
C., Wang, R., and Cai, M.: Evaluation of uWRF performance and modeling
guidance based on WUDAPT and NUDAPT UCP datasets for Hong Kong, Urban
Climate, 28, 100460, https://doi.org/10.1016/j.uclim.2019.100460, 2019.
a, b, c, d, e
Wong, M. S., Yang, J., Nichol, J., Weng, Q., Menenti, M., and Chan,
P.: Modeling of Anthropogenic Heat Flux Using HJ-1B Chinese Small Satellite
Image: A Study of Heterogeneous Urbanized Areas in Hong Kong, IEEE Geosci.
Remote S., 12, 1466–1470, https://doi.org/10.1109/LGRS.2015.2409111,
2015. a
Short summary
Cities change the local meteorological conditions, e.g. by increasing air temperature, which can negatively impact humans and infrastructure. The urban climate model TEB is able to calculate the meteorological conditions in low- and mid-rise cities since it interacts with the lowest level of an atmospheric model. Here, a multi-layer coupling of TEB is introduced to enable modelling the urban climate of cities with many skyscrapers; the new version is tested for the high-rise city of Hong Kong.
Cities change the local meteorological conditions, e.g. by increasing air temperature, which can...
Special issue