Articles | Volume 13, issue 11
https://doi.org/10.5194/gmd-13-5345-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-5345-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Land surface model influence on the simulated climatologies of temperature and precipitation extremes in the WRF v3.9 model over North America
Almudena García-García
Climate & Atmospheric Sciences Institute, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
Environmental Sciences Program, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
Francisco José Cuesta-Valero
Climate & Atmospheric Sciences Institute, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
Environmental Sciences Program, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
Climate & Atmospheric Sciences Institute, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
Fidel González-Rouco
Physics of the Earth and Astrophysics Department, IGEO (UCM-CSIC), Universidad Complutense de Madrid,Madrid, Spain
Elena García-Bustamante
Research Center for Energy, Environment and Technology (CIEMAT), Madrid, Spain
Joel Finnis
Department of Geography, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
Related authors
Félix García-Pereira, Jesús Fidel González-Rouco, Camilo Melo-Aguilar, Norman Julius Steinert, Elena García-Bustamante, Philip de Vrese, Johann Jungclaus, Stephan Lorenz, Stefan Hagemann, Francisco José Cuesta-Valero, Almudena García-García, and Hugo Beltrami
Earth Syst. Dynam., 15, 547–564, https://doi.org/10.5194/esd-15-547-2024, https://doi.org/10.5194/esd-15-547-2024, 2024
Short summary
Short summary
According to climate model estimates, the land stored 2 % of the system's heat excess in the last decades, while observational studies show it was around 6 %. This difference stems from these models using land components that are too shallow to constrain land heat uptake. Deepening the land component does not affect the surface temperature. This result can be used to derive land heat uptake estimates from different sources, which are much closer to previous observational reports.
Félix García-Pereira, Jesús Fidel González-Rouco, Thomas Schmid, Camilo Melo-Aguilar, Cristina Vegas-Cañas, Norman Julius Steinert, Pedro José Roldán-Gómez, Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, and Philipp de Vrese
SOIL, 10, 1–21, https://doi.org/10.5194/soil-10-1-2024, https://doi.org/10.5194/soil-10-1-2024, 2024
Short summary
Short summary
This work addresses air–ground temperature coupling and propagation into the subsurface in a mountainous area in central Spain using surface and subsurface data from six meteorological stations. Heat transfer of temperature changes at the ground surface occurs mainly by conduction controlled by thermal diffusivity of the subsurface, which varies with depth and time. A new methodology shows that near-surface diffusivity and soil moisture content changes with time are closely related.
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
Earth Syst. Dynam., 14, 609–627, https://doi.org/10.5194/esd-14-609-2023, https://doi.org/10.5194/esd-14-609-2023, 2023
Short summary
Short summary
Climate change is caused by the accumulated heat in the Earth system, with the land storing the second largest amount of this extra heat. Here, new estimates of continental heat storage are obtained, including changes in inland-water heat storage and permafrost heat storage in addition to changes in ground heat storage. We also argue that heat gains in all three components should be monitored independently of their magnitude due to heat-dependent processes affecting society and ecosystems.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Francisco José Cuesta-Valero, Hugo Beltrami, Stephan Gruber, Almudena García-García, and J. Fidel González-Rouco
Geosci. Model Dev., 15, 7913–7932, https://doi.org/10.5194/gmd-15-7913-2022, https://doi.org/10.5194/gmd-15-7913-2022, 2022
Short summary
Short summary
Inversions of subsurface temperature profiles provide past long-term estimates of ground surface temperature histories and ground heat flux histories at timescales of decades to millennia. Theses estimates complement high-frequency proxy temperature reconstructions and are the basis for studying continental heat storage. We develop and release a new bootstrap method to derive meaningful confidence intervals for the average surface temperature and heat flux histories from any number of profiles.
Almudena García-García, Francisco José Cuesta-Valero, Hugo Beltrami, J. Fidel González-Rouco, and Elena García-Bustamante
Geosci. Model Dev., 15, 413–428, https://doi.org/10.5194/gmd-15-413-2022, https://doi.org/10.5194/gmd-15-413-2022, 2022
Short summary
Short summary
We study the sensitivity of a regional climate model to resolution and soil scheme changes. Our results show that the use of finer resolutions mainly affects precipitation outputs, particularly in summer due to changes in convective processes. Finer resolutions are associated with larger biases compared with observations. Changing the land surface model scheme affects the simulation of near-surface temperatures, yielding the lowest biases in mean temperature with the most complex soil scheme.
Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, and Joel Finnis
Earth Syst. Dynam., 12, 581–600, https://doi.org/10.5194/esd-12-581-2021, https://doi.org/10.5194/esd-12-581-2021, 2021
Short summary
Short summary
The current radiative imbalance at the top of the atmosphere is increasing the heat stored in the oceans, atmosphere, continental subsurface and cryosphere, with consequences for societies and ecosystems (e.g. sea level rise). We performed the first assessment of the ability of global climate models to represent such heat storage in the climate subsystems. Models are able to reproduce the observed atmosphere heat content, with biases in the simulation of heat content in the rest of components.
Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, J. Fidel González-Rouco, and Elena García-Bustamante
Clim. Past, 17, 451–468, https://doi.org/10.5194/cp-17-451-2021, https://doi.org/10.5194/cp-17-451-2021, 2021
Short summary
Short summary
We provide new global estimates of changes in surface temperature, surface heat flux, and continental heat storage since preindustrial times from geothermal data. Our analysis includes new measurements and a more comprehensive description of uncertainties than previous studies. Results show higher continental heat storage than previously reported, with global land mean temperature changes of 1 K and subsurface heat gains of 12 ZJ during the last half of the 20th century.
Félix García-Pereira, Jesús Fidel González-Rouco, Nagore Meabe-Yanguas, Philipp de Vrese, Norman Julius Steinert, Johann Jungclaus, and Stephan Lorenz
EGUsphere, https://doi.org/10.5194/egusphere-2025-2126, https://doi.org/10.5194/egusphere-2025-2126, 2025
Short summary
Short summary
This work shows that changing the hydrological state of permafrost produces differences of up to 3 °C in the annual ground temperature, 1–2 m in the active layer thickness, and 5 million km2 in the permafrost extent. Including a deeper vertical thermal scheme reduces the extent decline by more than 2 million km2 in the highest radiative emission scenario. This is shown for the first time in fully-coupled experiments with an Earth System Model.
Félix García-Pereira, Jesús Fidel González-Rouco, Camilo Melo-Aguilar, Norman Julius Steinert, Elena García-Bustamante, Philip de Vrese, Johann Jungclaus, Stephan Lorenz, Stefan Hagemann, Francisco José Cuesta-Valero, Almudena García-García, and Hugo Beltrami
Earth Syst. Dynam., 15, 547–564, https://doi.org/10.5194/esd-15-547-2024, https://doi.org/10.5194/esd-15-547-2024, 2024
Short summary
Short summary
According to climate model estimates, the land stored 2 % of the system's heat excess in the last decades, while observational studies show it was around 6 %. This difference stems from these models using land components that are too shallow to constrain land heat uptake. Deepening the land component does not affect the surface temperature. This result can be used to derive land heat uptake estimates from different sources, which are much closer to previous observational reports.
Félix García-Pereira, Jesús Fidel González-Rouco, Thomas Schmid, Camilo Melo-Aguilar, Cristina Vegas-Cañas, Norman Julius Steinert, Pedro José Roldán-Gómez, Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, and Philipp de Vrese
SOIL, 10, 1–21, https://doi.org/10.5194/soil-10-1-2024, https://doi.org/10.5194/soil-10-1-2024, 2024
Short summary
Short summary
This work addresses air–ground temperature coupling and propagation into the subsurface in a mountainous area in central Spain using surface and subsurface data from six meteorological stations. Heat transfer of temperature changes at the ground surface occurs mainly by conduction controlled by thermal diffusivity of the subsurface, which varies with depth and time. A new methodology shows that near-surface diffusivity and soil moisture content changes with time are closely related.
Pedro José Roldán-Gómez, Jesús Fidel González-Rouco, Jason E. Smerdon, and Félix García-Pereira
Clim. Past, 19, 2361–2387, https://doi.org/10.5194/cp-19-2361-2023, https://doi.org/10.5194/cp-19-2361-2023, 2023
Short summary
Short summary
Analyses of reconstructed data suggest that the precipitation and availability of water have evolved in a similar way during the Last Millennium in different regions of the world, including areas of North America, Europe, the Middle East, southern Asia, northern South America, East Africa and the Indo-Pacific. To confirm this link between distant regions and to understand the reasons behind it, the information from different reconstructed and simulated products has been compiled and analyzed.
Philipp de Vrese, Goran Georgievski, Jesus Fidel Gonzalez Rouco, Dirk Notz, Tobias Stacke, Norman Julius Steinert, Stiig Wilkenskjeld, and Victor Brovkin
The Cryosphere, 17, 2095–2118, https://doi.org/10.5194/tc-17-2095-2023, https://doi.org/10.5194/tc-17-2095-2023, 2023
Short summary
Short summary
The current generation of Earth system models exhibits large inter-model differences in the simulated climate of the Arctic and subarctic zone. We used an adapted version of the Max Planck Institute (MPI) Earth System Model to show that differences in the representation of the soil hydrology in permafrost-affected regions could help explain a large part of this inter-model spread and have pronounced impacts on important elements of Earth systems as far to the south as the tropics.
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
Earth Syst. Dynam., 14, 609–627, https://doi.org/10.5194/esd-14-609-2023, https://doi.org/10.5194/esd-14-609-2023, 2023
Short summary
Short summary
Climate change is caused by the accumulated heat in the Earth system, with the land storing the second largest amount of this extra heat. Here, new estimates of continental heat storage are obtained, including changes in inland-water heat storage and permafrost heat storage in addition to changes in ground heat storage. We also argue that heat gains in all three components should be monitored independently of their magnitude due to heat-dependent processes affecting society and ecosystems.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Francisco José Cuesta-Valero, Hugo Beltrami, Stephan Gruber, Almudena García-García, and J. Fidel González-Rouco
Geosci. Model Dev., 15, 7913–7932, https://doi.org/10.5194/gmd-15-7913-2022, https://doi.org/10.5194/gmd-15-7913-2022, 2022
Short summary
Short summary
Inversions of subsurface temperature profiles provide past long-term estimates of ground surface temperature histories and ground heat flux histories at timescales of decades to millennia. Theses estimates complement high-frequency proxy temperature reconstructions and are the basis for studying continental heat storage. We develop and release a new bootstrap method to derive meaningful confidence intervals for the average surface temperature and heat flux histories from any number of profiles.
Almudena García-García, Francisco José Cuesta-Valero, Hugo Beltrami, J. Fidel González-Rouco, and Elena García-Bustamante
Geosci. Model Dev., 15, 413–428, https://doi.org/10.5194/gmd-15-413-2022, https://doi.org/10.5194/gmd-15-413-2022, 2022
Short summary
Short summary
We study the sensitivity of a regional climate model to resolution and soil scheme changes. Our results show that the use of finer resolutions mainly affects precipitation outputs, particularly in summer due to changes in convective processes. Finer resolutions are associated with larger biases compared with observations. Changing the land surface model scheme affects the simulation of near-surface temperatures, yielding the lowest biases in mean temperature with the most complex soil scheme.
Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, and Joel Finnis
Earth Syst. Dynam., 12, 581–600, https://doi.org/10.5194/esd-12-581-2021, https://doi.org/10.5194/esd-12-581-2021, 2021
Short summary
Short summary
The current radiative imbalance at the top of the atmosphere is increasing the heat stored in the oceans, atmosphere, continental subsurface and cryosphere, with consequences for societies and ecosystems (e.g. sea level rise). We performed the first assessment of the ability of global climate models to represent such heat storage in the climate subsystems. Models are able to reproduce the observed atmosphere heat content, with biases in the simulation of heat content in the rest of components.
Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, J. Fidel González-Rouco, and Elena García-Bustamante
Clim. Past, 17, 451–468, https://doi.org/10.5194/cp-17-451-2021, https://doi.org/10.5194/cp-17-451-2021, 2021
Short summary
Short summary
We provide new global estimates of changes in surface temperature, surface heat flux, and continental heat storage since preindustrial times from geothermal data. Our analysis includes new measurements and a more comprehensive description of uncertainties than previous studies. Results show higher continental heat storage than previously reported, with global land mean temperature changes of 1 K and subsurface heat gains of 12 ZJ during the last half of the 20th century.
Andrea N. Hahmann, Tija Sīle, Björn Witha, Neil N. Davis, Martin Dörenkämper, Yasemin Ezber, Elena García-Bustamante, J. Fidel González-Rouco, Jorge Navarro, Bjarke T. Olsen, and Stefan Söderberg
Geosci. Model Dev., 13, 5053–5078, https://doi.org/10.5194/gmd-13-5053-2020, https://doi.org/10.5194/gmd-13-5053-2020, 2020
Short summary
Short summary
Wind energy resource assessment routinely uses numerical weather prediction model output. We describe the evaluation procedures used for picking the suitable blend of model setup and parameterizations for simulating European wind climatology with the WRF model. We assess the simulated winds against tall mast measurements using a suite of metrics, including the Earth Mover's Distance, which diagnoses the performance of each ensemble member using the full wind speed and direction distribution.
Martin Dörenkämper, Bjarke T. Olsen, Björn Witha, Andrea N. Hahmann, Neil N. Davis, Jordi Barcons, Yasemin Ezber, Elena García-Bustamante, J. Fidel González-Rouco, Jorge Navarro, Mariano Sastre-Marugán, Tija Sīle, Wilke Trei, Mark Žagar, Jake Badger, Julia Gottschall, Javier Sanz Rodrigo, and Jakob Mann
Geosci. Model Dev., 13, 5079–5102, https://doi.org/10.5194/gmd-13-5079-2020, https://doi.org/10.5194/gmd-13-5079-2020, 2020
Short summary
Short summary
This is the second of two papers that document the creation of the New European Wind Atlas (NEWA). The paper includes a detailed description of the technical and practical aspects that went into running the mesoscale simulations and the microscale downscaling for generating the climatology. A comprehensive evaluation of each component of the NEWA model chain is presented using observations from a large set of tall masts located all over Europe.
Cited articles
Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H., Dee, D., Dutra, E., Muñoz-Sabater, J., Pappenberger, F., de Rosnay, P., Stockdale, T., and Vitart, F.: ERA-Interim/Land: a global land surface reanalysis data set, Hydrol. Earth Syst. Sci., 19, 389–407, https://doi.org/10.5194/hess-19-389-2015, 2015. a, b
Barlage, M., Zeng, X., Wei, H., and Mitchell, K. E.: A global 0.05∘
maximum albedo dataset of snow-covered land based on MODIS observations,
Geophys. Res. Lett., 32, L17405,
https://doi.org/10.1029/2005GL022881, 2005. a, b
Cannon, A. J., Sobie, S. R., and Murdock, T. Q.: Bias Correction of GCM
Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in
Quantiles and Extremes?, J. Climate, 28, 6938–6959,
https://doi.org/10.1175/JCLI-D-14-00754.1, 2015. a
Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R.,
Williamson, D. L., Kiehl, J. T., Briegleb, B., Bitz, C., and Lin, S.-J.:
Description of the NCAR community atmosphere model (CAM 3.0), NCAR Tech. Note
NCAR/TN-464+ STR, 226 pp., 2004. a
Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C. S., Carton, J. A., Chang, P., Doney, S. C., Hack, J. J., Henderson, T. B.,
Kiehl, J. T., Large, W. G., McKenna, D. S., Santer, B. D., and Smith, R. D.: The community climate system model version 3 (CCSM3), J. Climate, 19, 2122–2143, 2006. a
Davin, E. L., Maisonnave, E., and Seneviratne, S. I.: Is land surface processes
representation a possible weak link in current Regional Climate Models?,
Environ. Res. Lett., 11, 074027,
https://doi.org/10.1088/1748-9326/11/7/074027, 2016. a
de Elía, R., Caya, D., Côté, H., Frigon, A., Biner, S.,
Giguère, M., Paquin, D., Harvey, R., and Plummer, D.: Evaluation of
uncertainties in the CRCM-simulated North American climate, Clim. Dynam.,
30, 113–132, https://doi.org/10.1007/s00382-007-0288-z, 2008. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, I., Biblot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Greer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M.,
Matricardi, M., McNally, A. P., Mong-Sanz, B. M., Morcette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J. N., and Vitart,
F.: The ERA-Interim reanalysis: Configuration and performance of the data
assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Diro, G. T., Sushama, L., Martynov, A., Jeong, D. I., Verseghy, D., and Winger,
K.: Land-atmosphere coupling over North America in CRCM5, J. Geophys. Res.-Atmos., 119, 11955–11972,
https://doi.org/10.1002/2014JD021677, 2014. a
Diro, G. T., Sushama, L., and Huziy, O.: Snow-atmosphere coupling and its
impact on temperature variability and extremes over North America, Clim. Dynam., 50, 2993–3007, https://doi.org/10.1007/s00382-017-3788-5, 2018. a, b
Donat, M. G., King, A. D., Overpeck, J. T., Alexander, L. V., Durre, I., and
Karoly, D. J.: Extraordinary heat during the 1930s US Dust Bowl and
associated large-scale conditions, Clim. Dynam., 46, 413–426,
https://doi.org/10.1007/s00382-015-2590-5, 2016. a
Ehret, U., Zehe, E., Wulfmeyer, V., Warrach-Sagi, K., and Liebert, J.: HESS Opinions ”Should we apply bias correction to global and regional climate model data?”, Hydrol. Earth Syst. Sci., 16, 3391–3404, https://doi.org/10.5194/hess-16-3391-2012, 2012. a
Ferguson, C. R., Wood, E. F., and Vinukollu, R. K.: A Global Intercomparison of Modeled and Observed Land–Atmosphere Coupling, J. Hydrometeorol.,
13, 749–784, https://doi.org/10.1175/JHM-D-11-0119.1, 2012. a
Fischer, E., Seneviratne, S., Lüthi, D., and Schär, C.: Contribution of land-atmosphere coupling to recent European summer heat waves, Geophys. Res. Lett., 34, L06707, https://doi.org/10.1029/2006GL029068, 2007. a
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S., Collins, W.,
Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P.,
Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukainen, M.:
Evaluation of Climate Models, book section 9, Cambridge
University Press, Cambridge, UK, New York, NY, USA, 741–866,
https://doi.org/10.1017/CBO9781107415324.020, 2013. a
Gallus, W. A. and Bresch, J. F.: Comparison of Impacts of WRF Dynamic Core,
Physics Package, and Initial Conditions on Warm Season Rainfall Forecasts,
Mon. Weather Rev., 134, 2632–2641, https://doi.org/10.1175/MWR3198.1, 2006. a
García-García, A., Cuesta-Valero, F. J., Beltrami, H., and Smerdon,
J. E.: Characterization of Air and Ground Temperature Relationships within
the CMIP5 Historical and Future Climate Simulations, J. Geophys. Res.-Atmos., 124, 3903–3929, https://doi.org/10.1029/2018JD030117, 2019. a, b, c, d
García-García, A., Cuesta-Valero, F. J., Beltrami, H.,
González-Rouco, J. F., García-Bustamante, E., and Finnis, J.: DATA
for Land Surface Model influence on the simulated climatologies of
temperature and precipitation extremes in the WRF v.3.9 model over North
America, Zenodo, https://doi.org/10.5281/zenodo.4025965, 2020. a
Gevaert, A. I., Miralles, D. G., Jeu, R. A. M., Schellekens, J., and Dolman,
A. J.: Soil Moisture-Temperature Coupling in a Set of Land Surface Models,
J. Geophys. Res.-Atmos., 123, 1481–1498,
https://doi.org/10.1002/2017JD027346, 2018. a, b, c
Giorgi, F. and Francisco, R.: Uncertainties in regional climate change
prediction: a regional analysis of ensemble simulations with the HADCM2
coupled AOGCM, Clim. Dynam., 16, 169–182, https://doi.org/10.1007/PL00013733, 2000. a, b, c, d
Giorgi, F. and Gutowski Jr., W. J.: Regional Dynamical Downscaling and the
CORDEX Initiative, Ann. Rev. Environ. Resour., 40, 467–490,
https://doi.org/10.1146/annurev-environ-102014-021217, 2015. a
Grell, G. A. and Freitas, S. R.: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmos. Chem. Phys., 14, 5233–5250, https://doi.org/10.5194/acp-14-5233-2014, 2014. a
Hauser, M., Orth, R., and Seneviratne, S. I.: Role of soil moisture versus
recent climate change for the 2010 heat wave in western Russia, Geophys. Res. Lett., 43, 2819–2826, https://doi.org/10.1002/2016GL068036, 2016. a
Hersbach, H., de Rosnay, P., Bell, B., Schepers, D., Simmons, A., Soci, C.,
Abdalla, S., Alonso-Balmaseda, M., Balsamo, G., Bechtold, P., Berrisford, P.,
Bidlot, J.-R., de Boisséson, E., Bonavita, M., Browne, P., Buizza, R.,
Dahlgren, P., Dee, D., Dragani, R., Diamantakis, M., Flemming, J., Forbes,
R., Geer, A. J., Haiden, T., Hólm, E., Haimberger, L., Hogan, R.,
Horányi, A., Janiskova, M., Laloyaux, P., Lopez, P., Munoz-Sabater, J.,
Peubey, C., Radu, R., Richardson, D., Thépaut, J.-N., Vitart, F., Yang,
X., Zsótér, E., and Zuo, H.: Operational global reanalysis: progress,
future directions and synergies with NWP, Tech. Rep. 27, European Centre for
Medium Range Weather Forecasts, https://doi.org/10.21957/tkic6g3wm, 2018. a, b
Hicks Pries, C. E., Castanha, C., Porras, R. C., and Torn, M. S.: The
whole-soil carbon flux in response to warming, Science, 355, 1420–1423,
https://doi.org/10.1126/science.aal1319, 2017. a
Hirschi, M., Seneviratne, S. I., Alexandrov, V., Boberg, F., Boroneant, C.,
Christensen, O. B., Formayer, H., Orlowsky, B., and Stepanek, P.:
Observational evidence for soil-moisture impact on hot extremes in
southeastern Europe, Nat. Geosci., 4, 17–21,
https://doi.org/10.1038/ngeo1032, 2011. a
Hong, S.-Y. and Lim, J.-O. J.: The WRF single-moment 6-class microphysics
scheme (WSM6), J. Korean Meteor. Soc., 42, 129–151, 2006. a
Hong, S.-Y., Noh, Y., and Dudhia, J.: A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes, Mon. Weather Rev., 134,
2318–2341, https://doi.org/10.1175/MWR3199.1, 2006. a
Hu, P., Zhang, Q., Shi, P., Chen, B., and Fang, J.: Flood-induced mortality
across the globe: Spatiotemporal pattern and influencing factors, Sci. Total Environ., 643, 171–182,
https://doi.org/10.1016/j.scitotenv.2018.06.197, 2018. a
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, New York, NY, USA, https://doi.org/10.1017/CBO9781107415324, 2013. a, b
IPCC: Summary for Policymakers, in: Climate Change and Land: an
IPCC special report on climate change, desertification, land degradation, sustainable land management, food security,
and greenhouse gas fluxes in terrestrial ecosystems, edited by: Shukla, P. R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V.,
Pörtner, H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M.,
Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., and Malley, J., IPCC, in press, 2019. a, b
Jeong, D. I., Sushama, L., Diro, G. T., Khaliq, M. N., Beltrami, H., and Caya, D.: Projected changes to high temperature events for Canada based on a regional climate model ensemble, Clim. Dynam., 46, 3163–3180,
https://doi.org/10.1007/s00382-015-2759-y, 2016. a
Jiménez, P. A., Dudhia, J., González-Rouco, J. F., Navarro, J.,
Montávez, J. P., and García-Bustamante, E.: A Revised Scheme for the
WRF Surface Layer Formulation, Mon. Weather Rev., 140, 898–918,
https://doi.org/10.1175/MWR-D-11-00056.1, 2012. a
Karl, T. R., Nicholls, N., and Ghazi, A.: CLIVAR/GCOS/WMO Workshop on Indices
and Indicators for Climate Extremes Workshop Summary, Springer
Netherlands, Dordrecht, 3–7, https://doi.org/10.1007/978-94-015-9265-9_2, 1999. a, b
Katragkou, E., García-Díez, M., Vautard, R., Sobolowski, S., Zanis, P., Alexandri, G., Cardoso, R. M., Colette, A., Fernandez, J., Gobiet, A., Goergen, K., Karacostas, T., Knist, S., Mayer, S., Soares, P. M. M., Pytharoulis, I., Tegoulias, I., Tsikerdekis, A., and Jacob, D.: Regional climate hindcast simulations within EURO-CORDEX: evaluation of a WRF multi-physics ensemble, Geosci. Model Dev., 8, 603–618, https://doi.org/10.5194/gmd-8-603-2015, 2015. a, b
Kharin, V. V., Zwiers, F. W., Zhang, X., and Hegerl, G. C.: Changes in
Temperature and Precipitation Extremes in the IPCC Ensemble of Global Coupled
Model Simulations, J. Climate, 20, 1419–1444,
https://doi.org/10.1175/JCLI4066.1, 2007. a
Knist, S., Goergen, K., Buonomo, E., Christensen, O. B., Colette, A., Cardoso, R. M., Fealy, R., Fernández, J., García-Díez, M., Jacob, D., Kartsios, S., Katragkou, E., Keuler, K., Mayer, S., van Meijgaard, E., Nikulin, G., Soares, P. M. M., Sobolowski, S., Szepszo, G., Teichmann, C., Vautard, R., Warrach-Sagi, K., Wulfmeyer, V., and Simmer, C.: Land-atmosphere coupling in EURO-CORDEX evaluation experiments, J. Geophys. Res.-Atmos., 122, 79–103, https://doi.org/10.1002/2016JD025476, 2016. a
Laguë, M. M., Bonan, G. B., and Swann, A. L. S.: Separating the impact of
individual land surface properties on the terrestrial surface energy budget
in both the coupled and un-coupled land-atmosphere system, J. Climate, 32, 5725–5744, https://doi.org/10.1175/JCLI-D-18-0812.1, 2019. a, b
Li, M., Ma, Z., Gu, H., Yang, Q., and Zheng, Z.: Production of a combined land surface data set and its use to assess land-atmosphere coupling in China, J. Geophys. Res.-Atmos., 122, 948–965,
https://doi.org/10.1002/2016JD025511, 2017. a
Liu, C., Ikeda, K., Rasmussen, R., Barlage, M., Newman, A. J., Prein, A. F.,
Chen, F., Chen, L., Clark, M., Dai, A., Dudhia, J., Eidhammer, T., Gochis,
D., Gutmann, E., Kurkute, S., Li, Y., Thompson, G., and Yates, D.:
Continental-scale convection-permitting modeling of the current and future
climate of North America, Clim. Dynam., 49, 71–95,
https://doi.org/10.1007/s00382-016-3327-9, 2017. a
Liu, L., Ma, Y., Menenti, M., Zhang, X., and Ma, W.: Evaluation of WRF Modeling in Relation to Different Land Surface Schemes and Initial and Boundary Conditions: A Snow Event Simulation Over the Tibetan Plateau, J. Geophys. Res.-Atmos., 124, 209–226, https://doi.org/10.1029/2018JD029208, 2019. a
Lorenz, R., Argüeso, D., Donat, M. G., Pitman, A. J., van den Hurk, B.,
Berg, A., Lawrence, D. M., Chéruy, F., Ducharne, A., Hagemann, S., Meier,
A., Milly, P. C. D., and Seneviratne, S. I.: Influence of land-atmosphere
feedbacks on temperature and precipitation extremes in the GLACE-CMIP5
ensemble, J. Geophys. Res.-Atmos., 121, 607–623,
https://doi.org/10.1002/2015JD024053, 2016. a, b, c
Martynov, A., Laprise, R., Sushama, L., Winger, K., Šeparović, L., and Dugas, B.: Reanalysis-driven climate simulation over CORDEX North America
domain using the Canadian Regional Climate Model, version 5: model
performance evaluation, Clim. Dynam., 41, 2973–3005,
https://doi.org/10.1007/s00382-013-1778-9, 2013. a, b
Mearns, L., McGinnis, S., Korytina, D., Arritt, R., Biner, S., Bukovsky, M., Chang, H.-I., Christensen, O., Herzmann, D., Jiao, Y., Kharin, S., Lazare, M., Nikulin, G., Qian, M., Scinocca, J., Winger, K., Castro, C., Frigon, A., and Gutowski, W.: The NA-CORDEX dataset, version 1.0. NCAR Climate Data
Gateway, Boulder CO, available at: https://doi.org/10.5065/D6SJ1JCH (last access:
December 2018), 2017. a, b
Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W., Jovic, D., Woollen, J., Rogers, E., Berbery, E. H.,
Ek, M. B., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y., Manikin, G., Parrish, D., and Shi, W.: North American regional reanalysis, B. Am. Meteorol. Soc., 87, 343–360, https://doi.org/10.1175/BAMS-87-3-343, 2006. a, b, c
Michalakes, J., Chen, S., Dudhia, J., Hart, L., Klemp, J., Middlecoff, J., and Skamarock, W.: Development of a next generation regional weather research and forecast model, vol. 1, World Scientific, 2001. a
Miralles, D. G., den Berg, M. J., Teuling, A. J., and Jeu, R. A. M.: Soil
moisture-temperature coupling: A multiscale observational analysis,
Geophys. Res. Lett., 39, L21707, https://doi.org/10.1029/2012GL053703,
2012. a
Mitchell, K.: The community Noah land-surface model (LSM), User's Guide, 7,
available at: ftp://ftp.emc.ncep.noaa.gov/mmb/gcp/ldas/noahlsm/ver_2.7.1 (last access: 3 November 2020), 2005. a
Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2, Geosci. Model Dev., 8, 1339–1356, https://doi.org/10.5194/gmd-8-1339-2015, 2015. a
Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The
community Noah land surface model with multiparameterization options
(Noah-MP): 1. Model description and evaluation with local-scale measurements,
J. Geophys. Res.-Atmos., 116, 2156–2202,
https://doi.org/10.1029/2010JD015139, 2011. a, b, c, d
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek, E.,
Lawrence, P. J., Levis, S., Swenson, S. C., Thornton, P. E., Dai, A., Decker,
M., Dickinson, R., Feddema, J., Heald, C. L., Hoffman, F., Lamarque, J.-F.,
Mahowald, N., Niu, G.-Y., Qian, T., Randerson, J., Running, S., Sakaguchi,
K., Slater, A., Stockli, R., Wang, A., Yang, Z.-L., Zeng, X., and Zeng, X.:
Technical description of version 4.0 of the Community Land Model
(CLM), Tech. rep., NCAR, Boulder, 2010. a, b
Onogi, K., Tsutsui, J., Koide, H., Sakamoto, M., Kobayashi, S., Hatsushika, H., Matsumoto, T., Yamazaki, N., Kamahori, H., and Takahashi, K.: The JRA-25
reanalysis, J. Meteorol. Soc. Japan. Ser. II, 85,
369–432, 2007. a
Orlowsky, B. and Seneviratne, S. I.: Global changes in extreme events: regional and seasonal dimension, Clim. Change, 110, 669–696,
https://doi.org/10.1007/s10584-011-0122-9, 2012. a
Pattanaik, D., Mohapatra, M., Srivastava, A., and Kumar, A.: Heat wave over
India during summer 2015: an assessment of real time extended range forecast,
Meteorol. Atmos. Phys., 129, 375–393,
https://doi.org/10.1007/s00703-016-0469-6, 2017. a
Philip, S. Y., Kew, S. F., Hauser, M., Guillod, B. P., Teuling, A. J., Whan,
K., Uhe, P., and Oldenborgh, G. J.: Western US high June 2015 temperatures
and their relation to global warming and soil moisture, Clim. Dynam., 50,
2587–2601, https://doi.org/10.1007/s00382-017-3759-x, 2018. a, b
Reichle, R. H., Koster, R. D., Lannoy, G. J. M. D., Forman, B. A., Liu, Q.,
Mahanama, S. P. P., and Touré, A.: Assessment and Enhancement of MERRA
Land Surface Hydrology Estimates, J. Climate, 24, 6322–6338,
https://doi.org/10.1175/JCLI-D-10-05033.1, 2011. a, b
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data
Assimilation System, B. Am. Meteorol. Soc., 85,
381–394, https://doi.org/10.1175/BAMS-85-3-381,
2004. a
Samuelsson, P., Jones, C. G., Willén, U., Ullerstig, A., Gollivik, S.,
Hansson, U., Jansson, C., Kjellström, E., Nikulin, G., and Wyser, K.: The
Rossby Centre Regional Climate model RCA3: model description and performance,
Tellus A, 63, 4–23, https://doi.org/10.1111/j.1600-0870.2010.00478.x,
2011. a, b
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B.,
Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil
moisture–climate interactions in a changing climate: A review, Earth-Sci.
Rev., 99, 125–161,
https://doi.org/10.1016/j.earscirev.2010.02.004, 2010. a, b
Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S.,
Kossin, J., Luo, Y., Marengo, J., McInnes, K., and Rahimi, M.: Changes in
climate extremes and their impacts on the natural physical environment, in:
Managing the Risks of Extreme Events and Disasters to Advance Climate Change
Adaptation, Cambridge University Press, 109–203, 2012. a, b
Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W., and Bronaugh, D.:
Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model
evaluation in the present climate, J. Geophys. Res.-Atmos., 118, 1716–1733,
https://doi.org/10.1002/jgrd.50203,
2013a. a, b, c, d, e, f, g, h, i, j, k, l, m
Sillmann, J., Kharin, V. V., Zwiers, F. W., Zhang, X., and Bronaugh, D.:
Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future
climate projections, J. Geophys. Res.-Atmos., 118,
2473–2493, https://doi.org/10.1002/jgrd.50188, 2013b. a, b
Sippel, S., Zscheischler, J., Mahecha, M. D., Orth, R., Reichstein, M., Vogel, M., and Seneviratne, S. I.: Refining multi-model projections of temperature extremes by evaluation against land–atmosphere coupling diagnostics, Earth Syst. Dynam., 8, 387–403, https://doi.org/10.5194/esd-8-387-2017, 2017. a, b, c, d
Stieglitz, M. and Smerdon, J. E.: Characterizing land-atmosphere coupling and
the implications for subsurface thermodynamics, J. Clim., 20,
21–37, https://doi.org/10.1175/JCLI3982.1, 2007. a
Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M., Mitchell, K., Ek, M.,
Gayno, G., Wegiel, J., and Cuenca, R.: Implementation and verification of the
unified NOAH land surface model in the WRF model, 20th conference on weather
analysis and forecasting/16th conference on numerical weather prediction, American Meteorological Society, Seattle Washington, USA,
11–15 January 2004. a, b, c
Vertenstein, M., Craig, T., Middleton, A., Feddema, D., and Fischer, C.: CESM1.0.4 user's guide, UCAR Doc, 2012. a
Vogel, M. M., Orth, R., Cheruy, F., Hagemann, S., Lorenz, R., Hurk, B. J.
J. M., and Seneviratne, S. I.: Regional amplification of projected changes in
extreme temperatures strongly controlled by soil moisture-temperature
feedbacks, Geophys. Res. Lett., 44, 1511–1519,
https://doi.org/10.1002/2016GL071235, 2017. a
Wang, J. and Kotamarthi, V. R.: High-resolution dynamically downscaled
projections of precipitation in the mid and late 21st century over North
America, Earth's Future, 3, 268–288, https://doi.org/10.1002/2015EF000304, 2015. a
Yang, Z.-L., Niu, G.-Y., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Longuevergne, L., Manning, K., Niyogi, D., Tewari, M., and Xia, Y.: The
community Noah land surface model with multiparameterization options
(Noah-MP): 2. Evaluation over global river basins, J. Geophys. Res.-Atmos., 116, D12110, https://doi.org/10.1029/2010JD015140, 2011. a
Zscheischler, J., Orth, R., and Seneviratne, S. I.: A submonthly database for
detecting changes in vegetation-atmosphere coupling, Geophys. Res. Lett., 42, 9816–9824, https://doi.org/10.1002/2015GL066563, 2015. a, b, c, d
Zscheischler, J., Westra, S., van den Hurk, B. J. J. M., Seneviratne, S. I.,
Ward, P. J., Pitman, A., AghaKouchak, A., Bresch, D. N., Leonard, M., Wahl,
T., and Zhang, X.: Future climate risk from compound events, Nat. Clim.
Change, 8, 469–477, https://doi.org/10.1038/s41558-018-0156-3, 2018. a