Articles | Volume 13, issue 10
https://doi.org/10.5194/gmd-13-5079-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-5079-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Making of the New European Wind Atlas – Part 2: Production and evaluation
Martin Dörenkämper
CORRESPONDING AUTHOR
Fraunhofer Institute for Wind Energy Systems, Oldenburg, Germany
Wind Energy Department, Technical University of Denmark, Roskilde, Denmark
Björn Witha
ForWind, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
energy & meteo systems GmbH, Oldenburg, Germany
Andrea N. Hahmann
Wind Energy Department, Technical University of Denmark, Roskilde, Denmark
Neil N. Davis
Wind Energy Department, Technical University of Denmark, Roskilde, Denmark
Jordi Barcons
Barcelona Supercomputer Center, Barcelona, Spain
Yasemin Ezber
Eurasia Institute of Earth Sciences, Istanbul Technical University, Istanbul, Turkey
Elena García-Bustamante
Wind Energy Unit, CIEMAT, Madrid, Spain
J. Fidel González-Rouco
Dept. of Earth Physics and Astrophysics, University Complutense of Madrid, Madrid, Spain
Jorge Navarro
Wind Energy Unit, CIEMAT, Madrid, Spain
Mariano Sastre-Marugán
Dept. of Earth Physics and Astrophysics, University Complutense of Madrid, Madrid, Spain
Tija Sīle
Institute of Numerical Modelling, Department of Physics, University of Latvia, Riga, Latvia
Wilke Trei
ForWind, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
Mark Žagar
Vestas Wind Systems A/S, Aarhus, Denmark
Jake Badger
Wind Energy Department, Technical University of Denmark, Roskilde, Denmark
Julia Gottschall
Fraunhofer Institute for Wind Energy Systems, Oldenburg, Germany
Javier Sanz Rodrigo
Wind Energy Department, National Renewable Energy Centre (CENER), Sarriguren, Spain
Jakob Mann
Wind Energy Department, Technical University of Denmark, Roskilde, Denmark
Related authors
Bjarke Tobias Eisensøe Olsen, Andrea Noemi Hahmann, Nicolás González Alonso-de-Linaje, Mark Žagar, and Martin Dörenkämper
EGUsphere, https://doi.org/10.5194/egusphere-2024-3123, https://doi.org/10.5194/egusphere-2024-3123, 2024
Short summary
Short summary
Low-level jets (LLJs) are strong winds in the lower atmosphere, important for wind energy as turbines get taller. This study compares a weather model (WRF) with real data across five North and Baltic Sea sites. Adjusting the model improved accuracy over the widely-used ERA5. In key offshore regions, LLJs occur 10–15 % of the time and significantly boost wind power, especially in spring and summer, contributing up to 30 % of total capacity in some areas.
Lukas Vollmer, Balthazar Arnoldus Maria Sengers, and Martin Dörenkämper
Wind Energ. Sci., 9, 1689–1693, https://doi.org/10.5194/wes-9-1689-2024, https://doi.org/10.5194/wes-9-1689-2024, 2024
Short summary
Short summary
This study proposes a modification to a well-established wind farm parameterization used in mesoscale models. The wind speed at the location of the turbine, which is used to calculate power and thrust, is corrected to approximate the free wind speed. Results show that the modified parameterization produces more accurate estimates of the turbine’s power curve.
Markus Sommerfeld, Martin Dörenkämper, Jochem De Schutter, and Curran Crawford
Wind Energ. Sci., 8, 1153–1178, https://doi.org/10.5194/wes-8-1153-2023, https://doi.org/10.5194/wes-8-1153-2023, 2023
Short summary
Short summary
This study investigates the performance of pumping-mode ground-generation airborne wind energy systems by determining power-optimal flight trajectories based on realistic, k-means clustered, vertical wind velocity profiles. These profiles, derived from mesoscale weather simulations at an offshore and an onshore site in Europe, are incorporated into an optimal control model that maximizes average cycle power by optimizing the kite's trajectory.
Anna von Brandis, Gabriele Centurelli, Jonas Schmidt, Lukas Vollmer, Bughsin' Djath, and Martin Dörenkämper
Wind Energ. Sci., 8, 589–606, https://doi.org/10.5194/wes-8-589-2023, https://doi.org/10.5194/wes-8-589-2023, 2023
Short summary
Short summary
We propose that considering large-scale wind direction changes in the computation of wind farm cluster wakes is of high relevance. Consequently, we present a new solution for engineering modeling tools that accounts for the effect of such changes in the propagation of wakes. The new model is evaluated with satellite data in the German Bight area. It has the potential to reduce uncertainty in applications such as site assessment and short-term power forecasting.
Markus Sommerfeld, Martin Dörenkämper, Jochem De Schutter, and Curran Crawford
Wind Energ. Sci., 7, 1847–1868, https://doi.org/10.5194/wes-7-1847-2022, https://doi.org/10.5194/wes-7-1847-2022, 2022
Short summary
Short summary
This research explores the ground-generation airborne wind energy system (AWES) design space and investigates scaling effects by varying design parameters such as aircraft wing size, aerodynamic efficiency and mass. Therefore, representative simulated onshore and offshore wind data are implemented into an AWES trajectory optimization model. We estimate optimal annual energy production and capacity factors as well as a minimal operational lift-to-weight ratio.
Beatriz Cañadillas, Maximilian Beckenbauer, Juan J. Trujillo, Martin Dörenkämper, Richard Foreman, Thomas Neumann, and Astrid Lampert
Wind Energ. Sci., 7, 1241–1262, https://doi.org/10.5194/wes-7-1241-2022, https://doi.org/10.5194/wes-7-1241-2022, 2022
Short summary
Short summary
Scanning lidar measurements combined with meteorological sensors and mesoscale simulations reveal the strong directional and stability dependence of the wake strength in the direct vicinity of wind farm clusters.
Jörge Schneemann, Frauke Theuer, Andreas Rott, Martin Dörenkämper, and Martin Kühn
Wind Energ. Sci., 6, 521–538, https://doi.org/10.5194/wes-6-521-2021, https://doi.org/10.5194/wes-6-521-2021, 2021
Short summary
Short summary
A wind farm can reduce the wind speed in front of it just by its presence and thus also slightly impact the available power. In our study we investigate this so-called global-blockage effect, measuring the inflow of a large offshore wind farm with a laser-based remote sensing method up to several kilometres in front of the farm. Our results show global blockage under a certain atmospheric condition and operational state of the wind farm; during other conditions it is not visible in our data.
Julia Gottschall and Martin Dörenkämper
Wind Energ. Sci., 6, 505–520, https://doi.org/10.5194/wes-6-505-2021, https://doi.org/10.5194/wes-6-505-2021, 2021
Andrea N. Hahmann, Tija Sīle, Björn Witha, Neil N. Davis, Martin Dörenkämper, Yasemin Ezber, Elena García-Bustamante, J. Fidel González-Rouco, Jorge Navarro, Bjarke T. Olsen, and Stefan Söderberg
Geosci. Model Dev., 13, 5053–5078, https://doi.org/10.5194/gmd-13-5053-2020, https://doi.org/10.5194/gmd-13-5053-2020, 2020
Short summary
Short summary
Wind energy resource assessment routinely uses numerical weather prediction model output. We describe the evaluation procedures used for picking the suitable blend of model setup and parameterizations for simulating European wind climatology with the WRF model. We assess the simulated winds against tall mast measurements using a suite of metrics, including the Earth Mover's Distance, which diagnoses the performance of each ensemble member using the full wind speed and direction distribution.
Jörge Schneemann, Andreas Rott, Martin Dörenkämper, Gerald Steinfeld, and Martin Kühn
Wind Energ. Sci., 5, 29–49, https://doi.org/10.5194/wes-5-29-2020, https://doi.org/10.5194/wes-5-29-2020, 2020
Short summary
Short summary
Offshore wind farm clusters cause reduced wind speeds in downstream regions which can extend over more than 50 km.
We analysed the impact of these so-called cluster wakes on a distant wind farm using remote-sensing wind measurements and power production data.
Cluster wakes caused power losses up to 55 km downstream in certain atmospheric states.
A better understanding of cluster wake effects reduces uncertainties in offshore wind resource assessment and improves offshore areal planning.
Markus Sommerfeld, Martin Dörenkämper, Gerald Steinfeld, and Curran Crawford
Wind Energ. Sci., 4, 563–580, https://doi.org/10.5194/wes-4-563-2019, https://doi.org/10.5194/wes-4-563-2019, 2019
Short summary
Short summary
Airborne wind energy systems aim to operate at altitudes above conventional wind turbines where reliable high-resolution wind data are scarce. Wind measurements and computational simulations both have advantages and disadvantages when assessing the wind resource at such heights. This article investigates whether assimilating measurements into the model generates a more accurate wind data set up to 1100 m. These wind data sets are used to estimate optimal AWES operating altitudes and power.
Mohammadreza Manami, Jakob Mann, Mikael Sjöholm, Guillaume Léa, and Guillaume Gorju
EGUsphere, https://doi.org/10.5194/egusphere-2025-2226, https://doi.org/10.5194/egusphere-2025-2226, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This research investigates a novel method for directly estimating wind velocity variances from averaged Doppler spectra in the frequency domain. Compared to the conventional time-domain approach, the proposed method offers a substantial improvement. Despite some limitations, this study marks a significant advancement in turbulence estimation using pulsed Doppler lidars, which presents promising potential for wind turbine load assessments.
Warren Watson, Gerrit Wolken-Möhlmann, and Julia Gottschall
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-45, https://doi.org/10.5194/wes-2025-45, 2025
Preprint under review for WES
Short summary
Short summary
In this study, we compare turbulence intensity measurements from two buoy-mounted wind lidars with data from a fixed lidar and a meteorological mast. Turbulence intensity is essential for understanding wind conditions but is often overestimated by floating systems due to wave motion. We applied a physics-based compensation to reduce these effects. Our findings show that motion compensation significantly improves accuracy, making floating lidar systems suitable for offshore wind site assessments.
Isadora L. Coimbra, Jakob Mann, José M. L. M. Palma, and Vasco T. P. Batista
Atmos. Meas. Tech., 18, 287–303, https://doi.org/10.5194/amt-18-287-2025, https://doi.org/10.5194/amt-18-287-2025, 2025
Short summary
Short summary
Dual-lidar measurements are explored here as a cost-effective alternative for measuring the wind at great heights. From measurements at a mountainous site, we showed that this methodology can accurately capture mean wind speeds and turbulence under different flow conditions, and we recommended optimal lidar placement and sampling rates. This methodology allows the construction of vertical wind profiles up to 430 m, surpassing traditional meteorological mast heights and single-lidar capabilities.
Farkhondeh (Hanie) Rouholahnejad and Julia Gottschall
Wind Energ. Sci., 10, 143–159, https://doi.org/10.5194/wes-10-143-2025, https://doi.org/10.5194/wes-10-143-2025, 2025
Short summary
Short summary
In wind energy, precise wind speed prediction at hub height is vital. Our study in the Dutch North Sea reveals that the on-site-trained random forest model outperforms the global reanalysis data, ERA5, in accuracy and precision. Trained within a 200 km range, the model effectively extends the wind speed vertically but experiences bias. It also outperforms ERA5 corrected with measurements in capturing wind speed variations and fine wind patterns, highlighting its potential for site assessment.
Martin Georg Jonietz Alvarez, Warren Watson, and Julia Gottschall
Wind Energ. Sci., 9, 2217–2233, https://doi.org/10.5194/wes-9-2217-2024, https://doi.org/10.5194/wes-9-2217-2024, 2024
Short summary
Short summary
Offshore wind measurements are often affected by gaps. We investigated how these gaps affect wind resource assessments and whether filling them reduces their effect. We find that the effect of gaps on the estimated long-term wind resource is lower than expected and that data gap filling does not significantly change the outcome. These results indicate a need to reduce current wind data availability requirements for offshore measurement campaigns.
Bjarke Tobias Eisensøe Olsen, Andrea Noemi Hahmann, Nicolás González Alonso-de-Linaje, Mark Žagar, and Martin Dörenkämper
EGUsphere, https://doi.org/10.5194/egusphere-2024-3123, https://doi.org/10.5194/egusphere-2024-3123, 2024
Short summary
Short summary
Low-level jets (LLJs) are strong winds in the lower atmosphere, important for wind energy as turbines get taller. This study compares a weather model (WRF) with real data across five North and Baltic Sea sites. Adjusting the model improved accuracy over the widely-used ERA5. In key offshore regions, LLJs occur 10–15 % of the time and significantly boost wind power, especially in spring and summer, contributing up to 30 % of total capacity in some areas.
Lukas Vollmer, Balthazar Arnoldus Maria Sengers, and Martin Dörenkämper
Wind Energ. Sci., 9, 1689–1693, https://doi.org/10.5194/wes-9-1689-2024, https://doi.org/10.5194/wes-9-1689-2024, 2024
Short summary
Short summary
This study proposes a modification to a well-established wind farm parameterization used in mesoscale models. The wind speed at the location of the turbine, which is used to calculate power and thrust, is corrected to approximate the free wind speed. Results show that the modified parameterization produces more accurate estimates of the turbine’s power curve.
Marta Bertelè, Paul J. Meyer, Carlo R. Sucameli, Johannes Fricke, Anna Wegner, Julia Gottschall, and Carlo L. Bottasso
Wind Energ. Sci., 9, 1419–1429, https://doi.org/10.5194/wes-9-1419-2024, https://doi.org/10.5194/wes-9-1419-2024, 2024
Short summary
Short summary
A neural observer is used to estimate shear and veer from the operational data of a large wind turbine equipped with blade load sensors. Comparison with independent measurements from a nearby met mast and profiling lidar demonstrate the ability of the
rotor as a sensorconcept to provide high-quality estimates of these inflow quantities based simply on already available standard operational data.
Abdul Haseeb Syed and Jakob Mann
Wind Energ. Sci., 9, 1381–1391, https://doi.org/10.5194/wes-9-1381-2024, https://doi.org/10.5194/wes-9-1381-2024, 2024
Short summary
Short summary
Wind flow consists of swirling patterns of air called eddies, some as big as many kilometers across, while others are as small as just a few meters. This paper introduces a method to simulate these large swirling patterns on a flat grid. Using these simulations we can better figure out how these large eddies affect big wind turbines in terms of loads and forces.
Liqin Jin, Mauro Ghirardelli, Jakob Mann, Mikael Sjöholm, Stephan Thomas Kral, and Joachim Reuder
Atmos. Meas. Tech., 17, 2721–2737, https://doi.org/10.5194/amt-17-2721-2024, https://doi.org/10.5194/amt-17-2721-2024, 2024
Short summary
Short summary
Three-dimensional wind fields can be accurately measured by sonic anemometers. However, the traditional mast-mounted sonic anemometers are not flexible in various applications, which can be potentially overcome by drones. Therefore, we conducted a proof-of-concept study by applying three continuous-wave Doppler lidars to characterize the complex flow around a drone to validate the results obtained by CFD simulations. Both methods show good agreement, with a velocity difference of 0.1 m s-1.
Félix García-Pereira, Jesús Fidel González-Rouco, Camilo Melo-Aguilar, Norman Julius Steinert, Elena García-Bustamante, Philip de Vrese, Johann Jungclaus, Stephan Lorenz, Stefan Hagemann, Francisco José Cuesta-Valero, Almudena García-García, and Hugo Beltrami
Earth Syst. Dynam., 15, 547–564, https://doi.org/10.5194/esd-15-547-2024, https://doi.org/10.5194/esd-15-547-2024, 2024
Short summary
Short summary
According to climate model estimates, the land stored 2 % of the system's heat excess in the last decades, while observational studies show it was around 6 %. This difference stems from these models using land components that are too shallow to constrain land heat uptake. Deepening the land component does not affect the surface temperature. This result can be used to derive land heat uptake estimates from different sources, which are much closer to previous observational reports.
Oscar García-Santiago, Andrea N. Hahmann, Jake Badger, and Alfredo Peña
Wind Energ. Sci., 9, 963–979, https://doi.org/10.5194/wes-9-963-2024, https://doi.org/10.5194/wes-9-963-2024, 2024
Short summary
Short summary
This study compares the results of two wind farm parameterizations (WFPs) in the Weather Research and Forecasting model, simulating a two-turbine array under three atmospheric stabilities with large-eddy simulations. We show that the WFPs accurately depict wind speeds either near turbines or in the far-wake areas, but not both. The parameterizations’ performance varies by variable (wind speed or turbulent kinetic energy) and atmospheric stability, with reduced accuracy in stable conditions.
Hugo Rubio, Daniel Hatfield, Charlotte Bay Hasager, Martin Kühn, and Julia Gottschall
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-11, https://doi.org/10.5194/amt-2024-11, 2024
Preprint under review for AMT
Short summary
Short summary
Unlocking offshore wind farms’ potential demands a precise understanding of available wind resources. Yet, limited in situ data in marine environments call for innovative solutions. This study delves into the world of satellite remote sensing and numerical models, exploring their capabilities and challenges in characterizing offshore wind dynamics. This investigation evaluates these tools against measurements from a floating ship-based lidar, collected through a novel campaign in the Baltic Sea.
Félix García-Pereira, Jesús Fidel González-Rouco, Thomas Schmid, Camilo Melo-Aguilar, Cristina Vegas-Cañas, Norman Julius Steinert, Pedro José Roldán-Gómez, Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, and Philipp de Vrese
SOIL, 10, 1–21, https://doi.org/10.5194/soil-10-1-2024, https://doi.org/10.5194/soil-10-1-2024, 2024
Short summary
Short summary
This work addresses air–ground temperature coupling and propagation into the subsurface in a mountainous area in central Spain using surface and subsurface data from six meteorological stations. Heat transfer of temperature changes at the ground surface occurs mainly by conduction controlled by thermal diffusivity of the subsurface, which varies with depth and time. A new methodology shows that near-surface diffusivity and soil moisture content changes with time are closely related.
Liqin Jin, Jakob Mann, Nikolas Angelou, and Mikael Sjöholm
Atmos. Meas. Tech., 16, 6007–6023, https://doi.org/10.5194/amt-16-6007-2023, https://doi.org/10.5194/amt-16-6007-2023, 2023
Short summary
Short summary
By sampling the spectra from continuous-wave Doppler lidars very fast, the rain-induced Doppler signal can be suppressed and the bias in the wind velocity estimation can be reduced. The method normalizes 3 kHz spectra by their peak values before averaging them down to 50 Hz. Over 3 h, we observe a significant reduction in the bias of the lidar data relative to the reference sonic data when the largest lidar focus distance is used. The more it rains, the more the bias is reduced.
Pedro José Roldán-Gómez, Jesús Fidel González-Rouco, Jason E. Smerdon, and Félix García-Pereira
Clim. Past, 19, 2361–2387, https://doi.org/10.5194/cp-19-2361-2023, https://doi.org/10.5194/cp-19-2361-2023, 2023
Short summary
Short summary
Analyses of reconstructed data suggest that the precipitation and availability of water have evolved in a similar way during the Last Millennium in different regions of the world, including areas of North America, Europe, the Middle East, southern Asia, northern South America, East Africa and the Indo-Pacific. To confirm this link between distant regions and to understand the reasons behind it, the information from different reconstructed and simulated products has been compiled and analyzed.
Nikolas Angelou, Jakob Mann, and Camille Dubreuil-Boisclair
Wind Energ. Sci., 8, 1511–1531, https://doi.org/10.5194/wes-8-1511-2023, https://doi.org/10.5194/wes-8-1511-2023, 2023
Short summary
Short summary
This study presents the first experimental investigation using two nacelle-mounted wind lidars that reveal the upwind and downwind conditions relative to a full-scale floating wind turbine. We find that in the case of floating wind turbines with small pitch and roll oscillating motions (< 1°), the ambient turbulence is the main driving factor that determines the propagation of the wake characteristics.
Markus Sommerfeld, Martin Dörenkämper, Jochem De Schutter, and Curran Crawford
Wind Energ. Sci., 8, 1153–1178, https://doi.org/10.5194/wes-8-1153-2023, https://doi.org/10.5194/wes-8-1153-2023, 2023
Short summary
Short summary
This study investigates the performance of pumping-mode ground-generation airborne wind energy systems by determining power-optimal flight trajectories based on realistic, k-means clustered, vertical wind velocity profiles. These profiles, derived from mesoscale weather simulations at an offshore and an onshore site in Europe, are incorporated into an optimal control model that maximizes average cycle power by optimizing the kite's trajectory.
Moritz Gräfe, Vasilis Pettas, Julia Gottschall, and Po Wen Cheng
Wind Energ. Sci., 8, 925–946, https://doi.org/10.5194/wes-8-925-2023, https://doi.org/10.5194/wes-8-925-2023, 2023
Short summary
Short summary
Inflow wind field measurements from nacelle-based lidar systems offer great potential for different applications including turbine control, load validation and power performance measurements. On floating wind turbines nacelle-based lidar measurements are affected by the dynamic behavior of the floating foundations. Therefore, the effects on lidar wind speed measurements induced by floater dynamics must be well understood. A new model for quantification of these effects is introduced in our work.
Philipp de Vrese, Goran Georgievski, Jesus Fidel Gonzalez Rouco, Dirk Notz, Tobias Stacke, Norman Julius Steinert, Stiig Wilkenskjeld, and Victor Brovkin
The Cryosphere, 17, 2095–2118, https://doi.org/10.5194/tc-17-2095-2023, https://doi.org/10.5194/tc-17-2095-2023, 2023
Short summary
Short summary
The current generation of Earth system models exhibits large inter-model differences in the simulated climate of the Arctic and subarctic zone. We used an adapted version of the Max Planck Institute (MPI) Earth System Model to show that differences in the representation of the soil hydrology in permafrost-affected regions could help explain a large part of this inter-model spread and have pronounced impacts on important elements of Earth systems as far to the south as the tropics.
Wei Fu, Alessandro Sebastiani, Alfredo Peña, and Jakob Mann
Wind Energ. Sci., 8, 677–690, https://doi.org/10.5194/wes-8-677-2023, https://doi.org/10.5194/wes-8-677-2023, 2023
Short summary
Short summary
Nacelle lidars with different beam scanning locations and two types of systems are considered for inflow turbulence estimations using both numerical simulations and field measurements. The turbulence estimates from a sonic anemometer at the hub height of a Vestas V52 turbine are used as references. The turbulence parameters are retrieved using the radial variances and a least-squares procedure. The findings from numerical simulations have been verified by the analysis of the field measurements.
Anna von Brandis, Gabriele Centurelli, Jonas Schmidt, Lukas Vollmer, Bughsin' Djath, and Martin Dörenkämper
Wind Energ. Sci., 8, 589–606, https://doi.org/10.5194/wes-8-589-2023, https://doi.org/10.5194/wes-8-589-2023, 2023
Short summary
Short summary
We propose that considering large-scale wind direction changes in the computation of wind farm cluster wakes is of high relevance. Consequently, we present a new solution for engineering modeling tools that accounts for the effect of such changes in the propagation of wakes. The new model is evaluated with satellite data in the German Bight area. It has the potential to reduce uncertainty in applications such as site assessment and short-term power forecasting.
Xiaoli Guo Larsén, Marc Imberger, Ásta Hannesdóttir, and Andrea N. Hahmann
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-102, https://doi.org/10.5194/wes-2022-102, 2023
Revised manuscript not accepted
Short summary
Short summary
We study how climate change will impact extreme winds and choice of turbine class. We use data from 18 CMIP6 members from a historic and a future period to access the change in the extreme winds. The analysis shows an overall increase in the extreme winds in the North Sea and the southern Baltic Sea, but a decrease over the Scandinavian Peninsula and most of the Baltic Sea. The analysis is inconclusive to whether higher or lower classes of turbines will be installed in the future.
Abdul Haseeb Syed, Jakob Mann, Andreas Platis, and Jens Bange
Wind Energ. Sci., 8, 125–139, https://doi.org/10.5194/wes-8-125-2023, https://doi.org/10.5194/wes-8-125-2023, 2023
Short summary
Short summary
Wind turbines extract energy from the incoming wind flow, which needs to be recovered. In very large offshore wind farms, the energy is recovered mostly from above the wind farm in a process called entrainment. In this study, we analyzed the effect of atmospheric stability on the entrainment process in large offshore wind farms using measurements recorded by a research aircraft. This is the first time that in situ measurements are used to study the energy recovery process above wind farms.
Hugo Rubio, Martin Kühn, and Julia Gottschall
Wind Energ. Sci., 7, 2433–2455, https://doi.org/10.5194/wes-7-2433-2022, https://doi.org/10.5194/wes-7-2433-2022, 2022
Short summary
Short summary
A proper development of offshore wind farms requires the accurate description of atmospheric phenomena like low-level jets. In this study, we evaluate the capabilities and limitations of numerical models to characterize the main jets' properties in the southern Baltic Sea. For this, a comparison against ship-mounted lidar measurements from the NEWA Ferry Lidar Experiment has been implemented, allowing the investigation of the model's capabilities under different temporal and spatial constraints.
Andrea N. Hahmann, Oscar García-Santiago, and Alfredo Peña
Wind Energ. Sci., 7, 2373–2391, https://doi.org/10.5194/wes-7-2373-2022, https://doi.org/10.5194/wes-7-2373-2022, 2022
Short summary
Short summary
We explore the changes in wind energy resources in northern Europe using output from simulations from the Climate Model Intercomparison Project (CMIP6) under the high-emission scenario. Our results show that climate change does not particularly alter annual energy production in the North Sea but could affect the seasonal distribution of these resources, significantly reducing energy production during the summer from 2031 to 2050.
Graziela Luzia, Andrea N. Hahmann, and Matti Juhani Koivisto
Wind Energ. Sci., 7, 2255–2270, https://doi.org/10.5194/wes-7-2255-2022, https://doi.org/10.5194/wes-7-2255-2022, 2022
Short summary
Short summary
This paper presents a comprehensive validation of time series produced by a mesoscale numerical weather model, a global reanalysis, and a wind atlas against observations by using a set of metrics that we present as requirements for wind energy integration studies. We perform a sensitivity analysis on the numerical weather model in multiple configurations, such as related to model grid spacing and nesting arrangements, to define the model setup that outperforms in various time series aspects.
Francisco José Cuesta-Valero, Hugo Beltrami, Stephan Gruber, Almudena García-García, and J. Fidel González-Rouco
Geosci. Model Dev., 15, 7913–7932, https://doi.org/10.5194/gmd-15-7913-2022, https://doi.org/10.5194/gmd-15-7913-2022, 2022
Short summary
Short summary
Inversions of subsurface temperature profiles provide past long-term estimates of ground surface temperature histories and ground heat flux histories at timescales of decades to millennia. Theses estimates complement high-frequency proxy temperature reconstructions and are the basis for studying continental heat storage. We develop and release a new bootstrap method to derive meaningful confidence intervals for the average surface temperature and heat flux histories from any number of profiles.
Felix Kelberlau and Jakob Mann
Atmos. Meas. Tech., 15, 5323–5341, https://doi.org/10.5194/amt-15-5323-2022, https://doi.org/10.5194/amt-15-5323-2022, 2022
Short summary
Short summary
Floating lidar systems are used for measuring wind speeds offshore, and their motion influences the measurements. This study describes the motion-induced bias on mean wind speed estimates by simulating the lidar sampling pattern of a moving lidar. An analytic model is used to validate the simulations. The bias is low and depends on amplitude and frequency of motion as well as on wind shear. It has been estimated for the example of the Fugro SEAWATCH wind lidar buoy carrying a ZX 300M lidar.
Markus Sommerfeld, Martin Dörenkämper, Jochem De Schutter, and Curran Crawford
Wind Energ. Sci., 7, 1847–1868, https://doi.org/10.5194/wes-7-1847-2022, https://doi.org/10.5194/wes-7-1847-2022, 2022
Short summary
Short summary
This research explores the ground-generation airborne wind energy system (AWES) design space and investigates scaling effects by varying design parameters such as aircraft wing size, aerodynamic efficiency and mass. Therefore, representative simulated onshore and offshore wind data are implemented into an AWES trajectory optimization model. We estimate optimal annual energy production and capacity factors as well as a minimal operational lift-to-weight ratio.
Carlos Calvo-Sancho, Javier Díaz-Fernández, Yago Martín, Pedro Bolgiani, Mariano Sastre, Juan Jesús González-Alemán, Daniel Santos-Muñoz, José Ignacio Farrán, and María Luisa Martín
Weather Clim. Dynam., 3, 1021–1036, https://doi.org/10.5194/wcd-3-1021-2022, https://doi.org/10.5194/wcd-3-1021-2022, 2022
Short summary
Short summary
Supercells are among the most complex and dangerous severe convective storms due to their associated phenomena (lightning, strong winds, large hail, flash floods, or tornadoes). In this survey we study the supercell synoptic configurations and convective environments in Spain using the atmospheric reanalysis ERA5. Supercells are grouped into hail (greater than 5 cm) and non-hail events in order to compare and analyze the two events. The results reveal statistically significant differences.
Beatriz Cañadillas, Maximilian Beckenbauer, Juan J. Trujillo, Martin Dörenkämper, Richard Foreman, Thomas Neumann, and Astrid Lampert
Wind Energ. Sci., 7, 1241–1262, https://doi.org/10.5194/wes-7-1241-2022, https://doi.org/10.5194/wes-7-1241-2022, 2022
Short summary
Short summary
Scanning lidar measurements combined with meteorological sensors and mesoscale simulations reveal the strong directional and stability dependence of the wake strength in the direct vicinity of wind farm clusters.
Wei Fu, Alfredo Peña, and Jakob Mann
Wind Energ. Sci., 7, 831–848, https://doi.org/10.5194/wes-7-831-2022, https://doi.org/10.5194/wes-7-831-2022, 2022
Short summary
Short summary
Measuring the variability of the wind is essential to operate the wind turbines safely. Lidars of different configurations have been placed on the turbines’ nacelle to measure the inflow remotely. This work found that the multiple-beam lidar is the only one out of the three employed nacelle lidars that can give detailed information about the inflow variability. The other two commercial lidars, which have two and four beams, respectively, measure only the fluctuation in the along-wind direction.
Nikolas Angelou, Jakob Mann, and Ebba Dellwik
Atmos. Chem. Phys., 22, 2255–2268, https://doi.org/10.5194/acp-22-2255-2022, https://doi.org/10.5194/acp-22-2255-2022, 2022
Short summary
Short summary
In this study we use state-of-the-art scanning wind lidars to investigate the wind field in the near-wake region of a mature, open-grown tree. Our measurements provide for the first time a picture of the mean and the turbulent spatial fluctuations in the flow in the wake of a tree in its natural environment. Our observations support the hypothesis that even simple models can realistically simulate the turbulent fluctuations in the wake and thus predict the effect of trees in flow models.
Elena Cantero, Javier Sanz, Fernando Borbón, Daniel Paredes, and Almudena García
Wind Energ. Sci., 7, 221–235, https://doi.org/10.5194/wes-7-221-2022, https://doi.org/10.5194/wes-7-221-2022, 2022
Short summary
Short summary
The impact of atmospheric stability on wind energy is widely demonstrated, so we have to know how to characterise it.
This work based on a meteorological mast located in a complex terrain compares and evaluates different instrument set-ups and methodologies for stability characterisation. The methods are examined considering their theoretical background, implementation complexity, instrumentation requirements and practical use in connection with wind energy applications.
Almudena García-García, Francisco José Cuesta-Valero, Hugo Beltrami, J. Fidel González-Rouco, and Elena García-Bustamante
Geosci. Model Dev., 15, 413–428, https://doi.org/10.5194/gmd-15-413-2022, https://doi.org/10.5194/gmd-15-413-2022, 2022
Short summary
Short summary
We study the sensitivity of a regional climate model to resolution and soil scheme changes. Our results show that the use of finer resolutions mainly affects precipitation outputs, particularly in summer due to changes in convective processes. Finer resolutions are associated with larger biases compared with observations. Changing the land surface model scheme affects the simulation of near-surface temperatures, yielding the lowest biases in mean temperature with the most complex soil scheme.
Marc Imberger, Xiaoli Guo Larsén, and Neil Davis
Adv. Geosci., 56, 77–87, https://doi.org/10.5194/adgeo-56-77-2021, https://doi.org/10.5194/adgeo-56-77-2021, 2021
Short summary
Short summary
Events like mid-latitude storms with their high winds have an impact on wind energy production and forecasting of such events is crucial. This study investigates the capabilities of a global weather prediction model MPAS and looks at how key parameters like storm intensity, arrival time and duration are represented compared to measurements and traditional methods. It is found that storm intensity is represented well while model drifts negatively influence estimation of arrival time and duration.
Jörge Schneemann, Frauke Theuer, Andreas Rott, Martin Dörenkämper, and Martin Kühn
Wind Energ. Sci., 6, 521–538, https://doi.org/10.5194/wes-6-521-2021, https://doi.org/10.5194/wes-6-521-2021, 2021
Short summary
Short summary
A wind farm can reduce the wind speed in front of it just by its presence and thus also slightly impact the available power. In our study we investigate this so-called global-blockage effect, measuring the inflow of a large offshore wind farm with a laser-based remote sensing method up to several kilometres in front of the farm. Our results show global blockage under a certain atmospheric condition and operational state of the wind farm; during other conditions it is not visible in our data.
Julia Gottschall and Martin Dörenkämper
Wind Energ. Sci., 6, 505–520, https://doi.org/10.5194/wes-6-505-2021, https://doi.org/10.5194/wes-6-505-2021, 2021
Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, J. Fidel González-Rouco, and Elena García-Bustamante
Clim. Past, 17, 451–468, https://doi.org/10.5194/cp-17-451-2021, https://doi.org/10.5194/cp-17-451-2021, 2021
Short summary
Short summary
We provide new global estimates of changes in surface temperature, surface heat flux, and continental heat storage since preindustrial times from geothermal data. Our analysis includes new measurements and a more comprehensive description of uncertainties than previous studies. Results show higher continental heat storage than previously reported, with global land mean temperature changes of 1 K and subsurface heat gains of 12 ZJ during the last half of the 20th century.
Pedro Santos, Jakob Mann, Nikola Vasiljević, Elena Cantero, Javier Sanz Rodrigo, Fernando Borbón, Daniel Martínez-Villagrasa, Belén Martí, and Joan Cuxart
Wind Energ. Sci., 5, 1793–1810, https://doi.org/10.5194/wes-5-1793-2020, https://doi.org/10.5194/wes-5-1793-2020, 2020
Short summary
Short summary
This study presents results from the Alaiz experiment (ALEX17), featuring the characterization of two cases with flow features ranging from 0.1 to 10 km in complex terrain. We show that multiple scanning lidars can capture in detail a type of atmospheric wave that can happen up to 10 % of the time at this site. The results are in agreement with multiple ground observations and demonstrate the role of atmospheric stability in flow phenomena that need to be better captured by numerical models.
Andreas Bechmann, Juan Pablo M. Leon, Bjarke T. Olsen, and Yavor V. Hristov
Wind Energ. Sci., 5, 1679–1688, https://doi.org/10.5194/wes-5-1679-2020, https://doi.org/10.5194/wes-5-1679-2020, 2020
Short summary
Short summary
When assessing wind resources for wind farm development, the first step is to measure the wind from tall meteorological masts. As met masts are expensive, they are not built at every planned wind turbine position but sparsely while trying to minimize the distance. However, this paper shows that it is better to focus on the
similaritybetween the met mast and the wind turbines than the distance. Met masts at similar positions reduce the uncertainty of wind resource assessments significantly.
Almudena García-García, Francisco José Cuesta-Valero, Hugo Beltrami, Fidel González-Rouco, Elena García-Bustamante, and Joel Finnis
Geosci. Model Dev., 13, 5345–5366, https://doi.org/10.5194/gmd-13-5345-2020, https://doi.org/10.5194/gmd-13-5345-2020, 2020
Andrea N. Hahmann, Tija Sīle, Björn Witha, Neil N. Davis, Martin Dörenkämper, Yasemin Ezber, Elena García-Bustamante, J. Fidel González-Rouco, Jorge Navarro, Bjarke T. Olsen, and Stefan Söderberg
Geosci. Model Dev., 13, 5053–5078, https://doi.org/10.5194/gmd-13-5053-2020, https://doi.org/10.5194/gmd-13-5053-2020, 2020
Short summary
Short summary
Wind energy resource assessment routinely uses numerical weather prediction model output. We describe the evaluation procedures used for picking the suitable blend of model setup and parameterizations for simulating European wind climatology with the WRF model. We assess the simulated winds against tall mast measurements using a suite of metrics, including the Earth Mover's Distance, which diagnoses the performance of each ensemble member using the full wind speed and direction distribution.
Nikolaos Schetakis, Rodrigo Crespo, José Luis Vázquez-Poletti, Mariano Sastre, Luis Vázquez, and Alessio Di Iorio
Geosci. Instrum. Method. Data Syst., 9, 407–415, https://doi.org/10.5194/gi-9-407-2020, https://doi.org/10.5194/gi-9-407-2020, 2020
Short summary
Short summary
In this paper, we present a compilation of the different radiation transport codes for the Martian surface that are currently used by various space agencies and institutions. In addition, as the execution of the tasks necessary to process all of these radiation data requires a high computational processing capacity, we link it to cloud computing, which is found to be an appropriate tool regarding the required resources.
Pedro Santos, Alfredo Peña, and Jakob Mann
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-960, https://doi.org/10.5194/acp-2020-960, 2020
Preprint withdrawn
Short summary
Short summary
We show that the vector of vertical flux of horizontal momentum and the vector of the mean vertical gradient of horizontal velocity are not aligned, based on Doppler wind lidar observations up to 500 m, both offshore and onshore. We illustrate that a mesoscale model output matches the observed mean wind speed and momentum fluxes well, but that this model output as well as idealized large-eddy simulations have deviations with the observations when looking at the turning of the wind.
Robert Menke, Nikola Vasiljević, Johannes Wagner, Steven P. Oncley, and Jakob Mann
Wind Energ. Sci., 5, 1059–1073, https://doi.org/10.5194/wes-5-1059-2020, https://doi.org/10.5194/wes-5-1059-2020, 2020
Short summary
Short summary
The estimation of wind resources in complex terrain is challenging as the wind conditions change significantly over short distances, different to flat terrain, where spatial changes are small. We demonstrate in this work that wind lidars can remotely map wind resources over large areas. This will have implications for the planning of wind energy projects and ultimately reduce uncertainties in wind resource estimations in complex terrain, making such areas more interesting for future development.
Pedro José Roldán-Gómez, Jesús Fidel González-Rouco, Camilo Melo-Aguilar, and Jason E. Smerdon
Clim. Past, 16, 1285–1307, https://doi.org/10.5194/cp-16-1285-2020, https://doi.org/10.5194/cp-16-1285-2020, 2020
Short summary
Short summary
This work analyses the behavior of atmospheric dynamics and hydroclimate in climate simulations of the last millennium. In particular, how external forcing factors, like solar and volcanic activity and greenhouse gas emissions, impact variables like temperature, pressure, wind, precipitation, and soil moisture is assessed. The results of these analyses show that changes in the forcing could alter the zonal circulation and the intensity and distribution of monsoons and convergence zones.
Felix Kelberlau and Jakob Mann
Wind Energ. Sci., 5, 519–541, https://doi.org/10.5194/wes-5-519-2020, https://doi.org/10.5194/wes-5-519-2020, 2020
Short summary
Short summary
Wind speeds can be measured remotely from the ground with lidars. Their estimates are accurate for mean speeds, but turbulence leads to measurement errors. We predict these errors using computer-generated data and compare lidar measurements with data from a meteorological mast. The comparison shows that deviations depend on wind direction, measurement height, and wind conditions. Our method to reduce the measurement error is successful when the wind is aligned with one of the lidar beams.
Jonas Kazda and Jakob Mann
Wind Energ. Sci., 5, 439–450, https://doi.org/10.5194/wes-5-439-2020, https://doi.org/10.5194/wes-5-439-2020, 2020
Short summary
Short summary
This work presents the first analytical solution for the quantification of the spatial variance of the second-order moment of correlated wind speeds. The spatial variance is defined as random differences in the sample variance of wind speed between different points in space. The approach is successfully verified using simulation and field data. The impact of the spatial variance on wind farm control, the verification of wind turbine performance and sensor verification are then investigated.
Charlotte B. Hasager, Andrea N. Hahmann, Tobias Ahsbahs, Ioanna Karagali, Tija Sile, Merete Badger, and Jakob Mann
Wind Energ. Sci., 5, 375–390, https://doi.org/10.5194/wes-5-375-2020, https://doi.org/10.5194/wes-5-375-2020, 2020
Short summary
Short summary
Europe's offshore wind resource mapping is part of the New European Wind Atlas (NEWA) international consortium effort. This study presents the results of analysis of synthetic aperture radar (SAR) ocean wind maps based on Envisat and Sentinel-1 with a brief description of the wind retrieval process and Advanced Scatterometer (ASCAT) ocean wind maps. Furthermore, the Weather Research and Forecasting (WRF) offshore wind atlas of NEWA is presented.
Camilo Melo-Aguilar, J. Fidel González-Rouco, Elena García-Bustamante, Norman Steinert, Johann H. Jungclaus, Jorge Navarro, and Pedro J. Roldán-Gómez
Clim. Past, 16, 453–474, https://doi.org/10.5194/cp-16-453-2020, https://doi.org/10.5194/cp-16-453-2020, 2020
Short summary
Short summary
This study explores potential sources of bias on borehole-based temperature reconstruction from both methodological and physical factors using pseudo-proxy experiments that consider ensembles of simulations from the Community Earth System Model. The results indicate that both methodological and physical factors may have an impact on the estimation of the recent temperature trends at different spatial scales. Internal variability arises also as an important issue influencing pseudo-proxy results.
Jörge Schneemann, Andreas Rott, Martin Dörenkämper, Gerald Steinfeld, and Martin Kühn
Wind Energ. Sci., 5, 29–49, https://doi.org/10.5194/wes-5-29-2020, https://doi.org/10.5194/wes-5-29-2020, 2020
Short summary
Short summary
Offshore wind farm clusters cause reduced wind speeds in downstream regions which can extend over more than 50 km.
We analysed the impact of these so-called cluster wakes on a distant wind farm using remote-sensing wind measurements and power production data.
Cluster wakes caused power losses up to 55 km downstream in certain atmospheric states.
A better understanding of cluster wake effects reduces uncertainties in offshore wind resource assessment and improves offshore areal planning.
Markus Sommerfeld, Martin Dörenkämper, Gerald Steinfeld, and Curran Crawford
Wind Energ. Sci., 4, 563–580, https://doi.org/10.5194/wes-4-563-2019, https://doi.org/10.5194/wes-4-563-2019, 2019
Short summary
Short summary
Airborne wind energy systems aim to operate at altitudes above conventional wind turbines where reliable high-resolution wind data are scarce. Wind measurements and computational simulations both have advantages and disadvantages when assessing the wind resource at such heights. This article investigates whether assimilating measurements into the model generates a more accurate wind data set up to 1100 m. These wind data sets are used to estimate optimal AWES operating altitudes and power.
Dominique P. Held and Jakob Mann
Wind Energ. Sci., 4, 421–438, https://doi.org/10.5194/wes-4-421-2019, https://doi.org/10.5194/wes-4-421-2019, 2019
Short summary
Short summary
In this study a model of the coherence between turbine- and lidar-estimated rotor-effective wind speed (REWS) is presented. The model is compared against experimental data from two field tests using two- and four-beam nacelle-mounted lidar systems on a test turbine. The proposed model agrees better with the field data than previously used models. Also, it was shown that the advection speed can be estimated by the REWS measured by the lidar.
Dominique P. Held and Jakob Mann
Wind Energ. Sci., 4, 407–420, https://doi.org/10.5194/wes-4-407-2019, https://doi.org/10.5194/wes-4-407-2019, 2019
Short summary
Short summary
In this study the capabilities of detecting wakes in the inflow of turbines by nacelle-mounted lidars are investigated. It is shown that higher turbulence levels can be measured within a wake by estimating the Doppler spectrum width. In an experimental setup all half- and full-wake situations have been identified. A correction method for the influence of the wake on the lidar system has also been proposed..
Jon Ander Arrillaga, Carlos Yagüe, Carlos Román-Cascón, Mariano Sastre, Maria Antonia Jiménez, Gregorio Maqueda, and Jordi Vilà-Guerau de Arellano
Atmos. Chem. Phys., 19, 4615–4635, https://doi.org/10.5194/acp-19-4615-2019, https://doi.org/10.5194/acp-19-4615-2019, 2019
Short summary
Short summary
Thermally driven downslope winds develop in mountainous areas under a weak large-scale forcing and clear skies. In this work, we find that their onset time and intensity are closely connected with both the large-scale wind and soil moisture. We also show how the distinct downslope intensities shape the turbulent and thermal features of the nocturnal atmosphere. The analysis concludes that the downslope–turbulence interaction and the horizontal transport explain the important CO2 variability.
Felix Kelberlau and Jakob Mann
Atmos. Meas. Tech., 12, 1871–1888, https://doi.org/10.5194/amt-12-1871-2019, https://doi.org/10.5194/amt-12-1871-2019, 2019
Short summary
Short summary
Lidars are devices that can measure wind velocities remotely from the ground. Their estimates are very accurate in the mean but wind speed fluctuations lead to measurement errors. The presented data processing methods mitigate several of the error causes: first, by making use of knowledge about the mean wind direction and, second, by determining the location of air packages and sensing them in the best moment. Both methods can be applied to existing wind lidars and results are very promising.
Robert Menke, Nikola Vasiljević, Jakob Mann, and Julie K. Lundquist
Atmos. Chem. Phys., 19, 2713–2723, https://doi.org/10.5194/acp-19-2713-2019, https://doi.org/10.5194/acp-19-2713-2019, 2019
Short summary
Short summary
This research utilizes several months of lidar measurements from the Perdigão 2017 campaign to investigate flow recirculation zones that occur at the two parallel ridges at the measurement site in Portugal. We found that recirculation occurs in over 50 % of the time when the wind direction is perpendicular to the direction of the ridges. Moreover, we show three-dimensional changes of the zones along the ridges and the implications of recirculation on wind turbines that are operating downstream.
Alfredo Peña, Ebba Dellwik, and Jakob Mann
Atmos. Meas. Tech., 12, 237–252, https://doi.org/10.5194/amt-12-237-2019, https://doi.org/10.5194/amt-12-237-2019, 2019
Short summary
Short summary
We propose a method to assess the accuracy of turbulence measurements by sonic anemometers. The idea is to compute the ratio of the vertical to along-wind velocity spectrum within the inertial subrange. We found that the Metek USA-1 and the Campbell CSAT3 sonic anemometers do not show the expected theoretical ratio. A wind-tunnel-based correction recovers the expected ratio for the USA-1. A correction for the CSAT3 does not, illustrating that this sonic anemometer suffers from flow distortion.
Dominique P. Held and Jakob Mann
Atmos. Meas. Tech., 11, 6339–6350, https://doi.org/10.5194/amt-11-6339-2018, https://doi.org/10.5194/amt-11-6339-2018, 2018
Short summary
Short summary
In this paper we study the effect of different methods to derive the radial wind speed from a lidar Doppler spectrum. Numerical simulations and experimental results both indicate that the median method has slight improvements over the centroid method in terms of turbulent attenuation and also showed the lowest root mean squared error. Thus, when the aim is to reduce the volume averaging effect and obtain time series with a high temporal resolution, we recommend using the median method.
Camilo Melo-Aguilar, J. Fidel González-Rouco, Elena García-Bustamante, Jorge Navarro-Montesinos, and Norman Steinert
Clim. Past, 14, 1583–1606, https://doi.org/10.5194/cp-14-1583-2018, https://doi.org/10.5194/cp-14-1583-2018, 2018
Short summary
Short summary
Air–ground temperature coupling is the central assumption of borehole temperature reconstructions. Here, this premise is assessed from a pseudo-reality perspective by considering last millennium ensembles of simulations from the Community Earth System Model. The results show that long-term variations in the energy fluxes at the surface during industrial times, due to the influence of external forcings, impact the long-term air–ground temperature coupling.
Robert Menke, Nikola Vasiljević, Kurt S. Hansen, Andrea N. Hahmann, and Jakob Mann
Wind Energ. Sci., 3, 681–691, https://doi.org/10.5194/wes-3-681-2018, https://doi.org/10.5194/wes-3-681-2018, 2018
Short summary
Short summary
This study investigates the behaviour of wind turbine wakes in complex terrain. Using six scanning lidars, we measured the wake of a single turbine at the Perdigão site in Portugal in 2015. Our findings show that wake propagation is highly dependent on the atmospheric stability, which is mostly ignored in flow simulation used for wind farm layout design. The wake is lifted up during unstable atmospheric conditions and follows the terrain downwards during stable conditions.
Jeffrey D. Mirocha, Matthew J. Churchfield, Domingo Muñoz-Esparza, Raj K. Rai, Yan Feng, Branko Kosović, Sue Ellen Haupt, Barbara Brown, Brandon L. Ennis, Caroline Draxl, Javier Sanz Rodrigo, William J. Shaw, Larry K. Berg, Patrick J. Moriarty, Rodman R. Linn, Veerabhadra R. Kotamarthi, Ramesh Balakrishnan, Joel W. Cline, Michael C. Robinson, and Shreyas Ananthan
Wind Energ. Sci., 3, 589–613, https://doi.org/10.5194/wes-3-589-2018, https://doi.org/10.5194/wes-3-589-2018, 2018
Short summary
Short summary
This paper validates the use of idealized large-eddy simulations with periodic lateral boundary conditions to provide boundary-layer flow quantities of interest for wind energy applications. Sensitivities to model formulation, forcing parameter values, and grid configurations were also examined, both to ascertain the robustness of the technique and to characterize inherent uncertainties, as required for the evaluation of more general wind plant flow simulation approaches under development.
Rogier Floors, Peter Enevoldsen, Neil Davis, Johan Arnqvist, and Ebba Dellwik
Wind Energ. Sci., 3, 353–370, https://doi.org/10.5194/wes-3-353-2018, https://doi.org/10.5194/wes-3-353-2018, 2018
Short summary
Short summary
Applying erroneous boundary conditions (surface roughness) for wind flow modelling can have a large impact on the estimated performance of wind turbines, particularly in forested areas. Traditionally the estimation of the surface roughness is based on a subjective process that requires assigning a value to each land use class in the vicinity of the wind farm. Here we propose a new method which converts lidar scans from a plane into maps that can be used for wind flow modelling.
Jakob Mann, Alfredo Peña, Niels Troldborg, and Søren J. Andersen
Wind Energ. Sci., 3, 293–300, https://doi.org/10.5194/wes-3-293-2018, https://doi.org/10.5194/wes-3-293-2018, 2018
Short summary
Short summary
Turbulence is usually assumed to be unmodified by the stagnation occurring in front of a wind turbine rotor. All manufacturers assume this in their dynamic load calculations. If this assumption is not true it might bias the load calculations and the turbines might not be designed optimally. We investigate the assumption with a Doppler lidar measuring forward from the top of the nacelle and find small but systematic changes in the approaching turbulence that depend on the power curve.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Nikola Vasiljević, José M. L. M. Palma, Nikolas Angelou, José Carlos Matos, Robert Menke, Guillaume Lea, Jakob Mann, Michael Courtney, Luis Frölen Ribeiro, and Vitor M. M. G. C. Gomes
Atmos. Meas. Tech., 10, 3463–3483, https://doi.org/10.5194/amt-10-3463-2017, https://doi.org/10.5194/amt-10-3463-2017, 2017
Short summary
Short summary
In this paper we present a methodology for atmospheric multi-Doppler lidar experiments accompanied with the description and results from the Perdigão-2015 experiment, where the methodology was demonstrated. To our knowledge, this is the first time that steps leading to the acquisition of high-quality datasets from field studies are described and systematically defined and organized.
Bjarke T. Olsen, Andrea N. Hahmann, Anna Maria Sempreviva, Jake Badger, and Hans E. Jørgensen
Wind Energ. Sci., 2, 211–228, https://doi.org/10.5194/wes-2-211-2017, https://doi.org/10.5194/wes-2-211-2017, 2017
Short summary
Short summary
Understanding uncertainties in wind resource assessment associated with the use of the output from numerical weather prediction (NWP) models is important for wind energy applications. A better understanding of the sources of error reduces risk and lowers costs. Here, an intercomparison of the output from 25 NWP models is presented. The study shows that model errors are larger and agreement between models smaller at inland sites and near the surface.
Alfredo Peña, Jakob Mann, and Nikolay Dimitrov
Wind Energ. Sci., 2, 133–152, https://doi.org/10.5194/wes-2-133-2017, https://doi.org/10.5194/wes-2-133-2017, 2017
Short summary
Short summary
Nacelle lidars are nowadays extensively used to scan the turbine inflow. Thus, it is important to characterize turbulence from their measurements. We present two methods to perform turbulence estimation and demonstrate them using two types of lidars. With one method we can estimate the along-wind unfiltered variance accurately. With the other we can estimate the filtered radial velocity variance accurately and velocity-tensor parameters under neutral and high wind-speed conditions.
Javier Sanz Rodrigo, Matthew Churchfield, and Branko Kosovic
Wind Energ. Sci., 2, 35–54, https://doi.org/10.5194/wes-2-35-2017, https://doi.org/10.5194/wes-2-35-2017, 2017
Short summary
Short summary
The series of GABLS model intercomparison benchmarks is revisited in the context of wind energy atmospheric boundary layer (ABL) models. GABLS 1 and 2 are used for verification purposes. Then GABLS 3 is used to develop a methodology for using realistic mesoscale forcing for microscale ABL models. The method also uses profile nudging to dynamically reduce the bias. Different data assimilation strategies are discussed based on typical instrumentation setups of wind energy campaigns.
Ryan Kilpatrick, Horia Hangan, Kamran Siddiqui, Dan Parvu, Julia Lange, Jakob Mann, and Jacob Berg
Wind Energ. Sci., 1, 237–254, https://doi.org/10.5194/wes-1-237-2016, https://doi.org/10.5194/wes-1-237-2016, 2016
Short summary
Short summary
This paper contributes to the scientific knowledge of flow behaviour over complex topography by extending the physical modelling work of the flow over the Bolund Hill escarpment, a test case for the validation of numerical models in complex terrain for wind resource assessment. The influence of inflow conditions on the flow over the topography has been examined in detail using a large-scale topographic model at high resolution at the unique WindEEE dome wind research facility.
Manel Grifoll, Jorge Navarro, Elena Pallares, Laura Ràfols, Manuel Espino, and Ana Palomares
Nonlin. Processes Geophys., 23, 143–158, https://doi.org/10.5194/npg-23-143-2016, https://doi.org/10.5194/npg-23-143-2016, 2016
Short summary
Short summary
In this contribution the wind jet dynamics in the northern margin of the Ebro River shelf (NW Mediterranean Sea) are investigated using coupled numerical models. The study area is characterized by persistent and energetic offshore winds during autumn and winter. However, the coupling effect in the wind resource assessment may be relevant due to the cubic relation between the wind intensity and power.
G. A. M. van Kuik, J. Peinke, R. Nijssen, D. Lekou, J. Mann, J. N. Sørensen, C. Ferreira, J. W. van Wingerden, D. Schlipf, P. Gebraad, H. Polinder, A. Abrahamsen, G. J. W. van Bussel, J. D. Sørensen, P. Tavner, C. L. Bottasso, M. Muskulus, D. Matha, H. J. Lindeboom, S. Degraer, O. Kramer, S. Lehnhoff, M. Sonnenschein, P. E. Sørensen, R. W. Künneke, P. E. Morthorst, and K. Skytte
Wind Energ. Sci., 1, 1–39, https://doi.org/10.5194/wes-1-1-2016, https://doi.org/10.5194/wes-1-1-2016, 2016
P. J. H. Volker, J. Badger, A. N. Hahmann, and S. Ott
Geosci. Model Dev., 8, 3715–3731, https://doi.org/10.5194/gmd-8-3715-2015, https://doi.org/10.5194/gmd-8-3715-2015, 2015
Short summary
Short summary
We introduce the Explicit Wake Parametrisation (EWP) for wind farms in mesoscale models that accounts
for the wake expansion within a turbine-containing cell. In the EWP approach, turbulence kinetic energy (TKE) production results from changes in vertical shear. The velocity recovery compares well to mast data downstream of the offshore wind farm Horns Rev I. The vertical structure of the TKE and the velocity profile are qualitatively similar to that simulated with large eddy simulations.
C. F. Abari, A. T. Pedersen, E. Dellwik, and J. Mann
Atmos. Meas. Tech., 8, 4145–4153, https://doi.org/10.5194/amt-8-4145-2015, https://doi.org/10.5194/amt-8-4145-2015, 2015
Short summary
Short summary
Continuous-wave coherent Doppler lidars (CW CDL) are a class of short-range wind lidars. This paper presents the measurement results from a field campaign where the performance of a recently built all-fiber image-reject homodyne CW CDL is compared against a sonic anemometer. The results are weighed against another instrument, i.e., a CW CDL benefiting from a heterodyne receiver. The results show that the new system has a superior measurement performance, especially for close-to-zero velocities.
C. Román-Cascón, C. Yagüe, L. Mahrt, M. Sastre, G.-J. Steeneveld, E. Pardyjak, A. van de Boer, and O. Hartogensis
Atmos. Chem. Phys., 15, 9031–9047, https://doi.org/10.5194/acp-15-9031-2015, https://doi.org/10.5194/acp-15-9031-2015, 2015
Short summary
Short summary
Stable-boundary-layer processes have been analysed using BLLAST data. Shallow drainage flows were formed at some locations after the near calm stage of the late afternoon. This stage ended with the arrival of a deeper wind associated with the mountain-plain circulation. At the same time, gravity waves were detected with an array of microbarometers. The interaction of these processes with turbulence was studied through multi-resolution flux decomposition at different sites and heights.
A. Sathe, J. Mann, N. Vasiljevic, and G. Lea
Atmos. Meas. Tech., 8, 729–740, https://doi.org/10.5194/amt-8-729-2015, https://doi.org/10.5194/amt-8-729-2015, 2015
Short summary
Short summary
A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method is presented as an alternative to the so-called velocity azimuth display (VAD) method that is routinely used in commercial wind lidars, and which usually results in significant averaging effects of measured turbulence.
M. Lothon, F. Lohou, D. Pino, F. Couvreux, E. R. Pardyjak, J. Reuder, J. Vilà-Guerau de Arellano, P Durand, O. Hartogensis, D. Legain, P. Augustin, B. Gioli, D. H. Lenschow, I. Faloona, C. Yagüe, D. C. Alexander, W. M. Angevine, E Bargain, J. Barrié, E. Bazile, Y. Bezombes, E. Blay-Carreras, A. van de Boer, J. L. Boichard, A. Bourdon, A. Butet, B. Campistron, O. de Coster, J. Cuxart, A. Dabas, C. Darbieu, K. Deboudt, H. Delbarre, S. Derrien, P. Flament, M. Fourmentin, A. Garai, F. Gibert, A. Graf, J. Groebner, F. Guichard, M. A. Jiménez, M. Jonassen, A. van den Kroonenberg, V. Magliulo, S. Martin, D. Martinez, L. Mastrorillo, A. F. Moene, F. Molinos, E. Moulin, H. P. Pietersen, B. Piguet, E. Pique, C. Román-Cascón, C. Rufin-Soler, F. Saïd, M. Sastre-Marugán, Y. Seity, G. J. Steeneveld, P. Toscano, O. Traullé, D. Tzanos, S. Wacker, N. Wildmann, and A. Zaldei
Atmos. Chem. Phys., 14, 10931–10960, https://doi.org/10.5194/acp-14-10931-2014, https://doi.org/10.5194/acp-14-10931-2014, 2014
A. Sathe and J. Mann
Atmos. Meas. Tech., 6, 3147–3167, https://doi.org/10.5194/amt-6-3147-2013, https://doi.org/10.5194/amt-6-3147-2013, 2013
E. Branlard, A. T. Pedersen, J. Mann, N. Angelou, A. Fischer, T. Mikkelsen, M. Harris, C. Slinger, and B. F. Montes
Atmos. Meas. Tech., 6, 1673–1683, https://doi.org/10.5194/amt-6-1673-2013, https://doi.org/10.5194/amt-6-1673-2013, 2013
P. Ortega, M. Montoya, F. González-Rouco, H. Beltrami, and D. Swingedouw
Clim. Past, 9, 547–565, https://doi.org/10.5194/cp-9-547-2013, https://doi.org/10.5194/cp-9-547-2013, 2013
L. Fernández-Donado, J. F. González-Rouco, C. C. Raible, C. M. Ammann, D. Barriopedro, E. García-Bustamante, J. H. Jungclaus, S. J. Lorenz, J. Luterbacher, S. J. Phipps, J. Servonnat, D. Swingedouw, S. F. B. Tett, S. Wagner, P. Yiou, and E. Zorita
Clim. Past, 9, 393–421, https://doi.org/10.5194/cp-9-393-2013, https://doi.org/10.5194/cp-9-393-2013, 2013
Related subject area
Atmospheric sciences
Knowledge-inspired fusion strategies for the inference of PM2.5 values with a neural network
Tuning the ICON-A 2.6.4 climate model with machine-learning-based emulators and history matching
A novel method for quantifying the contribution of regional transport to PM2.5 in Beijing (2013–2020): combining machine learning with concentration-weighted trajectory analysis
Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods
Diagnosis of winter precipitation types using the spectral bin model (version 1DSBM-19M): comparison of five methods using ICE-POP 2018 field experiment data
Improving winter condition simulations in SURFEX-TEB v9.0 with a multi-layer snow model and ice
UA-ICON with the NWP physics package (version ua-icon-2.1): mean state and variability of the middle atmosphere
Integrated Methane Inversion (IMI) 2.0: an improved research and stakeholder tool for monitoring total methane emissions with high resolution worldwide using TROPOMI satellite observations
HTAP3 Fires: towards a multi-model, multi-pollutant study of fire impacts
Using a data-driven statistical model to better evaluate surface turbulent heat fluxes in weather and climate numerical models: a demonstration study
Pochva: a new hydro-thermal process model in soil, snow, and vegetation for application in atmosphere numerical models
ClimKern v1.2: a new Python package and kernel repository for calculating radiative feedbacks
Accounting for effects of coagulation and model uncertainties in particle number concentration estimates based on measurements from sampling lines – a Bayesian inversion approach with SLIC v1.0
Top-down CO emission estimates using TROPOMI CO data in the TM5-4DVAR (r1258) inverse modeling suit
The Multi-Compartment Hg Modeling and Analysis Project (MCHgMAP): mercury modeling to support international environmental policy
Similarity-based analysis of atmospheric organic compounds for machine learning applications
Porting the Meso-NH atmospheric model on different GPU architectures for the next generation of supercomputers (version MESONH-v55-OpenACC)
Estimation of aerosol and cloud radiative heating rate in the tropical stratosphere using a radiative kernel method
Evaluation of dust emission and land surface schemes in predicting a mega Asian dust storm over South Korea using WRF-Chem
Sensitivity studies of a four-dimensional local ensemble transform Kalman filter coupled with WRF-Chem version 3.9.1 for improving particulate matter simulation accuracy
A Bayesian method for predicting background radiation at environmental monitoring stations in local-scale networks
Inclusion of the ECMWF ecRad radiation scheme (v1.5.0) in the MAR (v3.14), regional evaluation for Belgium, and assessment of surface shortwave spectral fluxes at Uccle
Development of a fast radiative transfer model for ground-based microwave radiometers (ARMS-gb v1.0): validation and comparison to RTTOV-gb
Indian Institute of Tropical Meteorology (IITM) High-Resolution Global Forecast Model version 1: an attempt to resolve monsoon prediction deadlock
Cell-tracking-based framework for assessing nowcasting model skill in reproducing growth and decay of convective rainfall
NeuralMie (v1.0): an aerosol optics emulator
A REtrieval Method for optical and physical Aerosol Properties in the stratosphere (REMAPv1)
Simulation performance of planetary boundary layer schemes in WRF v4.3.1 for near-surface wind over the western Sichuan Basin: a single-site assessment
FootNet v1.0: development of a machine learning emulator of atmospheric transport
Updates and evaluation of NOAA's online-coupled air quality model version 7 (AQMv7) within the Unified Forecast System
Quantifying the analysis uncertainty for nowcasting application
Improving the ensemble square root filter (EnSRF) in the Community Inversion Framework: a case study with ICON-ART 2024.01
The MESSy DWARF (based on MESSy v2.55.2)
Generalized local fractions – a method for the calculation of sensitivities to emissions from multiple sources for chemically active species, illustrated using the EMEP MSC-W model (rv5.5)
SanDyPALM v1.0: Static and Dynamic Drivers for the PALM-4U Model to Facilitate Realistic Urban Microclimate Simulations
An enhanced emission module for the PALM model system 23.10 with application for PM10 emission from urban domestic heating
Identifying lightning processes in ERA5 soundings with deep learning
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
Explaining neural networks for detection of tropical cyclones and atmospheric rivers in gridded atmospheric simulation data
Accurate and fast prediction of radioactive pollution by Kriging coupled with Auto-Associative Models
Mitigating Hail Overforecasting in the 2-Moment Milbrandt-Yau Microphysics Scheme (v2.25.2_beta_04) in WRF (v4.5.1) by Incorporating the Graupel Spongy Wet Growth Process (MY2_GSWG v1.0)
PALACE v1.0: Paranal Airglow Line And Continuum Emission model
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes
Quantifying uncertainties in satellite NO2 superobservations for data assimilation and model evaluation
ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool
Coupling the urban canopy model TEB (SURFEXv9.0) with the radiation model SPARTACUS-Urbanv0.6.1 for more realistic urban radiative exchange calculation
Comprehensive evaluation of iAMAS (v1.0) in simulating Antarctic meteorological fields with observations and reanalysis
Forecasting contrail climate forcing for flight planning and air traffic management applications: the CocipGrid model in pycontrails 0.51.0
Simulation of the heat mitigation potential of unsealing measures in cities by parameterizing grass grid pavers for urban microclimate modelling with ENVI-met (V5)
Matthieu Dabrowski, José Mennesson, Jérôme Riedi, Chaabane Djeraba, and Pierre Nabat
Geosci. Model Dev., 18, 3707–3733, https://doi.org/10.5194/gmd-18-3707-2025, https://doi.org/10.5194/gmd-18-3707-2025, 2025
Short summary
Short summary
This work focuses on the prediction of aerosol concentration values at the ground level, which are a strong indicator of air quality, using artificial neural networks. A study of different variables and their efficiency as inputs for these models is also proposed and reveals that the best results are obtained when using all of them. Comparison between network architectures and information fusion methods allows for the extraction of knowledge on the most efficient methods in the context of this study.
Pauline Bonnet, Lorenzo Pastori, Mierk Schwabe, Marco Giorgetta, Fernando Iglesias-Suarez, and Veronika Eyring
Geosci. Model Dev., 18, 3681–3706, https://doi.org/10.5194/gmd-18-3681-2025, https://doi.org/10.5194/gmd-18-3681-2025, 2025
Short summary
Short summary
Tuning a climate model means adjusting uncertain parameters in the model to best match observations like the global radiation balance and cloud cover. This is usually done by running many simulations of the model with different settings, which can be time-consuming and relies heavily on expert knowledge. To make this process faster and more objective, we developed a machine learning emulator to create a large ensemble and apply a method called history matching to find the best settings.
Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao
Geosci. Model Dev., 18, 3623–3634, https://doi.org/10.5194/gmd-18-3623-2025, https://doi.org/10.5194/gmd-18-3623-2025, 2025
Short summary
Short summary
This study combines machine learning with concentration-weighted trajectory analysis to quantify regional transport PM2.5. From 2013–2020, local emissions dominated Beijing's pollution events. The Air Pollution Prevention and Control Action Plan reduced regional transport pollution, but the eastern region showed the smallest decrease. Beijing should prioritize local emission reduction while considering the east region's contributions in future strategies.
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet
Geosci. Model Dev., 18, 3607–3622, https://doi.org/10.5194/gmd-18-3607-2025, https://doi.org/10.5194/gmd-18-3607-2025, 2025
Short summary
Short summary
We developed a deep learning method to estimate CO2 emissions from power plants using satellite images. Trained and validated on simulated data, our model accurately predicts emissions despite challenges like cloud cover. When applied to real OCO3 satellite images, the results closely match reported emissions. This study shows that neural networks trained on simulations can effectively analyse real satellite data, offering a new way to monitor CO2 emissions from space.
Wonbae Bang, Jacob T. Carlin, Kwonil Kim, Alexander V. Ryzhkov, Guosheng Liu, and GyuWon Lee
Geosci. Model Dev., 18, 3559–3581, https://doi.org/10.5194/gmd-18-3559-2025, https://doi.org/10.5194/gmd-18-3559-2025, 2025
Short summary
Short summary
Microphysics model-based diagnosis, such as the spectral bin model (SBM), has recently been attempted to diagnose winter precipitation types. In this study, the accuracy of SBM-based precipitation type diagnosis is compared with other traditional methods. SBM has a relatively higher accuracy for dry-snow and wet-snow events, whereas it has lower accuracy for rain events. When the microphysics scheme in the SBM was optimized for the corresponding region, the accuracy for rain events improved.
Gabriel Colas, Valéry Masson, François Bouttier, Ludovic Bouilloud, Laura Pavan, and Virve Karsisto
Geosci. Model Dev., 18, 3453–3472, https://doi.org/10.5194/gmd-18-3453-2025, https://doi.org/10.5194/gmd-18-3453-2025, 2025
Short summary
Short summary
In winter, snow- and ice-covered artificial surfaces are important aspects of the urban climate. They may influence the magnitude of the urban heat island effect, but this is still unclear. In this study, we improved the representation of the snow and ice cover in the Town Energy Balance (TEB) urban climate model. Evaluations have shown that the results are promising for using TEB to study the climate of cold cities.
Markus Kunze, Christoph Zülicke, Tarique A. Siddiqui, Claudia C. Stephan, Yosuke Yamazaki, Claudia Stolle, Sebastian Borchert, and Hauke Schmidt
Geosci. Model Dev., 18, 3359–3385, https://doi.org/10.5194/gmd-18-3359-2025, https://doi.org/10.5194/gmd-18-3359-2025, 2025
Short summary
Short summary
We present the Icosahedral Nonhydrostatic (ICON) general circulation model with an upper-atmospheric extension with the physics package for numerical weather prediction (UA-ICON(NWP)). We optimized the parameters for the gravity wave parameterizations and achieved realistic modeling of the thermal and dynamic states of the mesopause regions. UA-ICON(NWP) now shows a realistic frequency of major sudden stratospheric warmings and well-represented solar tides in temperature.
Lucas A. Estrada, Daniel J. Varon, Melissa Sulprizio, Hannah Nesser, Zichong Chen, Nicholas Balasus, Sarah E. Hancock, Megan He, James D. East, Todd A. Mooring, Alexander Oort Alonso, Joannes D. Maasakkers, Ilse Aben, Sabour Baray, Kevin W. Bowman, John R. Worden, Felipe J. Cardoso-Saldaña, Emily Reidy, and Daniel J. Jacob
Geosci. Model Dev., 18, 3311–3330, https://doi.org/10.5194/gmd-18-3311-2025, https://doi.org/10.5194/gmd-18-3311-2025, 2025
Short summary
Short summary
Reducing emissions of methane, a powerful greenhouse gas, is a top policy concern for mitigating anthropogenic climate change. The Integrated Methane Inversion (IMI) is an advanced, cloud-based software that translates satellite observations into actionable emissions data. Here we present IMI version 2.0 with vastly expanded capabilities. These updates enable a wider range of scientific and stakeholder applications from individual basin to global scales with continuous emissions monitoring.
Cynthia H. Whaley, Tim Butler, Jose A. Adame, Rupal Ambulkar, Steve R. Arnold, Rebecca R. Buchholz, Benjamin Gaubert, Douglas S. Hamilton, Min Huang, Hayley Hung, Johannes W. Kaiser, Jacek W. Kaminski, Christoph Knote, Gerbrand Koren, Jean-Luc Kouassi, Meiyun Lin, Tianjia Liu, Jianmin Ma, Kasemsan Manomaiphiboon, Elisa Bergas Masso, Jessica L. McCarty, Mariano Mertens, Mark Parrington, Helene Peiro, Pallavi Saxena, Saurabh Sonwani, Vanisa Surapipith, Damaris Y. T. Tan, Wenfu Tang, Veerachai Tanpipat, Kostas Tsigaridis, Christine Wiedinmyer, Oliver Wild, Yuanyu Xie, and Paquita Zuidema
Geosci. Model Dev., 18, 3265–3309, https://doi.org/10.5194/gmd-18-3265-2025, https://doi.org/10.5194/gmd-18-3265-2025, 2025
Short summary
Short summary
The multi-model experiment design of the HTAP3 Fires project takes a multi-pollutant approach to improving our understanding of transboundary transport of wildland fire and agricultural burning emissions and their impacts. The experiments are designed with the goal of answering science policy questions related to fires. The options for the multi-model approach, including inputs, outputs, and model setup, are discussed, and the official recommendations for the project are presented.
Maurin Zouzoua, Sophie Bastin, Fabienne Lohou, Marie Lothon, Marjolaine Chiriaco, Mathilde Jome, Cécile Mallet, Laurent Barthes, and Guylaine Canut
Geosci. Model Dev., 18, 3211–3239, https://doi.org/10.5194/gmd-18-3211-2025, https://doi.org/10.5194/gmd-18-3211-2025, 2025
Short summary
Short summary
This study proposes using a statistical model to freeze errors due to differences in environmental forcing when evaluating the surface turbulent heat fluxes from numerical simulations with observations. The statistical model is first built with observations and then applied to the simulated environment to generate possibly observed fluxes. This novel method provides insight into differently evaluating the numerical formulation of turbulent heat fluxes with a long period of observational data.
Oxana Drofa
Geosci. Model Dev., 18, 3175–3209, https://doi.org/10.5194/gmd-18-3175-2025, https://doi.org/10.5194/gmd-18-3175-2025, 2025
Short summary
Short summary
This paper presents the result of many years of effort of the author, who developed an original mathematical numerical model of heat and moisture exchange processes in soil, vegetation, and snow. The author relied on her 30 years of research experience in atmospheric numerical modelling. The presented model is the fruit of the author's research on physical processes at the surface–atmosphere interface and their numerical approximation and aims at improving numerical weather forecasting and climate simulations.
Tyler P. Janoski, Ivan Mitevski, Ryan J. Kramer, Michael Previdi, and Lorenzo M. Polvani
Geosci. Model Dev., 18, 3065–3079, https://doi.org/10.5194/gmd-18-3065-2025, https://doi.org/10.5194/gmd-18-3065-2025, 2025
Short summary
Short summary
We developed ClimKern, a Python package and radiative kernel repository, to simplify calculating radiative feedbacks and make climate sensitivity studies more reproducible. Testing of ClimKern with sample climate model data reveals that radiative kernel choice may be more important than previously thought, especially in polar regions. Our work highlights the need for kernel sensitivity analyses to be included in future studies.
Matti Niskanen, Aku Seppänen, Henri Oikarinen, Miska Olin, Panu Karjalainen, Santtu Mikkonen, and Kari Lehtinen
Geosci. Model Dev., 18, 2983–3001, https://doi.org/10.5194/gmd-18-2983-2025, https://doi.org/10.5194/gmd-18-2983-2025, 2025
Short summary
Short summary
Particle size is a key factor determining the properties of aerosol particles which have a major influence on the climate and on human health. When measuring the particle sizes, however, sometimes the sampling lines that transfer the aerosol to the measurement device distort the size distribution, making the measurement unreliable. We propose a method to correct for the distortions and estimate the true particle sizes, improving measurement accuracy.
Johann Rasmus Nüß, Nikos Daskalakis, Fabian Günther Piwowarczyk, Angelos Gkouvousis, Oliver Schneising, Michael Buchwitz, Maria Kanakidou, Maarten C. Krol, and Mihalis Vrekoussis
Geosci. Model Dev., 18, 2861–2890, https://doi.org/10.5194/gmd-18-2861-2025, https://doi.org/10.5194/gmd-18-2861-2025, 2025
Short summary
Short summary
We estimate carbon monoxide emissions through inverse modeling, an approach where measurements of tracers in the atmosphere are fed to a model to calculate backwards in time (inverse) where the tracers came from. We introduce measurements from a new satellite instrument and show that, in most places globally, these on their own sufficiently constrain the emissions. This alleviates the need for additional datasets, which could shorten the delay for future carbon monoxide source estimates.
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025, https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed at informing the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and the Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic ,and multimedia mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases into the environment.
Hilda Sandström and Patrick Rinke
Geosci. Model Dev., 18, 2701–2724, https://doi.org/10.5194/gmd-18-2701-2025, https://doi.org/10.5194/gmd-18-2701-2025, 2025
Short summary
Short summary
Machine learning has the potential to aid the identification of organic molecules involved in aerosol formation. Yet, progress is stalled by a lack of curated atmospheric molecular datasets. Here, we compared atmospheric compounds with large molecular datasets used in machine learning and found minimal overlap with similarity algorithms. Our result underlines the need for collaborative efforts to curate atmospheric molecular data to facilitate machine learning models in atmospheric sciences.
Juan Escobar, Philippe Wautelet, Joris Pianezze, Florian Pantillon, Thibaut Dauhut, Christelle Barthe, and Jean-Pierre Chaboureau
Geosci. Model Dev., 18, 2679–2700, https://doi.org/10.5194/gmd-18-2679-2025, https://doi.org/10.5194/gmd-18-2679-2025, 2025
Short summary
Short summary
The Meso-NH weather research code is adapted for GPUs using OpenACC, leading to significant performance and energy efficiency improvements. Called MESONH-v55-OpenACC, it includes enhanced memory management, communication optimizations and a new solver. On the AMD MI250X Adastra platform, it achieved up to 6× speedup and 2.3× energy efficiency gain compared to CPUs. Storm simulations at 100 m resolution show positive results, positioning the code for future use on exascale supercomputers.
Jie Gao, Yi Huang, Jonathon S. Wright, Ke Li, Tao Geng, and Qiurun Yu
Geosci. Model Dev., 18, 2569–2586, https://doi.org/10.5194/gmd-18-2569-2025, https://doi.org/10.5194/gmd-18-2569-2025, 2025
Short summary
Short summary
The aerosol in the upper troposphere and stratosphere is highly variable, and its radiative effect is poorly understood. To estimate this effect, the radiative kernel is constructed and applied. The results show that the kernels can reproduce aerosol radiative effects and are expected to simulate stratospheric aerosol radiative effects. This approach reduces computational expense, is consistent with radiative model calculations, and can be applied to atmospheric models with speed requirements.
Ji Won Yoon, Seungyeon Lee, Ebony Lee, and Seon Ki Park
Geosci. Model Dev., 18, 2303–2328, https://doi.org/10.5194/gmd-18-2303-2025, https://doi.org/10.5194/gmd-18-2303-2025, 2025
Short summary
Short summary
This study evaluates the Weather Research and Forecasting Model (WRF) coupled with Chemistry (WRF-Chem) to predict a mega Asian dust storm (ADS) over South Korea on 28–29 March 2021. We assessed combinations of five dust emission and four land surface schemes by analyzing meteorological and air quality variables. The best scheme combination reduced the root mean square error (RMSE) for particulate matter 10 (PM10) by up to 29.6 %, demonstrating the highest performance.
Jianyu Lin, Tie Dai, Lifang Sheng, Weihang Zhang, Shangfei Hai, and Yawen Kong
Geosci. Model Dev., 18, 2231–2248, https://doi.org/10.5194/gmd-18-2231-2025, https://doi.org/10.5194/gmd-18-2231-2025, 2025
Short summary
Short summary
The effectiveness of this assimilation system and its sensitivity to the ensemble member size and length of the assimilation window are investigated. This study advances our understanding of the selection of basic parameters in the four-dimensional local ensemble transform Kalman filter assimilation system and the performance of ensemble simulation in a particulate-matter-polluted environment.
Jens Peter Karolus Wenceslaus Frankemölle, Johan Camps, Pieter De Meutter, and Johan Meyers
Geosci. Model Dev., 18, 1989–2003, https://doi.org/10.5194/gmd-18-1989-2025, https://doi.org/10.5194/gmd-18-1989-2025, 2025
Short summary
Short summary
To detect anomalous radioactivity in the environment, it is paramount that we understand the natural background level. In this work, we propose a statistical model to describe the most likely background level and the associated uncertainty in a network of dose rate detectors. We train, verify, and validate the model using real environmental data. Using the model, we show that we can correctly predict the background level in a subset of the detector network during a known
anomalous event.
Jean-François Grailet, Robin J. Hogan, Nicolas Ghilain, David Bolsée, Xavier Fettweis, and Marilaure Grégoire
Geosci. Model Dev., 18, 1965–1988, https://doi.org/10.5194/gmd-18-1965-2025, https://doi.org/10.5194/gmd-18-1965-2025, 2025
Short summary
Short summary
The MAR (Modèle Régional Atmosphérique) is a regional climate model used for weather forecasting and studying the climate over various regions. This paper presents an update of MAR thanks to which it can precisely decompose solar radiation, in particular in the UV (ultraviolet) and photosynthesis ranges, both being critical to human health and ecosystems. As a first application of this new capability, this paper presents a method for predicting UV indices with MAR.
Yi-Ning Shi, Jun Yang, Wei Han, Lujie Han, Jiajia Mao, Wanlin Kan, and Fuzhong Weng
Geosci. Model Dev., 18, 1947–1964, https://doi.org/10.5194/gmd-18-1947-2025, https://doi.org/10.5194/gmd-18-1947-2025, 2025
Short summary
Short summary
Direct assimilation of observations from ground-based microwave radiometers (GMRs) holds significant potential for improving forecast accuracy. Radiative transfer models (RTMs) play a crucial role in direct data assimilation. In this study, we introduce a new RTM, the Advanced Radiative Transfer Modeling System – Ground-Based (ARMS-gb), designed to simulate brightness temperatures observed by GMRs along with their Jacobians. Several enhancements have been incorporated to achieve higher accuracy.
R. Phani Murali Krishna, Siddharth Kumar, A. Gopinathan Prajeesh, Peter Bechtold, Nils Wedi, Kumar Roy, Malay Ganai, B. Revanth Reddy, Snehlata Tirkey, Tanmoy Goswami, Radhika Kanase, Sahadat Sarkar, Medha Deshpande, and Parthasarathi Mukhopadhyay
Geosci. Model Dev., 18, 1879–1894, https://doi.org/10.5194/gmd-18-1879-2025, https://doi.org/10.5194/gmd-18-1879-2025, 2025
Short summary
Short summary
The High-Resolution Global Forecast Model (HGFM) is an advanced iteration of the operational Global Forecast System (GFS) model. HGFM can produce forecasts at a spatial scale of ~6 km in tropics. It demonstrates improved accuracy in short- to medium-range weather prediction over the Indian region, with notable success in predicting extreme events. Further, the model will be entrusted to operational forecasting agencies after validation and testing.
Jenna Ritvanen, Seppo Pulkkinen, Dmitri Moisseev, and Daniele Nerini
Geosci. Model Dev., 18, 1851–1878, https://doi.org/10.5194/gmd-18-1851-2025, https://doi.org/10.5194/gmd-18-1851-2025, 2025
Short summary
Short summary
Nowcasting models struggle with the rapid evolution of heavy rain, and common verification methods are unable to describe how accurately the models predict the growth and decay of heavy rain. We propose a framework to assess model performance. In the framework, convective cells are identified and tracked in the forecasts and observations, and the model skill is then evaluated by comparing differences between forecast and observed cells. We demonstrate the framework with four open-source models.
Andrew Geiss and Po-Lun Ma
Geosci. Model Dev., 18, 1809–1827, https://doi.org/10.5194/gmd-18-1809-2025, https://doi.org/10.5194/gmd-18-1809-2025, 2025
Short summary
Short summary
Particles in the Earth's atmosphere strongly impact the planet's energy budget, and atmosphere simulations require accurate representation of their interaction with light. This work introduces two approaches to represent light scattering by small particles. The first is a scattering simulator based on Mie theory implemented in Python. The second is a neural network emulator that is more accurate than existing methods and is fast enough to be used in climate and weather simulations.
Andrin Jörimann, Timofei Sukhodolov, Beiping Luo, Gabriel Chiodo, Graham Mann, and Thomas Peter
EGUsphere, https://doi.org/10.5194/egusphere-2025-145, https://doi.org/10.5194/egusphere-2025-145, 2025
Short summary
Short summary
Aerosol particles in the stratosphere affect our climate. Climate models therefore need an accurate description of their properties and evolution. Satellites measure how strongly aerosol particles extinguish light passing through the stratosphere. We describe a method to use such aerosol extinction data to retrieve the number and sizes of the aerosol particles and calculate their optical effects. The resulting data sets for models are validated against ground-based and balloon observations.
Qin Wang, Bo Zeng, Gong Chen, and Yaoting Li
Geosci. Model Dev., 18, 1769–1784, https://doi.org/10.5194/gmd-18-1769-2025, https://doi.org/10.5194/gmd-18-1769-2025, 2025
Short summary
Short summary
This study evaluates the performance of four planetary boundary layer (PBL) schemes in near-surface wind fields over the Sichuan Basin, China. Using 112 sensitivity experiments with the Weather Research and Forecasting (WRF) model and focusing on 28 wind events, it is found that wind direction was less sensitive to the PBL schemes. The quasi-normal scale elimination (QNSE) scheme captured temporal variations best, while the Mellor–Yamada–Janjić (MYJ) scheme had the least error in wind speed.
Tai-Long He, Nikhil Dadheech, Tammy M. Thompson, and Alexander J. Turner
Geosci. Model Dev., 18, 1661–1671, https://doi.org/10.5194/gmd-18-1661-2025, https://doi.org/10.5194/gmd-18-1661-2025, 2025
Short summary
Short summary
It is computationally expensive to infer greenhouse gas (GHG) emissions using atmospheric observations. This is partly due to the detailed model used to represent atmospheric transport. We demonstrate how a machine learning (ML) model can be used to simulate high-resolution atmospheric transport. This type of ML model will help estimate GHG emissions using dense observations, which are becoming increasingly common with the proliferation of urban monitoring networks and geostationary satellites.
Wei Li, Beiming Tang, Patrick C. Campbell, Youhua Tang, Barry Baker, Zachary Moon, Daniel Tong, Jianping Huang, Kai Wang, Ivanka Stajner, and Raffaele Montuoro
Geosci. Model Dev., 18, 1635–1660, https://doi.org/10.5194/gmd-18-1635-2025, https://doi.org/10.5194/gmd-18-1635-2025, 2025
Short summary
Short summary
The study describes the updates of NOAA's current UFS-AQMv7 air quality forecast model by incorporating the latest scientific and structural changes in CMAQv5.4. An evaluation during the summer of 2023 shows that the updated model overall improves the simulation of MDA8 O3 by reducing the bias by 8%–12% in the contiguous US. PM2.5 predictions have mixed results due to wildfire, highlighting the need for future refinements.
Yanwei Zhu, Aitor Atencia, Markus Dabernig, and Yong Wang
Geosci. Model Dev., 18, 1545–1559, https://doi.org/10.5194/gmd-18-1545-2025, https://doi.org/10.5194/gmd-18-1545-2025, 2025
Short summary
Short summary
Most works have delved into convective weather nowcasting, and only a few works have discussed the nowcasting uncertainty for variables at the surface level. Hence, we proposed a method to estimate uncertainty. Generating appropriate noises associated with the characteristic of the error in analysis can simulate the uncertainty of nowcasting. This method can contribute to the estimation of near–surface analysis uncertainty in both nowcasting applications and ensemble nowcasting development.
Joël Thanwerdas, Antoine Berchet, Lionel Constantin, Aki Tsuruta, Michael Steiner, Friedemann Reum, Stephan Henne, and Dominik Brunner
Geosci. Model Dev., 18, 1505–1544, https://doi.org/10.5194/gmd-18-1505-2025, https://doi.org/10.5194/gmd-18-1505-2025, 2025
Short summary
Short summary
The Community Inversion Framework (CIF) brings together methods for estimating greenhouse gas fluxes from atmospheric observations. The initial ensemble method implemented in CIF was found to be incomplete and could hardly be compared to other ensemble methods employed in the inversion community. In this paper, we present and evaluate a new implementation of the ensemble mode, building upon the initial developments.
Astrid Kerkweg, Timo Kirfel, Duong H. Do, Sabine Griessbach, Patrick Jöckel, and Domenico Taraborrelli
Geosci. Model Dev., 18, 1265–1286, https://doi.org/10.5194/gmd-18-1265-2025, https://doi.org/10.5194/gmd-18-1265-2025, 2025
Short summary
Short summary
Normally, the Modular Earth Submodel System (MESSy) is linked to complete dynamic models to create chemical climate models. However, the modular concept of MESSy and the newly developed DWARF component presented here make it possible to create simplified models that contain only one or a few process descriptions. This is very useful for technical optimisation, such as porting to GPUs, and can be used to create less complex models, such as a chemical box model.
Peter Wind and Willem van Caspel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3571, https://doi.org/10.5194/egusphere-2024-3571, 2025
Short summary
Short summary
This paper presents a numerical method to assess the origin of air pollution. Combined with a numerical air pollution transport and chemistry model, it can follow the contributions from a large number of emission sources. The result is a series of maps that give the relative contributions from for example all European countries at each point.
Julian Vogel, Sebastian Stadler, Ganesh Chockalingam, Afshin Afshari, Johanna Henning, and Matthias Winkler
EGUsphere, https://doi.org/10.5194/egusphere-2025-144, https://doi.org/10.5194/egusphere-2025-144, 2025
Short summary
Short summary
This study presents a toolkit to simplify input data creation for the urban microclimate model PALM-4U. It introduces novel methods to automate the use of open data sources. Our analysis of four test cases created from different geographic data sources shows variations in temperature, humidity, and wind speed, influenced by data quality. Validation indicates that the automated methods yield results comparable to expert-driven approaches, facilitating user-friendly urban climate modeling.
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev., 18, 1119–1139, https://doi.org/10.5194/gmd-18-1119-2025, https://doi.org/10.5194/gmd-18-1119-2025, 2025
Short summary
Short summary
An enhanced emission module has been developed for the PALM model system, improving flexibility and scalability of emission source representation across different sectors. A model for parametrized domestic emissions has also been included, for which an idealized model run is conducted for particulate matter (PM10). The results show that, in addition to individual sources and diurnal variations in energy consumption, vertical transport and urban topology play a role in concentration distribution.
Gregor Ehrensperger, Thorsten Simon, Georg J. Mayr, and Tobias Hell
Geosci. Model Dev., 18, 1141–1153, https://doi.org/10.5194/gmd-18-1141-2025, https://doi.org/10.5194/gmd-18-1141-2025, 2025
Short summary
Short summary
As lightning is a brief and localized event, it is not explicitly resolved in atmospheric models. Instead, expert-based auxiliary descriptions are used to assess it. This study explores how AI can improve our understanding of lightning without relying on traditional expert knowledge. We reveal that AI independently identified the key factors known to experts as essential for lightning in the Alps region. This shows how knowledge discovery could be sped up in areas with limited expert knowledge.
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev., 18, 1103–1118, https://doi.org/10.5194/gmd-18-1103-2025, https://doi.org/10.5194/gmd-18-1103-2025, 2025
Short summary
Short summary
The effect of the assumed atmospheric nucleation mechanism on particle number concentrations and size distribution was investigated. Two quite different mechanisms involving sulfuric acid and ammonia or a biogenic organic vapor gave quite similar results which were consistent with measurements at 26 measurement stations across Europe. The number of larger particles that serve as cloud condensation nuclei showed little sensitivity to the assumed nucleation mechanism.
Tim Radke, Susanne Fuchs, Christian Wilms, Iuliia Polkova, and Marc Rautenhaus
Geosci. Model Dev., 18, 1017–1039, https://doi.org/10.5194/gmd-18-1017-2025, https://doi.org/10.5194/gmd-18-1017-2025, 2025
Short summary
Short summary
In our study, we built upon previous work to investigate the patterns artificial intelligence (AI) learns to detect atmospheric features like tropical cyclones (TCs) and atmospheric rivers (ARs). As primary objective, we adopt a method to explain the AI used and investigate the plausibility of learned patterns. We find that plausible patterns are learned for both TCs and ARs. Hence, the chosen method is very useful for gaining confidence in the AI-based detection of atmospheric features.
Raphaël Périllat, Sylvain Girard, and Irène Korsakissok
EGUsphere, https://doi.org/10.5194/egusphere-2024-3838, https://doi.org/10.5194/egusphere-2024-3838, 2025
Short summary
Short summary
We developed a method to improve decision-making during nuclear crises by predicting the spread of radiation more efficiently. Existing approaches are often too slow, especially when analyzing complex data like radiation maps. Our method combines techniques to simplify these maps and predict them quickly using statistical tools. This approach could help authorities respond faster and more accurately in emergencies, reducing risks to the population and the environment.
Shaofeng Hua, Gang Chen, Baojun Chen, Mingshan Li, and Xin Xu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3834, https://doi.org/10.5194/egusphere-2024-3834, 2025
Short summary
Short summary
Hail forecasting using numerical models remains a challenge. In this study, we found that the commonly used graupel-to-hail conversion parameterization method led to hail overforecasting in heavy rainfall cases where no hail was observed. By incorporating the spongy wet growth process, we successfully mitigated hail overforecasting. The modified scheme also produced hail in real hail events. This research contributes to a better understanding of hail formation.
Stefan Noll, Carsten Schmidt, Patrick Hannawald, Wolfgang Kausch, and Stefan Kimeswenger
EGUsphere, https://doi.org/10.5194/egusphere-2024-3512, https://doi.org/10.5194/egusphere-2024-3512, 2025
Short summary
Short summary
Non-thermal emission from chemical reactions in the Earth's middle und upper atmosphere strongly contributes to the brightness of the night sky below about 2.3 µm. The new Paranal Airglow Line and Continuum Emission model calculates the emission spectrum and its variability with an unprecedented accuracy. Relying on a large spectroscopic data set from astronomical spectrographs and theoretical molecular/atomic data, it is valuable for airglow research and astronomical observatories.
Felipe Cifuentes, Henk Eskes, Enrico Dammers, Charlotte Bryan, and Folkert Boersma
Geosci. Model Dev., 18, 621–649, https://doi.org/10.5194/gmd-18-621-2025, https://doi.org/10.5194/gmd-18-621-2025, 2025
Short summary
Short summary
We tested the capability of the flux divergence approach (FDA) to reproduce known NOx emissions using synthetic NO2 satellite column retrievals from high-resolution model simulations. The FDA accurately reproduced NOx emissions when column observations were limited to the boundary layer and when the variability of the NO2 lifetime, the NOx : NO2 ratio, and NO2 profile shapes were correctly modeled. This introduces strong model dependency, reducing the simplicity of the original FDA formulation.
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025, https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary
Short summary
We explore a high-level programming model for porting numerical weather prediction (NWP) model codes to graphics processing units (GPUs). We present a Python rewrite with the domain-specific library GT4Py (GridTools for Python) of two renowned cloud microphysics schemes and the associated tangent-linear and adjoint algorithms. We find excellent portability, competitive GPU performance, robust execution on diverse computing architectures, and enhanced code maintainability and user productivity.
Pieter Rijsdijk, Henk Eskes, Arlene Dingemans, K. Folkert Boersma, Takashi Sekiya, Kazuyuki Miyazaki, and Sander Houweling
Geosci. Model Dev., 18, 483–509, https://doi.org/10.5194/gmd-18-483-2025, https://doi.org/10.5194/gmd-18-483-2025, 2025
Short summary
Short summary
Clustering high-resolution satellite observations into superobservations improves model validation and data assimilation applications. In our paper, we derive quantitative uncertainties for satellite NO2 column observations based on knowledge of the retrievals, including a detailed analysis of spatial error correlations and representativity errors. The superobservations and uncertainty estimates are tested in a global chemical data assimilation system and are found to improve the forecasts.
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025, https://doi.org/10.5194/gmd-18-433-2025, 2025
Short summary
Short summary
This paper presents the Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool (ML-AMPSIT), a computationally efficient tool that uses machine learning algorithms for sensitivity analysis in atmospheric models. It is tested with the Weather Research and Forecasting (WRF) model coupled with the Noah-Multiparameterization (Noah-MP) land surface model to investigate sea breeze circulation sensitivity to vegetation-related parameters.
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025, https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary
Short summary
Radiation is relevant to the atmospheric impact on people and infrastructure in cities as it can influence the urban heat island, building energy consumption, and human thermal comfort. A new urban radiation model, assuming a more realistic form of urban morphology, is coupled to the urban climate model Town Energy Balance (TEB). The new TEB is evaluated with a reference radiation model for a variety of urban morphologies, and an improvement in the simulated radiative observables is found.
Qike Yang, Chun Zhao, Jiawang Feng, Gudongze Li, Jun Gu, Zihan Xia, Mingyue Xu, and Zining Yang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-229, https://doi.org/10.5194/gmd-2024-229, 2025
Revised manuscript accepted for GMD
Short summary
Short summary
This study presents the first comprehensive evaluation of unstructured meshes using the iAMAS model over Antarctica, encompassing both surface and upper-level meteorological fields. Comparison with ERA5 and observational data reveals that the iAMAS model performs well in simulating the Antarctic atmosphere; iAMAS demonstrates comparable, and in some cases superior, performance in simulating temperature and wind speed in East Antarctica when compared to ERA5.
Zebediah Engberg, Roger Teoh, Tristan Abbott, Thomas Dean, Marc E. J. Stettler, and Marc L. Shapiro
Geosci. Model Dev., 18, 253–286, https://doi.org/10.5194/gmd-18-253-2025, https://doi.org/10.5194/gmd-18-253-2025, 2025
Short summary
Short summary
Contrails forming in some atmospheric conditions may persist and become strongly warming cirrus, while in other conditions may be neutral or cooling. We develop a contrail forecast model to predict contrail climate forcing for any arbitrary point in space and time and explore integration into flight planning and air traffic management. This approach enables contrail interventions to target high-probability high-climate-impact regions and reduce unintended consequences of contrail management.
Nils Eingrüber, Alina Domm, Wolfgang Korres, and Karl Schneider
Geosci. Model Dev., 18, 141–160, https://doi.org/10.5194/gmd-18-141-2025, https://doi.org/10.5194/gmd-18-141-2025, 2025
Short summary
Short summary
Climate change adaptation measures like unsealings can reduce urban heat stress. As grass grid pavers have never been parameterized for microclimate model simulations with ENVI-met, a new parameterization was developed based on field measurements. To analyse the cooling potential, scenario analyses were performed for a densely developed area in Cologne. Statistically significant average cooling effects of up to −11.1 K were found for surface temperature and up to −2.9 K for 1 m air temperature.
Cited articles
Anderson, J. R., Hardy, E. E., Roach, J. T., and Witmer, R. E.: A land use
and land cover classification system for use with remote sensor data, Tech.
rep., United States Geological Service,
available at: https://pubs.usgs.gov/pp/0964/report.pdf (last access: 20 October 2020), 1976. a
Badger, J., Frank, H., Hahmann, A. N., and Giebel, G.: Wind-climate estimation
based on mesoscale and microscale modeling: Statistical-dynamical downscaling
for wind energy applications, J. Appl. Meteorol. Clim., 53, 1901–1919,
https://doi.org/10.1175/JAMC-D-13-0147.1, 2014. a, b
Badger, J., Sempreviva, A., Söderberg, S., Costa, P., Simoes, T.,
Estanqueiro, A., Gottschall, J., Dörenkämper, M., Callies, D.,
Navarro Montesinos, J., González Rouco, J., Garcia Bustamante, E., and
Bauwens, I.: Report on Link to Global Wind Atlas and National Wind Atlases – Deliverable D4.7, Technical Report, 37 pages 4.7, Technical University of
Denmark, https://doi.org/10.5281/zenodo.3243193, 2018. a
Barcons, J., Avila, M., and Folch, A.: Diurnal cycle RANS simulations applied
to wind resource assessment, Wind Energy, 22, 269–282,
https://doi.org/10.1002/we.2283, 2019. a
Danielson, J. J. and Gesch, D. B.: Global multi-resolution terrain elevation
data 2010 (GMTED2010), Tech. Rep. 2011-1073, U.S. Geological Survey
Open-File Report, available at: https://pubs.usgs.gov/of/2011/1073/ (last access: 19 October 2019), 2011. a
Dask Development Team: Dask: Library for dynamic task scheduling,
available at: https://dask.org (last access: 19 October 2019), 2016. a
de Ferranti, J.: Digital Elevation Data,
available at: http://viewfinderpanoramas.org/dem3.html (last access: 23 January 2020),
2014. a
Donlon, C. J., Martin, M., Stark, J. D., Roberts-Jones, J., Fiedler, E., and
Wimmer, W.: The Operational Sea Surface Temperature and Sea Ice analysis
(OSTIA), Remote Sens. Environ., 116, 140–158, https://doi.org/10.1016/j.rse.2010.10.017,
2012. a, b
Dörenkämper, M., Optis, M., Monahan, A., and Steinfeld, G.: On the
Offshore advection of Boundary-Layer Structures and the Influence
on Offshore Wind Conditions, Bound.-Lay. Meteorol., 155, 459–482,
https://doi.org/10.1007/s10546-015-0008-x, 2015. a
Doubrawa, P., Barthelmie, R. J., Pryor, S. C., Hasager, C. B., Badger, M., and
Karagali, I.: Satellite winds as a tool for offshore wind resource
assessment: The Great Lakes Wind Atlas, Remote Sens. Environ., 168,
349–359, https://doi.org/10.1016/j.rse.2015.07.008, 2015. a, b
Draxl, C., Clifton, A., Hodge, B.-M., and McCaa, J.: The Wind Integration
National Dataset (WIND) Toolkit, Appl. Energ., 151, 355–366,
https://doi.org/10.1016/j.apenergy.2015.03.121,
2015. a
Drüke, S., Steinfeld, G., Heinemann, D., and Günther, R.: Generation of
a wind and stability atlas for the optimized utilization of offshore wind
resources in the North Sea Region, Poster Presentation at EGU 2014, Vienna
EGU2014-14375, Geophysical Research Abstracts – Volume 16,
available at: https://www.muk.uni-hannover.de/uploads/tx_tkpublikationen/Poster_EGU_20140424_final_01.pdf (last access: 19 October 2019), 2014. a
Duraisamy, V. J., Dupont, E., and Carissimo, B.: Downscaling wind energy
resource from mesoscale to microscale model and data assimilating field
measurements, J. Phys.-Conf. Ser., 555, 012031,
https://doi.org/10.1088/1742-6596/555/1/012031, 2014. a
Farr, T., Rosen, P., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick,
M., Paller, M., Rodriguez, E., Roth, L., and Seal, D.: The shuttle radar
topography mission, Rev. Geophys., 45, 2, https://doi.org/10.1029/2005RG000183, 2007. a
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A.,
Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G.,
Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The
Modern-Era Retrospective Analysis for Research and Applications,
Version 2 (MERRA-2), J. Climate, 30, 5419–5454,
https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a
González-Rouco, J. F., García-Bustamante, E., Hahmann, A. N., Karagili,
I., Navarro, J., Olsen, B. T., Sile, T., and Witha, B.: NEWA Report on
uncertainty quantification Deliverable D4.4, Tech. rep., Univ. Complutense
Madrid, https://doi.org/10.5281/zenodo.3382572, 2019. a, b
GWA: Global Wind Atlas, available at: https://www.globalwindatlas.info/, last
access: 18 October 2019. a
Hahmann, A., Pian, A., Lennard, C., and Mortensen, N.: Mesoscale Modelling for
the Wind Atlas of South Africa (WASA) Project – Phase II, Tech. Rep.
E-0188, DTU Wind Energy, Denmark,
available at: https://orbit.dtu.dk/files/192964222/DTU_Wind_Energy_E_0188.pdf (last access: 20 October 2020),
2018. a
Hahmann, A. N., Badger, J., Vincent, C. L., Kelly, M. C., Volker, P. J. H., and
Refslund, J.: Mesoscale modeling for the wind atlas for South Africa (WASA)
Project, Tech. Rep. TR-0050, DTU Wind Energy,
available at: https://orbit.dtu.dk/files/107110172/DTU_Wind_Energy_E_0050.pdf (last access: 19 October 2019), 2014. a, b
Hahmann, A. N., Vincent, C. L., Peña, A., Lange, J., and Hasager, C. B.:
Wind climate estimation using WRF model output: Method and model
sensitivities over the sea, Int. J. Climatol., 35, 3422–3439,
https://doi.org/10.1002/joc.4217, 2015. a
Hahmann, A. N., Davis, N. N., Dörenkämper, M., Sile, T., Witha, B., and Trei,
W.: WRF configuration files for NEWA mesoscale ensemble and production
simulations, Zenodo, https://doi.org/10.5281/zenodo.3709088, 2020a. a
Hahmann, A. N., Sile, T., Witha, B., Davis, N. N., Dörenkämper, M., Ezber, Y., García-Bustamante, E., Fidel González Rouco, J., Navarro, J., Olsen, B. T., and Söderberg, S.: The making of the New European Wind Atlas –
Part 1: Model sensitivity, Geosci. Model Dev., 13, 5053–5078, https://doi.org/10.5194/gmd-13-5053-2020, 2020b. a, b, c, d, e, f, g, h, i
Hasager, C. B., Hahmann, A. N., Ahsbahs, T., Karagali, I., Sile, T., Badger, M., and Mann, J.: Europe's offshore winds assessed with synthetic aperture radar, ASCAT and WRF, Wind Energ. Sci., 5, 375–390, https://doi.org/10.5194/wes-5-375-2020, 2020. a, b, c
Hong, S.-Y., Dudhia, J., and Chen, S.-H.: A revised approach to ice
microphysical processes for the bulk parameterization of clouds and
precipitation, Mon. Weather Rev., 132, 103–120,
https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2, 2004. a, b
Horvath, K., Koracin, D., Vellore, R., Jiang, J., and Belu, R.: Sub-kilometer
dynamical downscaling of near-surface winds in complex terrain using WRF
and MM5 mesoscale models, J. Geophys. Res.-Atmos., 117, D11111, https://doi.org/10.1029/2012JD017432, 2012. a
Hoyer, S. and Hamman, J.: xarray: N-D labeled arrays and datasets in
Python, J. Open Res. Softw., 5, p. 10, https://doi.org/10.5334/jors.148, 2017. a
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9,
99–104, https://doi.org/10.1109/MCSE.2007.55, 2007. a
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A.,
and Collins, W. D.: Radiative forcing by long–lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys. Res.,
113, D13103, https://doi.org/10.1029/2008JD009944, 2008. a
Jackson, P. S. and Hunt, J. C. R.: Turbulent wind flow over a low hill, Q. J.
Roy. Meteorol. Soc., 101, 929–955, https://doi.org/10.1002/qj.49710143015, 1975. a, b
Janjic, Z. I. and Zavisa, I.: The Step–Mountain Eta Coordinate Model: Further
developments of the convection, viscous sublayer, and turbulence closure
schemes, Mon. Weather Rev., 122, 927–945,
https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2, 1994. a
Jimenez, P. A. and Dudhia, J.: Improving the Representation of Resolved and
Unresolved Topographic Effects on Surface Wind in the WRF Model, J. Appl.
Meteorol. Clim., 51, 300–316, https://doi.org/10.1175/JAMC-D-11-084.1, 2012. a
Jimenez, P. A., Fidel Gonzalez-Rouco, J., Garcia-Bustamante, E., Navarro, J.,
Montavez, J. P., Vila-Guerau de Arellano, J., Dudhia, J., and Munoz-Roldan,
A.: Surface Wind Regionalization over Complex Terrain: Evaluation and
Analysis of a High-Resolution WRF Simulation, J. Appl. Meteorol. Clim., 49,
268–287, https://doi.org/10.1175/2009JAMC2175.1, 2010. a
Jones, E., Oliphant, T., Peterson, P., Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Jarrod Millman, K., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Jonkman, J. M., Butterfield, S., Musial, W., and Scott, G.: Definition of a
5-MW reference wind turbine for offshore system development, Technical
Report, 75 pages, NREL/TP-500-38060, National Renewable Energy Laboratory,
1617 Cole Boulevard, Golden, Colorado 80401-3393, https://doi.org/10.2172/947422, 2009. a
Kain, J. S.: The Kain–Fritsch convective parameterization: An update, J.
Appl. Meteorol. Clim., 43, 170–181,
https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2, 2004. a
Karagali, I., Badger, M., Hahmann, A. N., Peña, A., Hasager, C. B., and
Sempreviva, A. M.: Spatial and temporal variability of winds in the Northern
European Seas, Renew. Energ., 57, 200–210, 2013. a
Kelly, M. and Jørgensen, H. E.: Statistical characterization of roughness
uncertainty and impact on wind resource estimation, Wind Energy Sci., 2,
189–209, https://doi.org/10.5194/wes-2-189-2017, 2017. a
Kelly, M. and Troen, I.: Probabilistic stability and “tall” wind profiles:
theory and method for use in wind resource assessment, Wind Energy, 19,
227–241, 2016. a
Kotroni, V., Lagouvardos, K., and Lykoudis, S.: High-resolution model-based
wind atlas for Greece, Renew Sust. Energ. Rev., 30, 479–489,
https://doi.org/10.1016/j.rser.2013.10.016, 2014. a, b, c
Liu, Y., Warner, T., Liu, Y., Vincent, C., Wu, W., Mahoney, B., Swerdlin, S.,
Parks, K., and Boehnert, J.: Simultaneous nested modeling from the synoptic
scale to the LES scale for wind energy applications, J. Wind Eng. Ind.
Aerod., 99, 308–319, https://doi.org/10.1016/j.jweia.2011.01.013, 5th
International Symposium on Computational Wind Engineering (CWE2010), Chapel
Hill, NC, MAY 23-27, 2010, 2011. a
Lundquist, J., DuVivier, K., Kaffine, D., and Tomaszewski, J.: Costs and
consequences of wind turbine wake effects arising from uncoordinated wind
energy development, Nat. Energy, 4, 26–34,
https://doi.org/10.1038/s41560-018-0281-2, 2019. a
Makkonen, L.: Models for the growth of rime, glaze, icicles and wet snow on
structures, Philos. T. Roy. Soc. A, 358, 2913–2939,
https://doi.org/10.1098/rsta.2000.0690, 2000. a
Mann, J., Angelou, N., Arnqvist, J., Callies, D., Cantero, E., Arroyo, R. C.,
Courtney, M., Cuxart, J., Dellwik, E., Gottschall, J., Ivanell, S., Kühn,
P., Lea, G., Matos, J. C., Palma, J. M. L. M., Pauscher, L., Peña, A.,
Rodrigo, J. S., Söderberg, S., Vasiljevic, N., and Rodrigues, C. V.:
Complex terrain experiments in the New European Wind Atlas, Philos.
T. Roy. Soc. A, 375, 20160101, https://doi.org/10.1098/rsta.2016.0101, 2017. a
McKinney, W.: Data Structures for Statistical Computing in Python, in:
Proceedings of the 9th Python in Science Conference, edited by: van der Walt,
S. and Millman, J., 51–56,
available at: https://conference.scipy.org/proceedings/scipy2010/pdfs/mckinney.pdf (last access: 19 October 2019), 2010. a
Mellor, G. L. and Yamada, T.: Development of a turbulence closure model for
geophysical fluid problems, Rev. Geophys. Space Phys., 20, 851–875,
https://doi.org/10.1029/RG020i004p00851, 1982. a
Mortensen, N. G.: Wind resource assessment using the WAsP software, Tech.
rep., DTU Wind Energy, 2018. a
Mortensen, N. G., Said Said, U., and Badger, J.: Wind Atlas for Egypt,
available at: https://orbit.dtu.dk/files/52612711/Wind_Atlas_for_Egypt_paper.pdf (last access: 18 October 2018), 2006. a
Mortensen, N. G., Tindal, A., and Landberg, L.: Field validation of the RIX
performance indicator for flow in complex terrain., Paper presented at 2008
European Wind Energy Conference and Exhibition, Brussels, Belgium,
available at: https://orbit.dtu.dk/files/6394929/2008_58.pdf (last
access: 19 October 2019), 2008. a
Mortensen, N. G., Heathfield, D. N., Rathmann, O., and Nielsen, M.: Wind Atlas
Analysis and Application Program: WAsP 10 Help Facility, Tech. rep., DTU
Wind Energy,
available at: https://orbit.dtu.dk/files/116352660/WAsP_10_Help_Facility.pdf (last access: 20 October 2020),
2011. a
Mortensen, N. G., Hansen, J. C., and Kelly, M. C.: Wind Atlas for South Africa
(WASA) Western Cape and parts of Northern and Eastern Cape Observational Wind
Atlas for 10 Met. Masts in Northern, Western and Eastern Cape Provinces,
Tech. Rep. April, DTU Wind Energy,
available at: https://orbit.dtu.dk/ws/files/110948908/DTU_Wind_Energy_E_0072.pdf (last access: 19 October 2019), 2014. a, b
MWKEL: Windatlas Rheinland-Pfalz, Technical report, 48 pages, Ministerium
für Wirtschaft, Klimaschutz, Energie und Landesplanung Rheinland-Pfalz,
available at: https://mueef.rlp.de/fileadmin/mulewf/Themen/Energie_und_Strahlenschutz/Energie/1_rlp_windatlas_stand_24072013.pdf (last access: 18 October 2018), 2013. a
Nawri, N., Petersen, G., Bjornsson, H., Hahmann, A., Jónasson, K.,
Hasager, C., and Clausen, N.-E.: The wind energy potential of Iceland,
Renew. Energy, 69, 290–299, https://doi.org/10.1016/j.renene.2014.03.040, 2014. a
NCAR: WRF Model User's Page, WRF Version 3.8.1, https://doi.org/10.5065/D6MK6B4K, 2020. a
Oliphant, T. E.: A guide to NumPy,
available at: http://web.mit.edu/dvp/Public/numpybook.pdf (last access:
19 October 2019), 2006. a
Olsen, B. T.: Mesoscale to microscale coupling for determining site conditions
in complex terrain, PhD thesis, DTU Wind Energy, https://doi.org/10.11581/00000036,
2018. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python, J. Mach. Learn.
Res., 12, 2825–2830, 2011. a
Peña Diaz, A., Hahmann, A., Hasager, C., Bingöl, F., Karagali, I.,
Badger, J., Badger, M., and Clausen, N.-E.: South Baltic Wind Atlas: South
Baltic Offshore Wind Energy Regions Project, Tech. rep., Technical
University of Denmark,
available at: https://orbit.dtu.dk/files/5578113/ris-r-1775.pdf (last access: 20 October 2020), 2011. a, b
Petersen, E. L.: In search of the wind energy potential, J. Renew. Sustain.
Energy, 9, 052301, https://doi.org/10.1063/1.4999514, 2017. a
Petersen, E. L., Troen, I., Jørgensen, H. E., and Mann, J.: Are local wind
power resources well estimated?, Environ. Res. Lett., 8, 011005,
https://doi.org/10.1088/1748-9326/8/1/011005, 2013. a
Pineda, N., Jorba, O., Jorge, J., and Baldasano: Using NOAA-AVHRR and SPOT-VGT
data to estimate surface parameters: Application to a mesoscale
meteorological model, 1st Int. Symp. Recent Adv. Quant. Remote Sens., 1161,
16–20, https://doi.org/10.1080/0143116031000115201, 2002. a
Poulter, B., MacBean, N., Hartley, A., Khlystova, I., Arino, O., Betts, R., Bontemps, S., Boettcher, M., Brockmann, C., Defourny, P., Hagemann, S., Herold, M., Kirches, G., Lamarche, C., Lederer, D., Ottlé, C., Peters, M., and Peylin, P.: Plant functional type classification for earth system models: results from the European Space Agency's Land Cover Climate Change Initiative, Geosci. Model Dev., 8, 2315–2328, https://doi.org/10.5194/gmd-8-2315-2015, 2015. a
PyWAsP: PyWAsP, available at: https://www.wasp.dk/, last access: 9 January 2020. a
Rodrigues, C. V., Palma, J. M. L. M., and Rodrigues, Á. H.: Atmospheric
Flow over a Mountainous Region by a One-Way Coupled Approach Based on
Reynolds-Averaged Turbulence Modelling, Bound.-Lay. Meteorol., 159,
407–437, https://doi.org/10.1007/s10546-015-0116-7, 2016. a
Rohrig, K., Berkhout, V., Callies, D., Durstewitz, M., Faulstich,
S., Hahn, B., Jung, M., Pauscher, L., Seibel, A., Shan, M., Siefert, M., Steffen, J., Collmann, M., Czichon, S., Dörenkämper, M., Gottschall, J., Lange, B., Ruhle, A., Sayer, F., Stoevesandt, B., and Wenske, J.: Powering the 21st
century by wind energy – Options, facts, figures, Appl. Phys. Rev., 6,
031303, https://doi.org/10.1063/1.5089877, 2019. a
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P.,
Behringer, D., Hou, Y.-T., Chuang, H.-Y., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M.P., van den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E.: The NCEP climate forecast
system version 2, J. Climate, 27, 2185–2208, https://doi.org/10.1175/JCLI-D-12-00823.1,
2014. a
Santoni, C., García-Cartagena, E., Ciri, U., Iungo, G., and Leonardi,
S.: Coupling of mesoscale Weather Research and Forecasting model to a
high fidelity Large Eddy Simulation, J. Phys.-Conf. Ser., 1037,
062010, https://doi.org/10.1088/1742-6596/1037/6/062010, 2018. a
Sanz Rodrigo, J., Chávez Arroyo, R., Moriarty, P., Churchfield, M.,
Kosović, B., Réthoré, P.-E., Hansen, K., Hahmann, A., Mirocha, J., and
Rife, D.: Mesoscale to microscale wind farm flow modeling and evaluation,
WIREs Energy Environ., 6, e214, https://doi.org/10.1002/wene.214, 2017. a, b
Sanz Rodrigo, J., Chavez Arroyo, R. A., Witha, B., Dörenkämper, M.,
Gottschall, J., Avila, M., Arnqvist, J., Hahmann, A. N., and Sīle, T.:
The New European Wind Atlas Model Chain, J. Phys.-Conf. Ser., 1452, 012087, https://doi.org/10.1088/1742-6596/1452/1/012087, 2020. a
Sibson, R.: A brief description of natural neighbor interpolation (Chapter
2), in: Interpolating Multivar, Data, 21–36, John Wiley, 1981. a
Silva, J., Ribeiro, C., and Guedes, R.: Roughness length classification of
Corine Land Cover Classes, Proceedings of EWEC 2007, 710, 110,
available at: https://www.researchgate.net/publication/228474930_Roughness_length_classification_of_Corine_Land_Cover_classes (last access: 19 October 2019), 2007. a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda,
M. G., Huang, X.-Y., Wang, W., and Powers, J. G.: A Description of the
Advanced Research WRF Version 3, Tech. Rep. NCAR/TN-475+STR, National Center
for Atmospheric Research,
available at: https://opensky.ucar.edu/islandora/object/technotes3A500/datastream/PDF/view (last access: 19 October 2019), 2008. a, b
Starkov, A. and Landberg, L.: Wind atlas of Russia, in: World Renew, Energy
Congr. VI, 1217–1220, Pergamon, https://doi.org/10.1016/B978-008043865-8/50252-X,
2000. a
Storm, B., Dudhia, J., Basu, S., Swift, A., and Giammanco, I.: Evaluation of
the Weather Research and Forecasting model on forecasting low-level jets:
implications for wind energy, Wind Energy, 12, 81–90, https://doi.org/10.1002/we.288,
2009. a
Tammelin, B., Vihma, T., Atlaskin, E., Badger, J., Fortelius, C., Gregow, H.,
Horttanainen, M., Hyvönen, R., Kilpinen, J., Latikka, J., Ljungberg, K.,
Mortensen, N. G., Niemelä, S., Ruosteenoja, K., Salonen, K., Suomi, I.,
and Venäläinen, A.: Production of the Finnish Wind Atlas, Wind
Energy, 16, 19–35, https://doi.org/10.1002/we.517, 2013. a, b, c
Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M. A., Mitchell, K., Ek,
M., Gayno, G., Wegiel, J., and Cuenca, R. H.: Implementation and verification
of the unified Noah land surface model in the WRF model., in: 20th
conference on weather analysis and forecasting/16th conference on numerical
weather prediction, Seattle, 12–16 January 2004, AMS,
available at: https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm (last access: 19 October 2019), 2004. a
Troen, I. and Petersen, E. L.: European Wind Atlas, Published for the
Commission of the European Communities, Directorate-General for Science,
Research, and Development, Brussels, Belgium by Risø National Laboratory,
available at: https://orbit.dtu.dk/files/112135732/european_wind_atlas.pdf (last
access: 19 October 2019), 1989. a, b, c, d
Van Der Walt, S., Colbert, S. C., and Varoquaux, G.: The NumPy array: A
structure for efficient numerical computation, Comput. Sci. Eng., 13,
22–30, https://doi.org/10.1109/MCSE.2011.37, 2011. a
Vincent, C. L. and Hahmann, A. N.: The Impact of Grid and Spectral Nudging on
the Variance of the Near-Surface Wind Speed, J. Appl. Meteorol. Clim., 54,
1021–1038, https://doi.org/10.1175/JAMC-D-14-0047.1, 2015. a
Wang, W., Dudhia, J., and Chen, M.: Application of WRF – How to get better
performance, National Center for Atmospheric Research, Boulder, CO, USA,
available at: http://www2.mmm.ucar.edu/wrf/users/tutorial/201901/chen_best_practices.pdf,
last access: 19 December 2019. a
Weiter, A., Schneider, M., Peltret, D., and Mengelkamp, H.-T.: Electricity
production by wind turbines as a means for the verification of wind
simulations, Meteorologische Z., 28, 69–77,
https://doi.org/10.1127/metz/2019/0924, 2019. a, b, c
Westerhellweg, A., Neumann, T., and Riedel, V.: FINO1 Mast Correction,
available at: https://pdfs.semanticscholar.org/cf85/2b7bc731b071162e537edf45f9578f4ec86e.pdf (last access: 10 August 2020), 2012. a
Wijnant, I., van Ulft, B., van Stratum, B., Barkmeijer, J., Onvlee, J.,
de Valk, C., Knoop, S., Kok, S., Marseille, G., Baltink, H. K., and Stepek,
A.: The Dutch Offshore Wind Atlas (DOWA): Description of the dataset, Tech.
Rep. TR-380, Royal Netherlands Meteorological Institute (KNMI),
available at: https://www.dutchoffshorewindatlas.nl/ (last access:
21 January 2020), 2019. a, b
Short summary
This is the second of two papers that document the creation of the New European Wind Atlas (NEWA). The paper includes a detailed description of the technical and practical aspects that went into running the mesoscale simulations and the microscale downscaling for generating the climatology. A comprehensive evaluation of each component of the NEWA model chain is presented using observations from a large set of tall masts located all over Europe.
This is the second of two papers that document the creation of the New European Wind Atlas...