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Abstract. The representation and projection of extreme tem-
perature and precipitation events in regional and global cli-
mate models are of major importance for the study of cli-
mate change impacts. However, state-of-the-art global and
regional climate model simulations yield a broad inter-model
range of intensity, duration and frequency of these extremes.
Here, we present a modeling experiment using the Weather
Research and Forecasting (WRF) model to determine the
influence of the land surface model (LSM) component on
uncertainties associated with extreme events. First, we an-
alyze land–atmosphere interactions within four simulations
performed by the WRF model from 1980 to 2012 over North
America, using three different LSMs. Results show LSM-
dependent differences at regional scales in the frequency of
occurrence of events when surface conditions are altered
by atmospheric forcing or land processes. The inter-model
range of extreme statistics across the WRF simulations is
large, particularly for indices related to the intensity and
duration of temperature and precipitation extremes. Our re-
sults show that the WRF simulation of the climatology of
heat extremes can be 5 ◦C warmer and 6 d longer depend-
ing on the employed LSM component, and similarly for
cold extremes and heavy precipitation events. Areas show-
ing large uncertainty in WRF-simulated extreme events are
also identified in a model ensemble from three different re-
gional climate model (RCM) simulations participating in

the Coordinated Regional Climate Downscaling Experiment
(CORDEX) project, revealing the implications of these re-
sults for other model ensembles. Thus, studies based on
multi-model ensembles and reanalyses should include a va-
riety of LSM configurations to account for the uncertainty
arising from this model component or to test the performance
of the selected LSM component before running the whole
simulation. This study illustrates the importance of the LSM
choice in climate simulations, supporting the development
of new modeling studies using different LSM components
to understand inter-model differences in simulating extreme
temperature and precipitation events, which in turn will help
to reduce uncertainties in climate model projections.

1 Introduction

General circulation models (GCMs) and regional climate
models (RCMs) are currently the most useful tools for the
study of processes affecting the frequency, duration and in-
tensity of extreme temperature and precipitation events, as
well as projecting their evolution under different emission
scenarios at global, regional and local scales. Both observa-
tional data and climate model simulations confirm that all of
these statistics respond to climate change (Seneviratne et al.,
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2012; Orlowsky and Seneviratne, 2012; Jeong et al., 2016).
However, state-of-the-art global and regional climate models
differ substantially in their representation of the climatology
and response to warming of various indices of temperature
and precipitation extremes (Sillmann et al., 2013a,b). Cli-
mate information provided by models is currently employed
by public and private institutions dedicated to the evaluation
and management of risks from extreme events and associated
disasters (IPCC, 2013, 2019). It is, therefore, essential that
climate models represent extreme events and their evolution
as realistically as possible to aid in the design of appropriate
policies to mitigate climate change and build resilience. In
this study, we analyze the representation of a set of extreme
indices, previously included in international reports such as
the IPCC (2013) and Seneviratne et al. (2012), as simulated
by the Weather Research and Forecasting (WRF) model with
different land surface model (LSM) components. We focused
on the climatology of these extreme indices, that is, the mean
of each index from 1980 to 2013.

Soil conditions are coupled to near-surface atmospheric
phenomena through energy and water exchanges at the
ground surface. The representation of the interactions be-
tween the land surface and the near-surface atmosphere has
been identified as a key factor in the simulation of extreme
events (e.g., Lorenz et al., 2016; Vogel et al., 2017). For ex-
ample, changes in soil moisture and soil properties may lead
to variations in energy fluxes at the land surface affecting
temperature and precipitation evolution. Changes in latent
heat flux affect surface temperatures in the following way:
a decrease in latent heat flux likely means an increase in the
energy available for sensible heat flux, which is directly re-
lated to the air–ground temperature gradient. The increase in
sensible heat flux yields an increase in this temperature gradi-
ent, which may lead to changes in air temperatures (Senevi-
ratne et al., 2010). Meanwhile, changes in latent heat flux
also yield changes in the atmospheric water content, possibly
affecting the formation of clouds and precipitation (Senevi-
ratne et al., 2010). Previous observational studies have shown
the impact of soil moisture deficits on hot extreme tempera-
tures through changes in evapotranspiration over southeast-
ern and western Europe and Russia (Hirschi et al., 2011; Mi-
ralles et al., 2012; Hauser et al., 2016). Additionally, soil
moisture regimes have been found to alter the energy and
water exchanges at the surface, influencing interannual sum-
mer temperature variability in central parts of North America
(Donat et al., 2016) and precipitation events in western North
America (Diro et al., 2014). Land–atmosphere interactions,
and consequently near-surface conditions, are influenced by
vegetation and snow cover (Stieglitz and Smerdon, 2007;
Diro et al., 2018). For example, Diro et al. (2018) showed that
interactions between snow cover and atmospheric processes
influence extreme events, increasing the frequency of cold
events over western North America and affecting the vari-
ability in warm events over northeast Canada and the Rocky
Mountains.

Metrics built on the representation of land–atmosphere
interactions have been employed as a basis for evaluat-
ing extreme temperature and precipitation events in climate
model simulations (Knist et al., 2016; Davin et al., 2016;
Lorenz et al., 2016; Sippel et al., 2017; Gevaert et al.,
2018; García-García et al., 2019). For example, Lorenz et al.
(2016) evaluated outputs from six GCMs participating in
the Global Land-Atmosphere Coupling Experiment of the
Coupled Model Intercomparison Project phase 5 (GLACE-
CMIP5) and concluded that ranges of intensity, frequency
and duration of extreme events among climate projections
are strongly related to inter-model differences in the repre-
sentation land–atmosphere interactions. Gevaert et al. (2018)
evaluated the representation of land–atmosphere interactions
within a set of offline LSM simulations, finding similar spa-
tial patterns of soil moisture–temperature coupling among
LSM simulations but large variability in the degree and local
patterns of land–atmosphere coupling. García-García et al.
(2019) employed a simple metric derived from soil and air
temperatures to evaluate outputs from the CMIP5 models
against observations over North America, suggesting a strong
dependence of the simulated land–atmosphere interactions
on the LSM component employed. The model differences
in the representation of land–atmosphere interactions shown
in these studies may be affecting the simulation of extreme
events and thus contributing to the uncertainty in multi-
model ensembles such as those formed by the CMIP5 and
the Coordinated Regional Climate Downscaling Experiment
(CORDEX) simulations.

The choice and complexity of the LSM component may
have implications for the representation of land–atmosphere
interactions in reanalysis products, since reanalysis prod-
ucts have shown discrepancies in the representation of land–
atmosphere coupling with observations (Ferguson et al.,
2012; García-García et al., 2019). However, in contrast to the
variety of LSM components employed in the new generation
of GCMs, reanalyses use simplified versions of LSM com-
ponents, typically included as part of the atmospheric model
component. For example, all reanalysis products produced
by the European Centre for Medium-range Weather Fore-
casts (ECMWF) models (CERA-20C, ERA-15, ERA20C,
ERA-Interim, ERA-40 and ERA5 products) employed dif-
ferent versions of the same LSM component included in the
code of the ECMWF atmospheric model (Hersbach et al.,
2018). The two Modern-Era Retrospective analysis for Re-
search and Applications (MERRA and MERRA2) global
products employed similar versions of the GEOS-5 catch-
ment land surface model (Reichle et al., 2011; Molod et al.,
2015). The Japanese Reanalysis (JRA) products employed a
modified version of the Simple Biosphere (SiB) LSM (Onogi
et al., 2007), while most of National Centers for Environ-
mental Prediction (NCEP) and National Center for Atmo-
spheric Research (NCAR) products employed the Noah LSM
(Tewari et al., 2004). The complexity and variety of these
LSM components are limited in order to reduce computa-
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tional costs, affecting the quality of the represented land sur-
face processes. This has already been noted by the scien-
tific community, and some have attempted to address the is-
sue by incorporating updated versions of LSMs in new land
reanalysis products through offline LSM simulations forced
by observational data products (LDAS, MERRA-land, ERA-
Iterim/Land, ERA5-land; Rodell et al., 2004; Reichle et al.,
2011; Balsamo et al., 2015; Hersbach et al., 2018). Although
these new products can be useful for LSM development and
provide data about the soil states and fluxes (Balsamo et al.,
2015), the offline character of the new land products inhibits
the representation of land–atmosphere coupling and feed-
backs.

Here, we perform a set of modeling experiments to exam-
ine for the first time the influence of the LSM component on
the simulation of key extreme indices and land–atmosphere
interactions within land–atmosphere coupled climate simu-
lations at continental scales. For this purpose, four regional
simulations are performed over North America (1979–2012)
using the WRF model including three different LSM compo-
nents widely employed in model simulations and reanalysis
products, as described in Sect. 2. To explore the influence
of the LSM component on the simulation of extreme events
in multi-model ensembles, we compare the uncertainty in the
representation of extreme indices within our four WRF simu-
lations with the uncertainty in three simulations participating
in the North American component of the CORDEX project
(NA-CORDEX). The methodology for the analysis of land–
atmosphere interactions and the representation of extreme
events is described in Sect. 3. Section 4 presents the exami-
nation of land–atmosphere interactions, the analysis of LSM
differences in the representation of temperature and precipi-
tation extremes, and the comparison between the WRF simu-
lations and three CORDEX simulations. A discussion about
previous results and the main conclusions and implications
of this study are presented in Sects. 5 and 6, respectively.

2 Description of the modeling experiment

We performed four regional simulations over North Amer-
ica (NA) using the version 3.9 of the Advanced Research
WRF (WRF-ARW) model (Michalakes et al., 2001) includ-
ing three different land surface models: the Noah LSM
(Noah; Tewari et al., 2004), the Noah LSM with multi-
parameterization options (Noah-MP; Niu et al., 2011) and
the Community Land Model version 4 LSM (CLM4; Oleson
et al., 2010). Vegetation cover was prescribed in these three
simulations (Noah, Noah-MP and CLM4); an additional sim-
ulation was conducted with dynamic vegetation cover in the
Noah-MP LSM (Noah-MP-DV), allowing for the evaluation
of the influence of dynamic vegetation on extremes. The use
of different LSM configurations in a RCM permits the study
of the influence of surface and soil processes on the simu-

lated climate system in contrast to LSM offline simulations
(Laguë et al., 2019).

The LSM components employed have been previously in-
cluded in climate model studies or in reanalysis products.
The CLM4 LSM component has been coupled to several
GCMs participating in the CMIP5 project (Collins et al.,
2006; Vertenstein et al., 2012). The Noah LSM has been ex-
tensively used for reanalysis products, as well as for RCM
simulations such as those participating in the CORDEX
project (Mesinger et al., 2006; Katragkou et al., 2015). The
Noah-MP LSM has been selected for current studies using
WRF (e.g., Liu et al., 2017). The Noah LSM is a rather basic
LSM developed by NCAR and NCEP based on the Oregon
State University (OSU) LSM (Mitchell, 2005). This LSM
component describes soils using four layers with thicknesses
of 10, 30, 60 and 100 cm, using a zero-flux bottom boundary
condition at a depth of 2 m. The Noah LSM estimates soil
moisture and temperature at the node of each soil layer, tak-
ing into account snow cover, canopy moisture and soil ice.
The Noah-MP LSM is based on the Noah LSM, introducing
relevant improvements, such as a dynamic vegetation option;
a new separated vegetation canopy cover that improves the
computation of energy, water and carbon fluxes at the sur-
face; a separate scheme for computing energy fluxes over
vegetated surfaces and bare soils; a new three-layer snow
model; a more permeable frozen soil; and an improved de-
scription of runoff and soil moisture. Although the Noah-
MP LSM is the updated version of the Noah LSM and has
been shown to improve the simulation of surface processes
in comparison to the Noah LSM (e.g., Niu et al., 2011; Yang
et al., 2011), the Noah-MP LSM has not yet been imple-
mented in any reanalysis product. The CLM4 represents one
of the most advanced LSM components, incorporating a de-
tailed description of biogeophysics, hydrology and biogeo-
chemistry. The CLM4 classifies vegetation cover using up to
16 different plant functional types, considering the physiol-
ogy and structure of different plants. The soil vertical struc-
ture is divided into a layer for the vegetation canopy, five lay-
ers for snow cover and 10 soil layers, placing the zero-flux
bottom boundary condition at approximately 4.32 m. The
main characteristics of the employed LSM components are
summarized in Table 1.

Beyond the structural differences among LSM compo-
nents, the remaining options and parameters are identical
for the four WRF simulations. Boundary conditions for the
WRF experiments are provided by the North American Re-
gional Reanalysis (NARR) product, which is formed by the
NCEP Eta atmospheric model, the Noah LSM and the Re-
gional Data Assimilation System (RDAS) (Mesinger et al.,
2006). NARR data are provided with a 32 km grid and 3-
hourly temporal resolution, available at the National Centers
for Environmental Prediction (NCEP) archive. The domain
set for the WRF simulations has 50 km horizontal resolu-
tion and 27 atmospheric levels, covering North America in
a Lambert projection. The land use categories employed for
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Table 1. Characteristics of the LSM components employed for the WRF simulations performed in this analysis.

Vegetation Vegetation Soil Soil
LSM types mode layers depth Snow Reference

Noah Dominant vegetation type in one grid cell Prescribed 4 2 m Single layer Tewari et al. (2004)
Noah-MP Dominant vegetation type in one grid cell Prescribed 4 2 m Up to three layers Niu et al. (2011)
Noah-MP-DV Dominant vegetation type in one grid cell Dynamic 4 2 m Up to three layers Niu et al. (2011)
CLM4 Up to 10 vegetation types in one grid cell Prescribed 10 4.32 m Up to five layers Oleson et al. (2010)

the four simulations (Fig. S1 in the Supplement) are derived
from the Moderate Resolution Imaging Spectroradiometer
(MODIS; Barlage et al., 2005). Sea surface temperatures
were prescribed using the NARR product. The four WRF
simulations start on 1 January 1979, which is the first year
of the NARR product, and end on 31 December 2012, using
a time step of 300 s for the model integrations. We use the
first year of each simulation as spin-up and the other 33 years
for the analysis. The selection of the first year as spin-up was
done considering the initialization period previously used in
WRF climate experiments, such as those in Wang and Ko-
tamarthi (2015), Katragkou et al. (2015) and Barlage et al.
(2005). The comparison of the latent heat flux and surface air
temperature outputs from the WRF-CLM4 simulation start-
ing on 1 January 1979 and a similar simulation starting on
1 June 1979 indicates that this period is enough to initial-
ize the simulation (Figs. S22 and S23 in the Supplement).
The employed physics parameterizations include the WRF
single-moment (WSM) six-class graupel scheme for the mi-
crophysics (Hong and Lim, 2006), the Grell–Freitas ensem-
ble scheme for cumulus description (Grell and Freitas, 2014),
the Yonsei University scheme as planetary boundary layer
scheme (YSU; Hong et al., 2006), the revised MM5 Monin–
Obukhov scheme for the surface layer (Jiménez et al., 2012)
and the Community Atmosphere Model (CAM) scheme for
the integration of radiation physics each 20 min intervals
(Collins et al., 2004).

The gap in resolution from the employed boundary condi-
tions (32 km) to the final simulations (50 km) can be coun-
terintuitive for a RCM experiment. The computational re-
sources saved with this coarse resolution allow us to perform
simulations long enough for the study of land–atmosphere in-
teractions and extreme events at climatological scales and yet
similar horizontal resolution and domain to those employed
in the North American component of the CORDEX project
(Giorgi and Gutowski, 2015) can be attained. Thus, this de-
crease in resolution allows us to generate a set of four WRF
sensitivity experiments using different LSM configurations.
Additionally, we do not apply any nudging technique, en-
suring that the RCM evolves freely according to each LSM
component and its representation of land–atmosphere inter-
actions.

3 Methodology

Different metrics have been employed in the literature for the
evaluation of land–atmosphere interactions within climate
model simulations and observations. Among these metrics,
we selected the Vegetation-Atmosphere Coupling (VAC) in-
dex (Zscheischler et al., 2015) as our evaluation metric
for the representation of land–atmosphere interactions at
monthly scales. This index has been previously employed in
the literature to identify regions with episodes of strong land–
atmosphere coupling within climate model simulations and
observational data (Zscheischler et al., 2015; Gevaert et al.,
2018; Sippel et al., 2017; Li et al., 2017; Philip et al., 2018).
The VAC index is segregated in four categories based on the
simultaneous occurrence of some given extreme percentile
rages of surface air temperature (SAT) and latent heat flux
(LH; Philip et al., 2018):

VACa if SAT < 30th pctl. and LH < 30th pctl.
→ atmo. control coupling

VACb if SAT > 70th pctl. and LH > 70th pctl.
→ atmo. control coupling

VACc if SAT > 70th pctl. and LH < 30th pctl.
→ land control coupling

VACd if SAT < 30th pctl. and LH > 70th pctl.
→ land control coupling

0 otherwise.

(1)

Extremes of SAT and LH are defined as values exceeding
(below) the 70th (30th) percentile, relative to a 20-year pe-
riod (1980–2000) (Eq. 1). We use the VAC metric at monthly
scales as in Sippel et al. (2017), since this work proved the
usefulness of the VAC metric at monthly timescales for the
analysis of the climatology of extreme indices. The VAC in-
dex classifies areas depending on the soil moisture regime
into energy-limited areas, where atmospheric conditions con-
trols land–atmosphere interactions (VACa and VACb), and
into water-limited areas, where soil moisture deficits con-
trol the water and energy exchanges at the air–ground inter-
face (VACc and VACd ). As explained in Zscheischler et al.
(2015), the VACa category is associated with energy limita-
tions (low SAT) caused by the presence of clouds and pre-
cipitation, which leads to a decrease in the vegetation photo-
synthetic activity and therefore an increase in soil moisture.
The VACb category is frequent in wet areas with high SAT,
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usually related to a clear sky and high radiation, which is
associated with an increase in the vegetation photosynthetic
activity inducing the depletion of soil moisture. During VACc

episodes, the combination of high SAT and soil moisture
deficits leads to diminished vegetation photosynthetic activ-
ity, followed by low precipitation and consequently low soil
moisture and high SAT, promoting heat waves and droughts.
The VACd category is associated with high precipitation over
dry soils which stimulates vegetation photosynthetic activity,
increasing soil moisture and decreasing SAT. A no-coupling
option also occurs when SAT and LH extremes do not coin-
cide in time.

We calculate the frequency of occurrence for each VAC
category using deseasonalized and detrended monthly SAT
and LH time series following the typical methodology (Sip-
pel et al., 2017) at each grid cell from 1980 to 2012 (here-
after referred to as the analysis period). The frequency of oc-
currence for each VAC category is calculated by counting
the VAC events for the analysis period seasonally: in boreal
winter (December, January and February; DJF), in spring
(March, April and May; MAM), in summer (June, July and
August; JJA) and in fall (September, October and November;
SON). The probability of each VAC category (Figs. S2–S5 in
the Supplement) and the probability of the no-coupling case
sum 100 % over the analysis period at each grid cell. The
VAC probabilities of occurrence for each category are con-
sidered significant when they are higher than the 95th per-
centile of the population obtained by 100 randomly sorted
34-year time series of SAT and LH. For the study of land–
atmosphere coupling within each simulation, we represent
the averaged frequency of events under atmospheric control
(VACa and VACb) and under land control (VACc and VACd )
at grid cells with significant frequency of occurrence for at
least one of the two VAC categories.

After the analysis of land–atmosphere interactions in our
set of simulations, we assess the representation of extreme
events across the WRF simulations coupled to different LSM
components. There are several definitions of indices re-
lated to temperature and precipitation extremes, mainly using
thresholds based on absolute values or statistical percentiles
(e.g., Sillmann et al., 2013a). Studies based on statistical per-
centiles improve the comparison among models but hamper
the interpretation of results by losing the physical meaning
of the variable (temperature or precipitation). Although the
use of extreme indices defined with absolute values facili-
tates the understanding of results by a general public, these
indices could include model-specific biases. These biases can
be corrected by bias removal techniques; however, the advan-
tage of applying bias removal techniques is not clear for the
study of future climate trends and climate variability, since
these techniques have been proven to modify the spatiotem-
poral consistency of climate models as well as internal feed-
back mechanisms and conservation terms (Ehret et al., 2012;
Cannon et al., 2015). Additionally, the simulation of abso-
lute temperatures is of central importance for temperature

dependent processes that may have important consequences
for society and ecosystems, such as soil carbon processes
(Hicks Pries et al., 2017). Since extreme indices based on
both absolute values and statistical thresholds present advan-
tages and disadvantages, we selected a set of indices includ-
ing both categories from the list of 27 indices recommended
by the Expert Team on Climate Change Detection and In-
dices (ETCCDI; Karl et al., 1999, Table 2). The employed
intensity indices of temperature events are based on temper-
ature values on the hottest day and coldest night in summer
and winter for warm and cold events. The frequency indices
of the same events indicate the percentage of hot and cold
days and nights in the year. The duration of the temperature
events is represented with the number of consecutive hot days
and cold nights. The intensity of heavy precipitation events
is characterized by the total annual precipitation in wet days,
while the frequency of precipitation events is studied using
the number of very wet days per year. The duration of wet
and dry events is represented with the annual number of con-
secutive wet and dry days. For more specific definitions of
the indices employed in this study, please refer to Table 2.
Since we are interested in the climatology of extreme events,
temporal averages of each annual index are computed for the
analysis period at each grid cell for each WRF experiment.
Then, we compute the inter-model range of each index across
the WRF simulations (i.e., the difference between the maxi-
mum and minimum values at each grid cell considering the
four WRF simulations), using it as metric for the uncertainty
in the WRF simulation of extreme events arising from the
LSM component.

The effect of the LSM configuration on the simulation of
extreme events can also be relevant for multi-model ensem-
bles, such as those participating in the CORDEX project.
Here, we compare the LSM effect on the WRF simulation
of extreme temperature and precipitation events with the
representation of extreme events by three different RCMs
participating in the NA-CORDEX program (Mearns et al.,
2017). For this purpose, we use the daily outputs from three
NA-CORDEX simulations forced by reanalysis data (eval-
uation experiments; Table 3). These CORDEX simulations
were performed by the WRF model (Skamarock et al., 2008),
the Rossby Centre atmospheric model version 4 (RCA4)
(Samuelsson et al., 2011) and the Canadian Regional Cli-
mate Modelling Network – Université du Québec à Mon-
tréal (CRCM-UQAM) model (Martynov et al., 2013) using
boundary conditions from the ERA-Interim reanalysis (Dee
et al., 2011). The remaining NA-CORDEX evaluation sim-
ulations available in the Climate Data Gateway at NCAR
were not used because those simulations cover a signifi-
cantly shorter period of time than our simulations. The spa-
tial domain and resolution of the NA-CORDEX simulations
are similar to that of the WRF simulations, as indicated in
Sect. 2. Refer to Table S1 for information about the avail-
ability of the data employed in this work.
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Table 2. List of extreme indices used in this study defined by the Expert Team on Climate Change Detection and Indices (ETCCDI) (Karl
et al., 1999). Percentiles are calculated over the period 1980–2000.

Index Definition Unit

Cold event

Intensity
TXx DJF Maximum value of daily maximum temperature (hottest day) in winter ◦C
TNn DJF Minimum value of daily minimum temperature (coldest night) in winter ◦C
Frequency
TN10p Percentage of days in a year when daily minimum temperature

< the calendar-day 10th percentile centered on a 5 d window %
TX10p Percentage of days in a year when daily maximum temperature

< the calendar-day 10th percentile centered on a 5 d window %
Duration
CSDI Cold Spell Duration Index: annual count of days with at least 6 consecutive days when

daily minimum temperature < the calendar-day 10th percentile centered on a 5 d window Days

Warm event

Intensity
TXx JJA Maximum value of daily maximum temperature (hottest day) in summer ◦C
TNn JJA Minimum value of daily minimum temperature (coldest night) in summer ◦C
Frequency
TN90p Percentage of days in a year when daily minimum temperature

> the calendar-day 90th percentile centered on a 5 d window %
TX90p Percentage of days in a year when daily maximum temperature

> the calendar-day 90th percentile centered on a 5 d window %
Duration
WSDI Warm Spell Duration Index: annual count of days with at least 6 consecutive days when

daily maximum temperature > the calendar-day 90th percentile centered on a 5 d window Days

Precipitation event

Intensity
R95p Annual total precipitation when daily accumulated precipitation on a wet day

> 95th percentile of precipitation on wet days mm
Frequency
R10 mm Annual count of days when daily accumulated precipitation ≥ 10 mm Days
Duration
CDD Maximum length of dry spell: maximum annual number of consecutive days with daily

accumulated precipitation < 1 mm Days
CWD Maximum length of wet spell: maximum annual number of consecutive days with daily

accumulated precipitation ≥ 1 mm Days

Table 3. Characteristics of the evaluation simulations employed in this analysis from three RCMs participating in the NA-CORDEX project.
The boundary conditions for these three simulations are from the ERA-Interim reanalysis. LSS is a land-surface scheme and SMHI is the
Swedish Meteorological and Hydrological Institute.

Vegetation Spectral
CORDEX RCM LSM types nudging Institution Reference

WRF Noah 24 Yes NCAR Skamarock et al. (2008)
RCA4 RCA LSS 12 No SMHI Samuelsson et al. (2011)
CRCM-UQAM CLASS3.5+ 4 No UQAM Martynov et al. (2013)
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4 Results

4.1 Examination of land–atmosphere interactions in
WRF simulations

All WRF simulations with different LSM components dis-
play similar spatial patterns for VAC categories, agreeing in
seasonality and broadly in the regional classification of en-
ergy and water limited areas (e.g., areas with high proba-
bility of episodes where atmospheric forcing or soil condi-
tions control land–atmosphere interactions) (Figs. 1 and 2).
Atmospheric forcing controls surface processes at middle
and high latitudes in MAM, JJA and SON, moving south-
ward in DJF (Fig. 1). Areas frequently driven by soil condi-
tions are displayed over the western Mexican coast in DJF,
spreading across low and middle latitudes in MAM, JJA and
SON (Fig. 2). These spatial similarities in the VAC coupling
metric indicate that factors common in our four simulations,
such as land cover, topography, latitudinal differences or at-
mospheric parameterizations produce these spatial patterns.
Despite the broad agreement between LSM simulations in
the spatial distribution of the VAC categories, there are re-
gional differences in their representation of land–atmosphere
coupling. These regional differences allow us to identify the
Noah LSM as the one simulating the weakest annual land
control on processes at the surface, mainly due to a relatively
weak land control during MAM and JJA (Fig. 2).

The areas where LSM simulations differ in the probabil-
ity of episodes under atmospheric control (VACa and VACb)
vary with the season; for example, the Noah-MP LSM sim-
ulates a large area under atmospheric control over the south-
eastern US in DJF, while the CLM4 and Noah LSMs iden-
tify atmospheric control areas below the Great Lakes follow-
ing a northwestern direction (Fig. 1). These differences in
atmospheric control areas are caused by the different prob-
ability of extreme latent heat flux simulated by each LSM
in DJF (Figs. S6 and S7 in the Supplement). In MAM, the
Noah-MP LSM represents higher probability of atmospheric
control episodes over the northern US in comparison with
the CLM4 and Noah simulations (Fig. 1). The Noah sim-
ulation shows the strongest atmospheric control in JJA as
compared with the remaining simulations, particularly over
eastern and western regions of Hudson Bay, the southeast-
ern US and small areas in Mexico (Fig. 1). This strong JJA
atmospheric control in the Noah simulation is driven by the
VACa category (Fig. S2 in the Supplement) and likely re-
lated to the high probability of cold temperatures over these
areas in this simulation (Fig. S9 in the Supplement). Dur-
ing SON, the Noah-MP LSM reaches the highest probability
of episodes under atmospheric control at middle and high
latitudes, caused by the high probability of extreme latent
heat flux in comparison with the rest of the LSMs (Figs. S6
and S7 in the Supplement). The contribution of the VACa

and VACb categories to these episodes is broadly similar
across LSMs, with slightly higher VACa in all seasons; mod-

est LSM-specific differences include a tendency for the Noah
simulation to show slightly higher VACa probabilities across
all seasons (but especially DJF) (Figs. S2 and S3).

Although the Noah simulation displays the weakest land
control for all seasons, it shows regions under land control
over northwestern North America in DJF also indicated by
the CLM4 simulation but absent in the Noah-MP and Noah-
MP-DV simulations (Fig. 2). The probability of land con-
trol episodes over the western Mexican coast is higher in
the CLM4 and Noah-MP simulations than in the Noah and
Noah-MP-DV simulations in DJF. These LSM differences
are associated with the high probability of low latent heat flux
over those regions in winter for the CLM4 and the Noah-MP
simulations in comparison with the remaining simulations
(Figs. S7 in the Supplement). In JJA, however, the Noah-
MP-DV simulation presents a stronger land control at low
and middle latitudes than the Noah-MP simulation (Fig. 2),
mainly caused by the VACd category and the high proba-
bility of cold temperatures (Figs. S5 and S9 in the Supple-
ment). There are also regional differences between LSM sim-
ulations in SON, particularly over the southeastern US coast
where the CLM4 shows the strongest land control, followed
by the Noah-MP simulation (Fig. 2). The Noah-MP-DV sim-
ulation does not show this strong land control at low lati-
tudes in SON due to the low probability of high latent heat
flux represented by the Noah-MP LSM with dynamic veg-
etation (Fig. S6 in the Supplement). The weaker land con-
trol in the Noah simulation, however, is not explained by the
probability of extreme temperature or latent heat flux, since
these probabilities are similar to those in the CLM4 simula-
tion (Figs. S6–S9 in the Supplement). Thus, it is associated
with the absent of coincidences of extreme temperature and
latent heat flux simulated by the Noah LSM. Exploring the
contribution of VACc and VACd separately, it is shown they
present small differences; for example, the VACc probabil-
ity in DJF is slightly higher than the VACd probability for
all simulations, showing the opposite behavior in JJA for the
Noah-MP and the Noah-MP-DV simulations (Figs. S4 and
S5 in the Supplement).

4.2 Climatologies of temperature and precipitation
extremes in the WRF simulations

We continue this analysis comparing the representation of
extreme events within the four WRF simulations by calculat-
ing the range among these four simulations. But first, we an-
alyze the spatial features of the climatology of extreme tem-
perature and precipitation indices as simulated by the mean
of the four WRF simulations with different LSM configu-
rations (hereafter WRF ensemble mean) and by each LSM
simulation separately.

The climatologies of temperature and precipitation ex-
treme indices, as described in Table 2 and represented by
the mean of each index for the analysis period, show simi-
lar spatial patterns across all WRF simulations with differ-
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Figure 1. Mean frequency of occurrence for VAC categories associated with atmospheric control (VACa and VACb) for each simulation
annually and seasonally; DJF, MAM, JJA and SON. Black dots in the maps indicate VAC values lower than the 95th percentile of the
randomly generated series and therefore areas with no significant probabilities.

ent LSM configurations (Figs. S10, S11 and S12 in the Sup-
plement). The similarities in the spatial pattern of extreme
events among our simulations indicate that factors other than
the LSM configuration, such as land cover, topography, lat-
itudinal differences and atmospheric parameterizations, are
driving these spatial features. Figure 3 represents the simu-
lated climatologies of all extreme indices for the ensemble
mean, formed by the four WRF simulations. The WRF en-
semble mean shows the most intense cold events at high lat-
itudes and high elevations, with cold events being more fre-
quent and longer over northwestern North America and over
Mexico (Fig. 3a). The simulation of warm events is more in-

tense in coastal areas of the US and Mexico and over the
central US, being more frequent and longer over southern
North America with a high percentage of hot nights over
northeastern NA (Fig. 3b). Precipitation events are heavier
and more frequent at higher elevations and over southeast-
ern NA (Fig. 3c). The longest dry periods are simulated over
the western Mexican and US coasts, reaching more than 80
consecutive dry days, while the longest wet periods are repre-
sented over the Rockies and the northwestern Mexican coast
(Fig. 3c).

Figure 4 summarizes the averaged climatology of each ex-
treme index for each simulation. Averages are computed over
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Figure 2. Mean frequency of occurrence for VAC categories associated with land control (VACc and VACd ) for each simulation annually and
seasonally; DJF, MAM, JJA and SON. Black dots in the maps indicate VAC values lower than the 95th percentile of the randomly generated
series and therefore areas with no significant probabilities.

six regions adapted from Giorgi and Francisco (2000): Cen-
tral America, CAM; western North America, WNA; central
North America, CNA; eastern North America, ENA; Alaska,
ALA; and Greenland, GRL. Although there are differences
between our regions and those defined in Giorgi and Fran-
cisco (2000), we kept the same nomenclature for an easy
comparison. That is, we label this region as GRL, although
our northeastern Canadian region does not include Green-
land. Colors in the figure correspond to the hottest (red) and
coldest (blue) index values among the WRF simulations for
the representation of cold and warm temperature extremes,
and to the driest (brown) and wettest (green) index values for

the representation of precipitation extremes over each region.
This approach helps us to identify the CLM4 simulation as
that with the weakest and shortest cold extreme events, al-
though simulating more frequent cold events than the rest
of the LSM components (Fig. 4a). Meanwhile, the Noah-
MP-DV simulation shows more intense cold extremes dur-
ing shorter periods over most of the regions (CAM, CNA,
ENA and ALA) in comparison with the Noah-MP simula-
tion which uses prescribed vegetation (Fig. 4a). The CLM4
simulation also corresponds to the most intense representa-
tion of warm extremes for the index based on maximum tem-
peratures, while the intensity index based on minimum tem-
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Figure 3. Climatology of extreme indices associated with cold temperature events (a), warm temperature events (b) and precipita-
tion events (c) for the ensemble mean, formed by the four WRF simulations (Table 2: TXx/TNn, maximum/minimum value of the
maximum/minimum daily temperatures; TN10p/TX10p, percentage of cold nights/days; TN90p/TX90p, percentage of hot nights/days;
CSDI/WSDI, cold/warm spell duration index; R95p, total annual precipitation in wet days; R10 mm, number of wet days in a year;
CDD/CWD, consecutive dry/wet days). The climatology of each index is estimated as the mean of each extreme index at each grid cell
for the analysis period (1980–2012).

peratures shows higher values in the Noah-MP simulation,
except for the CAM region (Fig. 4b). The Noah simulation
is associated with the weakest and shortest warm extremes
over most areas, and the Noah-MP and Noah-MP-DV sim-
ulations with the most frequent and longest events. The ef-
fect of dynamic vegetation seems to weaken hot extremes at
nights over all regions, making them longer at middle and
high latitudes (CNA, ENA, ALA and GRL), except in the
western US (Fig. 4b). That is, the Noah-MP-DV simulation
yields warm events longer but not as hot as using prescribed
vegetation in most regions at middle and high latitudes. For
extreme precipitation events, the CLM4 simulation shows the
most intense and frequent precipitation events over most ar-

eas, while the Noah simulation shows the weakest and the
least frequent precipitation events (Fig. 4c). The Noah-MP
simulation produces the longest dry periods over all regions
except at high latitudes, where the Noah-MP-DV simulation
yields a higher number of consecutive dry days (Fig. 4c). The
simulation with dynamic vegetation yields wetter results than
the simulation with prescribed vegetation at middle and low
latitudes, while at high latitudes the Noah-MP-DV simula-
tion is generally drier than the Noah-MP simulation (Fig. 4c).

In summary, from the results presented here and in the
previous sections, we see that the spatial patterns of land–
atmosphere coupling and the climatology of extreme indices
are similar in our WRF simulations (Figs. 1, 2 and S10–
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Figure 4. Comparison of the simulated climatologies of temperature and precipitation extreme indices included in Table 2 among the WRF
simulations averaging over six land North American regions adapted from Giorgi and Francisco (2000) (Central America, CAM; western
North America, WNA; central North America, CNA; eastern North America, ENA; Alaska, ALA; and Greenland, GRL). Colors correspond
to the hottest (red) and coldest (blue) index values among the WRF simulations for the representation of cold (a) and warm (b) temperature
extremes, and to the driest (brown) and wettest (green) index values for the representation of precipitation extremes (c) over each region.

S12 in the Supplement), indicating that the LSM configu-
ration is not influencing these spatial structures. Therefore,
other factors common in our four WRF simulations, such
as land cover, topography, the latitudinal gradient or atmo-
spheric parameterizations, generate the spatial distribution
of the coupling metrics and the extreme indices. Nonethe-
less, each LSM configuration yields different degree of land–

atmosphere coupling and different values of extreme temper-
ature and precipitation events at local scales. Thus, the CLM4
LSM is identified as the component yielding the strongest
land control on surface conditions and the highest tempera-
tures during cold and warm events over most of North Amer-
ica as well as the heaviest and most frequent precipitation
extremes over most locations (Figs. 1, 2 and 4). That is, the
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simulation with more coincidences of extreme high (low) LH
and extreme low (high) SAT is also representing the most in-
tense temperature and precipitation extremes. This suggests
that the simulation of very low latent heat flux may be in-
fluencing the simulation of heat extremes by inducing an in-
crease in the energy available for sensible heat flux and likely
increasing air temperatures. Meanwhile, the simulation of
high latent heat flux may increase the representation of at-
mospheric water content, inducing changes in the formation
of clouds and precipitation. Thus, the strong land control on
the CLM4 simulation seems to enhance the intensity of warm
and heavy precipitation events comparing with the rest of
simulations, particularly in comparison with the Noah sim-
ulation. The Noah LSM produces the weakest land control
on surface conditions and one of the lowest intensities for all
temperature indices as well as the lowest intensity and fre-
quency of heavy precipitation events over all regions. The
comparison of the Noah-MP simulations using prescribed
and dynamic vegetation shows that the use of dynamic vege-
tation yields stronger land control at low and middle latitudes
in summer and more intense, frequent and longer heavy pre-
cipitation events over the same regions (Figs. 1, 2 and 4).
Thus, this comparison also supports that the simulation of
strong land control leads to heavier precipitation events.

4.3 LSM uncertainty in the simulation of temperature
and precipitation extremes

Although all WRF simulations show similar spatial patterns
for temperature and precipitation extreme indices (Figs. S10,
S11 and S12), there are large uncertainties in the climatol-
ogy of each extreme index associated with the use of differ-
ent LSM configurations. For the simulation of the intensity
of cold events, the multi-model range across the WRF sim-
ulations for the hottest day in DJF (TXx DJF) shows large
values over the boreal forest and the Rockies, where the in-
dex climatology is close to 0 ◦C (Figs. 3 and 5a). The rep-
resentation of the coldest night in DJF (TNn DJF) shows
large LSM dependence, yielding ranges up to 12 ◦C over the
US and a spatial average of 4 ◦C, displaying large uncertain-
ties over areas where the index climatology approaches 0 ◦C
(Figs. 3 and 5a). The simulated intensity of warm tempera-
ture events, measured by the temporal average of the hottest
day in summer (TXx JJA), differs by up to 10 ◦C among sim-
ulations over eastern North America, with a spatial average
of 3.5 ◦C (Fig. 5a). The simulation of the mean coldest night
in summer (TNn JJA) varies across simulations from 2 to
3 ◦C over the whole domain, except in the Arctic where the
range across simulations reaches approximately 15 ◦C and
the index value yields negative temperatures for some sim-
ulations (Figs. 3 and 5a). The frequency of warm extreme
temperature events varies among simulations; the range for
the number of hot days (TX90p, based on maximum temper-
atures) is up to 4.2 % over the US with a spatial average of
0.97 % over the whole domain, and the range for the num-

ber of hot nights (TN90p, based on minimum temperatures)
reaches values up to 3.8 % at low latitudes with a spatial av-
erage of approximately 0.7 % (Fig. 5b). Large values of the
multi-model range for the number of hot days (TX90p) ap-
proximately coincide with the largest index values (Figs. 3
and 5b). Note that ranges of more than 2 % in the number of
hot days and nights correspond to differences of more than
7 d per year in the index climatology simulated by differ-
ent LSMs. Ranges of indices related to the frequency of cold
events show smaller values than those for warm temperature
events, displaying no clear spatial pattern with averages of
∼ 0.5 % (i.e., 1.8 d per year) for the number of cold days and
nights (TX10p and TN10p; Fig. 5b). The duration of warm
spells is greatly affected by the choice of the LSM compo-
nent, while its effect is weaker on the simulated duration
of cold events (Fig. 5c). The range of the duration of warm
spells across simulations yields values of more than 10 d over
Mexico and over broad areas of the central and southern US,
with a spatial average of 2.8 d (Fig. 5c). Otherwise, the LSM
effect on the simulated duration of cold spells is weaker,
reaching differences of about 6 d among simulations in cen-
tral Canada with a spatial average of 1.3 d (Fig. 5c). For both
indices, the LSM differences are larger where the duration
indices display larger values (Figs. 3 and 5c).

The simulated climatology of the intensity of extreme pre-
cipitation events is also strongly affected by the configura-
tion of LSM, with the total annual precipitation in wet days
(R95p) reaching LSM differences larger than 100 mm at low
latitudes and over the eastern US with a spatial average of
39 mm (Fig. 6a). The frequency of heavy precipitation events
varies among simulations by about 35 d per year at some lo-
cations in Mexico and the US, with a spatially averaged range
of 3.5 d per year (Fig. 6b). The areas with the largest inter-
model range of the precipitation frequency index across sim-
ulations are located in Mexico, the Rockies and at some grid
cells over the eastern US coast (Fig. 6b). The simulation of
the number of consecutive dry and wet days also depends on
the choice of the LSM component, presenting larger differ-
ences among simulations in the climatology of the consec-
utive dry day index than in the climatology of the consecu-
tive wet day index (Fig. 6c). The inter-model range across
LSM simulations reaches 37 d for the number of consecutive
dry days over central and southwestern North America, with
a spatial average of 4 d per year (Fig. 6c). Meanwhile, the
simulated number of consecutive wet days also shows LSM
differences of more than 20 d at a few grid cells but lower
values over most of the domain, yielding a spatial average of
∼ 1.2 d (Fig. 6c). Large inter-model ranges of precipitation
indices across WRF simulations coincide with areas where
each index reaches the maximum values (Figs. 3 and 6).

Results for the VAC metric present some similarities with
the spatial pattern of uncertainties in the WRF simulation of
extreme temperature and precipitation events, which suggest
a relationship between these results. The areas showing large
uncertainty in the simulation of the intensity indices of cold
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Figure 5. Multi-model ranges across the WRF simulations (i.e., difference between the highest value and the lowest value of the four WRF
simulations at each grid cell) of extreme indices associated with the intensity (a), frequency (b) and duration (c) of cold (left) and warm
(right) extreme temperature events (TXx/TNn, maximum/minimum value of the maximum/minimum daily temperatures; TN10p/TX10p,
percentage of cold nights/days; TN90p/TX90p, percentage of hot nights/days; CSDI/WSDI, cold/warm spell duration index). The range
among simulations is computed using the mean of each index from 1980 to 2012 for each simulation.

extremes coincide with areas where LSM simulations differ
in the representation of DJF atmospheric control VAC cat-
egories (VACa and VACb; Figs. 1 and 5). Particularly, the
uncertainty in the hottest day in winter is larger over areas
with evergreen needleleaf forest (Figs. 5 and S1 in the Sup-
plement). Thus, although all simulations include the same
land use categories, the differences in the representation of
vegetation by each LSM (Figs. S13 in the Supplement) from
the plant functional types used by the CLM4 LSM to the
canopy cover simulated by the Noah LSM are likely related
to the differences in the simulation of land–atmosphere cou-
pling and extreme indices. For the simulation of warm ex-
tremes, large LSM differences in the intensity indices corre-
spond to LSM differences in the JJA VAC categories associ-
ated with the energy-limited areas (Figs. 1 and 5). The areas

with large uncertainty in the hottest day in summer also cor-
respond with areas showing a mix of vegetation from crop-
lands to forests (Fig. S1 in the Supplement). Thus, these re-
sults also suggest that LSM differences in the representation
of vegetation cover play a role in the different representa-
tion of land–atmosphere interactions in energy-limited areas
and consequently different climatologies of the hottest day
among our simulations. The uncertainty in the simulation of
the coldest night in summer is larger in areas over the mixed
tundra category, where LSM configurations differ in the sim-
ulation of snow cover in summer (Figs. S1 and S13 in the
Supplement). Thus, LSM differences in the representation of
snow cover from the single snow layer simulated by the Noah
LSM to the five layers simulated by the CLM4 LSM may also
contribute to the uncertainty in the intensity index of warm
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Figure 6. As in Fig. 5 but for extreme precipitation events (R95p,
total annual precipitation in wet days; R10 mm, number of wet days
in a year; CDD/CWD, consecutive dry/wet days).

events. The uncertainty in the number of hot days and the du-
ration of warm spells is larger over regions under land con-
trol, particularly over open shrublands, suggesting the pos-
sible influence of LSM differences in the simulation of soil
moisture (Figs. 2 and S1 in the Supplement). The range of
the intensity index of precipitation extremes displays a large
JJA component over areas under land control at low latitudes
and under atmospheric control at middle and high latitudes
(Figs. 1, 2 and S14a). For the intensity index of heavy pre-
cipitation events, our simulations show large uncertainties in
areas with mixed vegetation (Figs. 6 and S1 in the Supple-

ment), suggesting the influence of LSM differences in the
representation of vegetation cover on the simulation of la-
tent heat flux, thus leading to changes in the simulation of
atmospheric water content and precipitation. The uncertainty
in the intensity, frequency and duration of heavy precipita-
tion events is high over the western Mexican coast, where the
model is representing the tropical forest and the Noah sim-
ulation showed strong atmospheric control in disagreement
with the rest of our simulations (Figs. 1, 6 and S1 in the Sup-
plement). These results suggest that LSM differences in the
description of vegetation and snow cover (e.g., the number of
snow layers and the description of the canopy) are also con-
tributing to uncertainties in the simulations of precipitation
extremes. The differences in the VAC metric and in the ex-
treme indices are larger between different LSM components
than those between simulations with prescribed and dynamic
vegetation (Figs. 1, 2 and 4). The different representation of
land cover by each LSM configuration may yield different
soil properties, such as albedo, evaporative resistance and
surface roughness. These soil properties play a key role in
the computation of the energy and water fluxes at the land
surface and therefore in the simulation of near-surface con-
ditions (Laguë et al., 2019).

In order to address the LSM influence on the simulation of
extreme events, we compute the ranges among our four WRF
simulations using the 95th percentile of the analysis period
for each extreme index. The uncertainty in the WRF simu-
lations due to the LSM component when using the 95th per-
centile for each extreme index leads to similar conclusions
(Figs. S15 and S16 in the Supplement). The LSM differences
using the 95th percentile of the analysis period are larger for
all extreme temperature and precipitation indices than using
the period mean as expected, but the marked areas are anal-
ogous (Figs. 5, 6, S15 and S16). The agreement in the rep-
resentation of areas with large uncertainty in extreme indices
between results using mean and extreme climatologies sug-
gests the LSM influence on extreme events at climatological
and shorter timescales.

4.4 Comparison between WRF simulations and three
CORDEX evaluation simulations

The climatologies of extreme temperature and precipitation
statistics as simulated by the three RCMs participating in
the NA-CORDEX project (Table 3) show similar spatial pat-
terns to our four WRF simulations (Figs. S10–S12 and S17–
S19). These similarities in the spatial pattern of extreme in-
dices represented by WRF and the CORDEX RCMs fur-
ther support the hypothesis that the spatial features of these
maps are controlled by topography, land cover and the lat-
itudinal gradient, since the CORDEX RCMs employed at-
mospheric models and boundary conditions different to our
WRF simulations. Although the spatial patterns are similar
in both ensembles, the WRF simulations yield colder mini-
mum temperatures in DJF (TNn DJF) and less frequent cold
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nights (TX10p) than the CORDEX simulations (Figs. S10
and S17). The percentage of hot days, however, is higher and
warm spells are longer in the WRF simulations than in the
CORDEX simulations, particularly over southwestern NA
(Figs. S11 and S18). The intensity of heavy precipitation ex-
tremes is generally higher within the WRF ensemble than in
the CORDEX ensemble, while dry periods are longer in the
CORDEX simulations (Figs. S12 and S19).

The uncertainties in the simulation of extreme statistics
within the CORDEX ensemble show some similarities with
the WRF uncertainties which arise from the LSM configura-
tion. For example, the simulated climatology of DJF coldest
night (TNn DJF) shows large uncertainties over the US for
both ensembles, particularly over the eastern US (Figs. 5a
and 7a). The climatologies of DJF hottest day (TXx DJF)
display a large inter-model range within the WRF ensemble
over areas where temperatures approximate to 0 ◦C, expand-
ing southward for the CORDEX ensemble. The CORDEX
inter-model ranges of the frequency indices for cold extremes
do not show a clear spatial pattern in agreement with the
WRF ensemble. There is, however, a region over the central
US with slightly larger ranges among the CORDEX simu-
lations than among the WRF simulations (Figs. 5b and 7b
and S20 in the Supplement). The duration of cold spells
presents large uncertainties in the CORDEX ensemble over
the eastern US–Mexican border and over western Canada,
coinciding with a small region with large inter-model range
among the WRF simulations (Figs. 5c and 7c). For the sim-
ulation of warm temperature extremes, the uncertainties in
the intensity indices among the CORDEX simulations show
large ranges over the eastern US for the JJA hottest day (TXx
JJA), in agreement with the WRF simulations, and at high
latitudes for the coldest night (TNn JJA), including the east-
ern region of Hudson Bay also marked by the WRF ensem-
ble (Figs. 5a and 7a). The frequency indices of warm events
show a large inter-model range across the CORDEX simula-
tions over the central US, also shown in the WRF simulations
for the TX90p index (Figs. 5b and 7b). The uncertainty in
the duration of warm spells among the CORDEX simulations
does not show large spatial differences, although the ranges
are slightly larger at low latitudes coinciding with regions
marked by the WRF ensemble and at very high latitudes
(Figs. 5c and 7c). The simulation of extreme precipitation
statistics is generally more uncertain across the CORDEX
simulations than across the WRF simulations (Figs. 6, 8,
and S21 in the Supplement). Interestingly, all regions with
large uncertainties in the simulation of precipitation extremes
among the WRF simulations are also identified as areas
with large uncertainty across the CORDEX ensemble. There
are, however, additional areas with large uncertainty in the
CORDEX ensemble, particularly for the consecutive dry day
index and the frequency index at middle and high latitudes
(Figs. 6 and 8). The larger spread of the precipitation in-
dices within the CORDEX ensemble in comparison with the
spread in our WRF simulations (Figs. S21 in the Supplement)

was expected due to the use of different atmospheric models
in the CORDEX ensemble. Nonetheless, the agreement be-
tween the WRF and CORDEX simulations in the placement
of areas with large uncertainties suggests that results from
this study may be applicable to other modeling experiments,
particularly for the simulation of warm temperature and pre-
cipitation extremes.

5 Discussion

5.1 Comparison of inter-model ranges across the WRF
and CORDEX ensembles

In order to provide context for the applicability of these re-
sults to other sets of simulations, we compared the range
across our WRF simulations with the inter-model range
across three CORDEX simulations in representing extreme
events (Figs. 5–8). Since CORDEX simulations were per-
formed by three structurally different RCMs (the WRF,
RCA4 and CRCM-UQAM models), we expected a broader
inter-model range of the simulated extreme indices across
CORDEX simulations. Differences in the representation of
extreme events among the CORDEX simulations arise from
several factors, such as different atmospheric parameteriza-
tions, land surface model components, the representation of
land cover, treatment of boundary conditions, including sea
surface temperatures, and the application of nudging tech-
niques. In addition to all these factors, the sensitivity to initial
conditions in models may be another important factor for the
inter-model range of the simulated extreme events. The WRF
sensitivity to initial conditions may also affect the interpreta-
tion of the differences among our four simulations with dif-
ferent LSM configurations. However, previous analyses us-
ing the WRF model (Liu et al., 2019; Gallus and Bresch,
2006) as well as other climate models (Kharin et al., 2007;
de Elía et al., 2008; Sillmann et al., 2013a) have shown that
the spread of extreme events among ensemble members of an
individual model is generally small compared to inter-model
spreads or the differences arising from different physics con-
figurations.

Although the CORDEX simulations were performed using
boundary conditions from the ERA reanalysis product, the
comparison with the WRF simulations is possible because
we compute the ranges across simulations as a measure of the
uncertainty in each simulation ensemble. Thus, we compare
the uncertainty in each set of simulations finding common ar-
eas with large ranges for the representation of cold and warm
temperature extremes and precipitation extremes, despite the
fact that they used different products as boundary conditions.
The agreement in the placement of areas with large uncer-
tainties in the representation of extreme events within the
CORDEX ensemble and those within our WRF simulations
suggests that the uncertainties in these areas may arise from
similar causes. Our WRF simulations only differ in the con-
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Figure 7. Inter-model range across three CORDEX simulations (i.e., difference between the highest value and the lowest value of the three
CORDEX simulations at each grid cell) of extreme indices associated with intensity (a), frequency (b) and duration (c) of cold and warm
extreme temperature events (Table 2). The range across simulations is computed using the mean of each index from 1980 to 2012 for each
simulation.

figuration of the LSM component. Therefore, the differences
between LSM components can also be an important source
of uncertainty in the simulation of extreme events within the
CORDEX simulations, through a different representation of
land–atmosphere interactions.

One of the simulations included in the CORDEX ensemble
was performed by the WRF model using the Noah LSM com-
ponent. The comparison of the extreme indices between our
WRF-Noah simulation and the one included in the CORDEX
ensemble shows similar spatial patterns and regional differ-
ences in the value of each extreme index (second column in
Figs. S11–S13 and third column in Figs. S17–S19 in the Sup-
plement). However, this comparison is not very different if
we use another CORDEX simulation performed by a differ-
ent RCM. This suggests that the spatial pattern of the extreme
indices is driven by factors common in all simulations, such

as land cover, topography and the latitudinal gradient. The
regional differences in the value of extreme indices between
our WRF-Noah simulation and the WRF-Noah CORDEX
simulation are likely caused by the use of nudging techniques
to match the ERA-Interim product in the CORDEX simula-
tion.

Although there are more sources of uncertainty in the
CORDEX simulations than across the WRF simulations, the
comparison between the uncertainty within each set of sim-
ulations (i.e., the difference between the range among the
WRF simulations and the range among the CORDEX sim-
ulations) displays larger ranges across the WRF simulations
than across the CORDEX ensemble over certain areas and
for certain extreme indices (Figs. S20 and S21 in the Sup-
plement). This suggests the possible existence of bias com-
pensation inside the CORDEX simulations. Moreover, each
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Figure 8. As in Fig. 7 but for extreme precipitation events.

RCM may have a different sensitivity to the employed LSM
component as well as to other components and parameteri-
zations. Additional sensitivity studies using the WRF model
or another climate model with different settings and param-
eterizations may help to discern other important sources of
uncertainties in the simulation of extreme events, such as hor-
izontal resolution.

5.2 Climatology of extreme events as represented by
the WRF simulations and by the CMIP5
simulations

Sillmann et al. (2013a) presented an evaluation of the CMIP5
models in simulating some of the extreme indices defined
by ETCCDI; this information was used in the Intergovern-

mental Panel on Climate Change (IPCC) chapter on models’
evaluation (Flato et al., 2013). The analysis period employed
by Sillmann et al. (2013a) (1981–2000) differs from the one
used in this analysis, but a rough comparison can be made
between our results and theirs for some extreme indices. For
example, the spatial patterns of the DJF coldest night and JJA
hottest day are similar for the WRF and CMIP5 ensemble
means (Fig. 3 and Fig. 2 in Sillmann et al., 2013a). The sim-
ilarities in the spatial pattern of extreme indices between our
WRF simulations, the CMIP5 and the CORDEX ensembles
suggest that the topography, land cover and latitudinal gradi-
ent are driving these spatial features. Sillmann et al. (2013a)
also provides regional averages over six NA regions, adapted
from Giorgi and Francisco (2000). These spatial averages al-
low identification of some regional differences between the
WRF and the CMIP5 ensembles, for example, over the east-
ern US coast (ENA region) where the WRF simulations yield
warmer JJA maximum temperatures than the CMIP5 ensem-
ble (Fig. 4 and Fig. 3 in Sillmann et al., 2013a). The spatial
patterns of the WRF and CMIP5 ensembles for CSDI and
WSDI indices are also similar, although the WRF ensemble
reaches longer cold and warm events (Fig. 3 and Figs. S6–S7
in Sillmann et al., 2013a). The representation of the intensity
index for heavy precipitation events (R95p) also shows sim-
ilar spatial patterns between both ensemble means, although
the WRF ensemble is generally more intense over most re-
gions (Figs. 3 and 4, and Figs. 6 and 7 in Sillmann et al.,
2013a). Similar results are found for the simulation of con-
secutive dry days, showing similar spatial patterns with some
regional differences especially at low latitudes (CAM region,
Figs. 3 and 4, and Figs. 6 and 7 in Sillmann et al., 2013a).
The variability across the CMIP5 ensemble for the simula-
tion of precipitation indices seems to be particularly large at
low latitudes (CAM region) similar to WRF uncertainty in
the representation of precipitation extremes associated with
the LSM component (Fig. 6, and Fig. 7 in Sillmann et al.,
2013a). Although this is a rough comparison between results
presented in this article and in Sillmann et al. (2013a), this
comparison suggests that our conclusions could be also ap-
plicable to the CMIP5 ensemble as it was the case for the
CORDEX ensemble.

5.3 Implications of these results

Increases in heat-related events have been directly and ro-
bustly associated with increases in mortality, for example, in
Europe during the heat wave of 2003 (Fischer et al., 2007)
or in India during the heat wave of 2015 (Pattanaik et al.,
2017). Heavy precipitation events often lead to floods, which
also are directly associated with economic loss and death
toll (Hu et al., 2018). All climate change projections point
to a future increase in extreme temperature and precipitation
events (Sillmann et al., 2013b); thus, developing mitigation
strategies will become necessary to preserve human health.
Climate model simulations are our best source of informa-
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tion to mitigate climate change impacts. However, the re-
sults presented here indicate that the simulation of several ex-
treme indices varies largely depending on the employed LSM
component, because of the different representation of land–
atmosphere interactions. This means that a climate model
may simulate the climatology of heat extremes 5 ◦C warmer
and 6 d longer depending on the employed LSM compo-
nent and similarly for cold extremes and heavy precipitation
events. Therefore, studies based on multi-model ensembles
and reanalyses should include a variety of LSM configura-
tions to account for the uncertainty arising from this model
component or to test the performance of the selected LSM
component before performing the whole simulation. The ac-
curacy of climate models and the management of uncertain-
ties in simulating extreme events will likely affect climate
change policy, therefore having repercussions for society and
environment.

The indices employed here to study the climatology of
extreme temperature events were based on minimum and
maximum temperature outputs. However, many studies have
proven that the study of compound events using indices
based on multiple variables, such as temperature and mois-
ture outputs, are more representative of thermal stress in hu-
mans and ecosystems than standard indices (Zscheischler
et al., 2018). The large LSM influence on the climatology of
extreme temperature and precipitation events suggests that
the uncertainty arising from the LSM component could be
higher on extreme indices based on multiple variables. How-
ever, the analysis of the LSM influence on compound events
is beyond the scope of this work and constitutes an interest-
ing line for future research.

6 Conclusions

WRF simulations over North America coupled to different
LSM components showed similar spatial patterns of land–
atmosphere interactions as measured by the VAC index. The
use of this metric allows the classification of our results into
energy-limited areas, where atmospheric conditions control
land–atmosphere interactions (VACa and VACb), and water-
limited areas, where soil moisture deficits control the energy
and water exchanges between the land surface and the lower
atmosphere (VACc and VACd categories). Our results indi-
cate atmospheric control over land–atmosphere interactions
at middle and high latitudes and land surface control over
lower latitudes, particularly in JJA. However, the simulation
of land–atmosphere coupling differs at regional scales de-
pending on the LSM choice in two directions: by altering
land control on surface processes (VACc and VACd cate-
gories) and by altering atmospheric conditions and its influ-
ence on land–atmosphere interactions (VACa and VACb cat-
egories). Thus, the Noah LSM is associated with the weakest
representation of land control on surface conditions, while
the CLM4 LSM simulates one of the strongest land effects

on surface conditions. The use of different LSM components
leads to large ranges of represented extreme temperature and
precipitation events, affecting their simulation in intensity,
frequency and duration. The CLM4 LSM yields the weakest
cold events, the warmest hot days and the heaviest precip-
itation events, while the Noah simulation yields the weak-
est warm temperature events and the weakest heavy precip-
itation events. Meanwhile, the Noah-MP LSM produces the
driest simulation, yielding slightly wetter conditions when
using dynamic vegetation at middle and low latitudes. Al-
though the LSM differences in our results are more marked
than differences between the simulations with prescribed and
dynamic vegetation, the use of dynamic vegetation yields
stronger land control at low and middle latitudes in summer
and more intense, frequent and longer heavy precipitation
events and reduces the duration of droughts over the same
regions. Thus, our results suggest a relationship between the
degree of land control on surface conditions reached by each
LSM configuration and the intensity of extreme events, in
agreement with the case study during the 2010 Russian heat
wave (Zscheischler et al., 2015).

Previous studies using GCM simulations suggested a de-
pendence of the simulated land–atmosphere interactions on
the employed LSM component with possible consequences
for the simulation of extreme events (García-García et al.,
2019). Results from four WRF simulations differing only in
the LSM configuration support that hypothesis, identifying
LSM differences in the description of land cover as an im-
portant factor for the simulation of near-surface conditions.
Additionally, areas with large uncertainties in the simulation
of temperature and precipitation extremes across the WRF
simulations due to different LSM components appear in the
NA-CORDEX model ensemble, which indicates the possible
LSM influence on the simulation of extreme events within
other model ensembles. This work reinforces the important
role of the LSM component in climate simulations, support-
ing the urgency of ongoing research focused on improving
this model component and their implementation in regional
and global climate models as well as in reanalysis products.
The strong LSM dependence of climate model simulation of
extremes is also of special importance for international re-
ports focused on land, such as the IPCC Special Report on
climate change, desertification, land degradation, sustainable
land management, food security and greenhouse gas fluxes in
terrestrial ecosystems (IPCC, 2019). Future sensitivity anal-
yses to the LSM component using different regional and
global climate models would be useful to understand mod-
els’ differences in simulating temperature and precipitation
extremes, helping to narrow the inter-model range across
reanalyses and climate model projections in simulating ex-
treme events.
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(last access: August 2017). Extreme indices were calculated using
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org/web/packages/climdex.pcic/index.html, last access: Novem-
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climate extreme indices, the WRF v3.9 code and the R climdex
package are available at https://doi.org/10.5281/zenodo.4025965
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obtained from https://www.ncei.noaa.gov/thredds/catalog/
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