Articles | Volume 13, issue 10
https://doi.org/10.5194/gmd-13-5079-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-5079-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Making of the New European Wind Atlas – Part 2: Production and evaluation
Martin Dörenkämper
CORRESPONDING AUTHOR
Fraunhofer Institute for Wind Energy Systems, Oldenburg, Germany
Wind Energy Department, Technical University of Denmark, Roskilde, Denmark
Björn Witha
ForWind, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
energy & meteo systems GmbH, Oldenburg, Germany
Andrea N. Hahmann
Wind Energy Department, Technical University of Denmark, Roskilde, Denmark
Neil N. Davis
Wind Energy Department, Technical University of Denmark, Roskilde, Denmark
Jordi Barcons
Barcelona Supercomputer Center, Barcelona, Spain
Yasemin Ezber
Eurasia Institute of Earth Sciences, Istanbul Technical University, Istanbul, Turkey
Elena García-Bustamante
Wind Energy Unit, CIEMAT, Madrid, Spain
J. Fidel González-Rouco
Dept. of Earth Physics and Astrophysics, University Complutense of Madrid, Madrid, Spain
Jorge Navarro
Wind Energy Unit, CIEMAT, Madrid, Spain
Mariano Sastre-Marugán
Dept. of Earth Physics and Astrophysics, University Complutense of Madrid, Madrid, Spain
Tija Sīle
Institute of Numerical Modelling, Department of Physics, University of Latvia, Riga, Latvia
Wilke Trei
ForWind, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
Mark Žagar
Vestas Wind Systems A/S, Aarhus, Denmark
Jake Badger
Wind Energy Department, Technical University of Denmark, Roskilde, Denmark
Julia Gottschall
Fraunhofer Institute for Wind Energy Systems, Oldenburg, Germany
Javier Sanz Rodrigo
Wind Energy Department, National Renewable Energy Centre (CENER), Sarriguren, Spain
Jakob Mann
Wind Energy Department, Technical University of Denmark, Roskilde, Denmark
Related authors
Johanna Borowski, Sandra Schwegmann, Kerstin Avila, and Martin Dörenkämper
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-117, https://doi.org/10.5194/wes-2025-117, 2025
Preprint under review for WES
Short summary
Short summary
Assessing the wind resource and mitigating its associated uncertainties are crucial to wind farm profitability. The study quantifies the uncertainty due to inter-annual variability, averaging 6.5 % and ranging from 1 % to 14 %, using long-term, quality-controlled wind measurements from tall met masts in terrain of varying complexity. Further, the results indicate that machine learning models are beneficial to mitigate the impact of inter-annual variability in heterogeneous and complex terrain.
Bjarke T. E. Olsen, Andrea N. Hahmann, Nicolas G. Alonso-de-Linaje, Mark Žagar, and Martin Dörenkämper
Geosci. Model Dev., 18, 4499–4533, https://doi.org/10.5194/gmd-18-4499-2025, https://doi.org/10.5194/gmd-18-4499-2025, 2025
Short summary
Short summary
Low-level jets (LLJs) are strong winds in the lower atmosphere that are important for wind energy as turbines get taller. This study compares a weather model (WRF) with real data across five North and Baltic Sea sites. Adjusting the model improved accuracy over the widely used ERA5. In key offshore regions, LLJs occur 10–15 % of the time and significantly boost wind power, especially in spring and summer, contributing up to 30 % of total capacity in some areas.
Lukas Vollmer, Balthazar Arnoldus Maria Sengers, and Martin Dörenkämper
Wind Energ. Sci., 9, 1689–1693, https://doi.org/10.5194/wes-9-1689-2024, https://doi.org/10.5194/wes-9-1689-2024, 2024
Short summary
Short summary
This study proposes a modification to a well-established wind farm parameterization used in mesoscale models. The wind speed at the location of the turbine, which is used to calculate power and thrust, is corrected to approximate the free wind speed. Results show that the modified parameterization produces more accurate estimates of the turbine’s power curve.
Markus Sommerfeld, Martin Dörenkämper, Jochem De Schutter, and Curran Crawford
Wind Energ. Sci., 8, 1153–1178, https://doi.org/10.5194/wes-8-1153-2023, https://doi.org/10.5194/wes-8-1153-2023, 2023
Short summary
Short summary
This study investigates the performance of pumping-mode ground-generation airborne wind energy systems by determining power-optimal flight trajectories based on realistic, k-means clustered, vertical wind velocity profiles. These profiles, derived from mesoscale weather simulations at an offshore and an onshore site in Europe, are incorporated into an optimal control model that maximizes average cycle power by optimizing the kite's trajectory.
Anna von Brandis, Gabriele Centurelli, Jonas Schmidt, Lukas Vollmer, Bughsin' Djath, and Martin Dörenkämper
Wind Energ. Sci., 8, 589–606, https://doi.org/10.5194/wes-8-589-2023, https://doi.org/10.5194/wes-8-589-2023, 2023
Short summary
Short summary
We propose that considering large-scale wind direction changes in the computation of wind farm cluster wakes is of high relevance. Consequently, we present a new solution for engineering modeling tools that accounts for the effect of such changes in the propagation of wakes. The new model is evaluated with satellite data in the German Bight area. It has the potential to reduce uncertainty in applications such as site assessment and short-term power forecasting.
Markus Sommerfeld, Martin Dörenkämper, Jochem De Schutter, and Curran Crawford
Wind Energ. Sci., 7, 1847–1868, https://doi.org/10.5194/wes-7-1847-2022, https://doi.org/10.5194/wes-7-1847-2022, 2022
Short summary
Short summary
This research explores the ground-generation airborne wind energy system (AWES) design space and investigates scaling effects by varying design parameters such as aircraft wing size, aerodynamic efficiency and mass. Therefore, representative simulated onshore and offshore wind data are implemented into an AWES trajectory optimization model. We estimate optimal annual energy production and capacity factors as well as a minimal operational lift-to-weight ratio.
Beatriz Cañadillas, Maximilian Beckenbauer, Juan J. Trujillo, Martin Dörenkämper, Richard Foreman, Thomas Neumann, and Astrid Lampert
Wind Energ. Sci., 7, 1241–1262, https://doi.org/10.5194/wes-7-1241-2022, https://doi.org/10.5194/wes-7-1241-2022, 2022
Short summary
Short summary
Scanning lidar measurements combined with meteorological sensors and mesoscale simulations reveal the strong directional and stability dependence of the wake strength in the direct vicinity of wind farm clusters.
Jörge Schneemann, Frauke Theuer, Andreas Rott, Martin Dörenkämper, and Martin Kühn
Wind Energ. Sci., 6, 521–538, https://doi.org/10.5194/wes-6-521-2021, https://doi.org/10.5194/wes-6-521-2021, 2021
Short summary
Short summary
A wind farm can reduce the wind speed in front of it just by its presence and thus also slightly impact the available power. In our study we investigate this so-called global-blockage effect, measuring the inflow of a large offshore wind farm with a laser-based remote sensing method up to several kilometres in front of the farm. Our results show global blockage under a certain atmospheric condition and operational state of the wind farm; during other conditions it is not visible in our data.
Julia Gottschall and Martin Dörenkämper
Wind Energ. Sci., 6, 505–520, https://doi.org/10.5194/wes-6-505-2021, https://doi.org/10.5194/wes-6-505-2021, 2021
Andrea N. Hahmann, Tija Sīle, Björn Witha, Neil N. Davis, Martin Dörenkämper, Yasemin Ezber, Elena García-Bustamante, J. Fidel González-Rouco, Jorge Navarro, Bjarke T. Olsen, and Stefan Söderberg
Geosci. Model Dev., 13, 5053–5078, https://doi.org/10.5194/gmd-13-5053-2020, https://doi.org/10.5194/gmd-13-5053-2020, 2020
Short summary
Short summary
Wind energy resource assessment routinely uses numerical weather prediction model output. We describe the evaluation procedures used for picking the suitable blend of model setup and parameterizations for simulating European wind climatology with the WRF model. We assess the simulated winds against tall mast measurements using a suite of metrics, including the Earth Mover's Distance, which diagnoses the performance of each ensemble member using the full wind speed and direction distribution.
Johanna Borowski, Sandra Schwegmann, Kerstin Avila, and Martin Dörenkämper
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-117, https://doi.org/10.5194/wes-2025-117, 2025
Preprint under review for WES
Short summary
Short summary
Assessing the wind resource and mitigating its associated uncertainties are crucial to wind farm profitability. The study quantifies the uncertainty due to inter-annual variability, averaging 6.5 % and ranging from 1 % to 14 %, using long-term, quality-controlled wind measurements from tall met masts in terrain of varying complexity. Further, the results indicate that machine learning models are beneficial to mitigate the impact of inter-annual variability in heterogeneous and complex terrain.
Bjarke T. E. Olsen, Andrea N. Hahmann, Nicolas G. Alonso-de-Linaje, Mark Žagar, and Martin Dörenkämper
Geosci. Model Dev., 18, 4499–4533, https://doi.org/10.5194/gmd-18-4499-2025, https://doi.org/10.5194/gmd-18-4499-2025, 2025
Short summary
Short summary
Low-level jets (LLJs) are strong winds in the lower atmosphere that are important for wind energy as turbines get taller. This study compares a weather model (WRF) with real data across five North and Baltic Sea sites. Adjusting the model improved accuracy over the widely used ERA5. In key offshore regions, LLJs occur 10–15 % of the time and significantly boost wind power, especially in spring and summer, contributing up to 30 % of total capacity in some areas.
Félix García-Pereira, Jesús Fidel González-Rouco, Nagore Meabe-Yanguas, Philipp de Vrese, Norman Julius Steinert, Johann Jungclaus, and Stephan Lorenz
EGUsphere, https://doi.org/10.5194/egusphere-2025-2126, https://doi.org/10.5194/egusphere-2025-2126, 2025
Short summary
Short summary
This work shows that changing the hydrological state of permafrost produces differences of up to 3 °C in the annual ground temperature, 1–2 m in the active layer thickness, and 5 million km2 in the permafrost extent. Including a deeper vertical thermal scheme reduces the extent decline by more than 2 million km2 in the highest radiative emission scenario. This is shown for the first time in fully-coupled experiments with an Earth System Model.
Mohammadreza Manami, Jakob Mann, Mikael Sjöholm, Guillaume Léa, and Guillaume Gorju
EGUsphere, https://doi.org/10.5194/egusphere-2025-2226, https://doi.org/10.5194/egusphere-2025-2226, 2025
Short summary
Short summary
This research investigates a novel method for directly estimating wind velocity variances from averaged Doppler spectra in the frequency domain. Compared to the conventional time-domain approach, the proposed method offers a substantial improvement. Despite some limitations, this study marks a significant advancement in turbulence estimation using pulsed Doppler lidars, which presents promising potential for wind turbine load assessments.
Warren Watson, Gerrit Wolken-Möhlmann, and Julia Gottschall
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-45, https://doi.org/10.5194/wes-2025-45, 2025
Revised manuscript under review for WES
Short summary
Short summary
In this study, we compare turbulence intensity measurements from two buoy-mounted wind lidars with data from a fixed lidar and a meteorological mast. Turbulence intensity is essential for understanding wind conditions but is often overestimated by floating systems due to wave motion. We applied a physics-based compensation to reduce these effects. Our findings show that motion compensation significantly improves accuracy, making floating lidar systems suitable for offshore wind site assessments.
Isadora L. Coimbra, Jakob Mann, José M. L. M. Palma, and Vasco T. P. Batista
Atmos. Meas. Tech., 18, 287–303, https://doi.org/10.5194/amt-18-287-2025, https://doi.org/10.5194/amt-18-287-2025, 2025
Short summary
Short summary
Dual-lidar measurements are explored here as a cost-effective alternative for measuring the wind at great heights. From measurements at a mountainous site, we showed that this methodology can accurately capture mean wind speeds and turbulence under different flow conditions, and we recommended optimal lidar placement and sampling rates. This methodology allows the construction of vertical wind profiles up to 430 m, surpassing traditional meteorological mast heights and single-lidar capabilities.
Farkhondeh (Hanie) Rouholahnejad and Julia Gottschall
Wind Energ. Sci., 10, 143–159, https://doi.org/10.5194/wes-10-143-2025, https://doi.org/10.5194/wes-10-143-2025, 2025
Short summary
Short summary
In wind energy, precise wind speed prediction at hub height is vital. Our study in the Dutch North Sea reveals that the on-site-trained random forest model outperforms the global reanalysis data, ERA5, in accuracy and precision. Trained within a 200 km range, the model effectively extends the wind speed vertically but experiences bias. It also outperforms ERA5 corrected with measurements in capturing wind speed variations and fine wind patterns, highlighting its potential for site assessment.
Martin Georg Jonietz Alvarez, Warren Watson, and Julia Gottschall
Wind Energ. Sci., 9, 2217–2233, https://doi.org/10.5194/wes-9-2217-2024, https://doi.org/10.5194/wes-9-2217-2024, 2024
Short summary
Short summary
Offshore wind measurements are often affected by gaps. We investigated how these gaps affect wind resource assessments and whether filling them reduces their effect. We find that the effect of gaps on the estimated long-term wind resource is lower than expected and that data gap filling does not significantly change the outcome. These results indicate a need to reduce current wind data availability requirements for offshore measurement campaigns.
Lukas Vollmer, Balthazar Arnoldus Maria Sengers, and Martin Dörenkämper
Wind Energ. Sci., 9, 1689–1693, https://doi.org/10.5194/wes-9-1689-2024, https://doi.org/10.5194/wes-9-1689-2024, 2024
Short summary
Short summary
This study proposes a modification to a well-established wind farm parameterization used in mesoscale models. The wind speed at the location of the turbine, which is used to calculate power and thrust, is corrected to approximate the free wind speed. Results show that the modified parameterization produces more accurate estimates of the turbine’s power curve.
Marta Bertelè, Paul J. Meyer, Carlo R. Sucameli, Johannes Fricke, Anna Wegner, Julia Gottschall, and Carlo L. Bottasso
Wind Energ. Sci., 9, 1419–1429, https://doi.org/10.5194/wes-9-1419-2024, https://doi.org/10.5194/wes-9-1419-2024, 2024
Short summary
Short summary
A neural observer is used to estimate shear and veer from the operational data of a large wind turbine equipped with blade load sensors. Comparison with independent measurements from a nearby met mast and profiling lidar demonstrate the ability of the
rotor as a sensorconcept to provide high-quality estimates of these inflow quantities based simply on already available standard operational data.
Abdul Haseeb Syed and Jakob Mann
Wind Energ. Sci., 9, 1381–1391, https://doi.org/10.5194/wes-9-1381-2024, https://doi.org/10.5194/wes-9-1381-2024, 2024
Short summary
Short summary
Wind flow consists of swirling patterns of air called eddies, some as big as many kilometers across, while others are as small as just a few meters. This paper introduces a method to simulate these large swirling patterns on a flat grid. Using these simulations we can better figure out how these large eddies affect big wind turbines in terms of loads and forces.
Liqin Jin, Mauro Ghirardelli, Jakob Mann, Mikael Sjöholm, Stephan Thomas Kral, and Joachim Reuder
Atmos. Meas. Tech., 17, 2721–2737, https://doi.org/10.5194/amt-17-2721-2024, https://doi.org/10.5194/amt-17-2721-2024, 2024
Short summary
Short summary
Three-dimensional wind fields can be accurately measured by sonic anemometers. However, the traditional mast-mounted sonic anemometers are not flexible in various applications, which can be potentially overcome by drones. Therefore, we conducted a proof-of-concept study by applying three continuous-wave Doppler lidars to characterize the complex flow around a drone to validate the results obtained by CFD simulations. Both methods show good agreement, with a velocity difference of 0.1 m s-1.
Félix García-Pereira, Jesús Fidel González-Rouco, Camilo Melo-Aguilar, Norman Julius Steinert, Elena García-Bustamante, Philip de Vrese, Johann Jungclaus, Stephan Lorenz, Stefan Hagemann, Francisco José Cuesta-Valero, Almudena García-García, and Hugo Beltrami
Earth Syst. Dynam., 15, 547–564, https://doi.org/10.5194/esd-15-547-2024, https://doi.org/10.5194/esd-15-547-2024, 2024
Short summary
Short summary
According to climate model estimates, the land stored 2 % of the system's heat excess in the last decades, while observational studies show it was around 6 %. This difference stems from these models using land components that are too shallow to constrain land heat uptake. Deepening the land component does not affect the surface temperature. This result can be used to derive land heat uptake estimates from different sources, which are much closer to previous observational reports.
Oscar García-Santiago, Andrea N. Hahmann, Jake Badger, and Alfredo Peña
Wind Energ. Sci., 9, 963–979, https://doi.org/10.5194/wes-9-963-2024, https://doi.org/10.5194/wes-9-963-2024, 2024
Short summary
Short summary
This study compares the results of two wind farm parameterizations (WFPs) in the Weather Research and Forecasting model, simulating a two-turbine array under three atmospheric stabilities with large-eddy simulations. We show that the WFPs accurately depict wind speeds either near turbines or in the far-wake areas, but not both. The parameterizations’ performance varies by variable (wind speed or turbulent kinetic energy) and atmospheric stability, with reduced accuracy in stable conditions.
Hugo Rubio, Daniel Hatfield, Charlotte Bay Hasager, Martin Kühn, and Julia Gottschall
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-11, https://doi.org/10.5194/amt-2024-11, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Unlocking offshore wind farms’ potential demands a precise understanding of available wind resources. Yet, limited in situ data in marine environments call for innovative solutions. This study delves into the world of satellite remote sensing and numerical models, exploring their capabilities and challenges in characterizing offshore wind dynamics. This investigation evaluates these tools against measurements from a floating ship-based lidar, collected through a novel campaign in the Baltic Sea.
Félix García-Pereira, Jesús Fidel González-Rouco, Thomas Schmid, Camilo Melo-Aguilar, Cristina Vegas-Cañas, Norman Julius Steinert, Pedro José Roldán-Gómez, Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, and Philipp de Vrese
SOIL, 10, 1–21, https://doi.org/10.5194/soil-10-1-2024, https://doi.org/10.5194/soil-10-1-2024, 2024
Short summary
Short summary
This work addresses air–ground temperature coupling and propagation into the subsurface in a mountainous area in central Spain using surface and subsurface data from six meteorological stations. Heat transfer of temperature changes at the ground surface occurs mainly by conduction controlled by thermal diffusivity of the subsurface, which varies with depth and time. A new methodology shows that near-surface diffusivity and soil moisture content changes with time are closely related.
Liqin Jin, Jakob Mann, Nikolas Angelou, and Mikael Sjöholm
Atmos. Meas. Tech., 16, 6007–6023, https://doi.org/10.5194/amt-16-6007-2023, https://doi.org/10.5194/amt-16-6007-2023, 2023
Short summary
Short summary
By sampling the spectra from continuous-wave Doppler lidars very fast, the rain-induced Doppler signal can be suppressed and the bias in the wind velocity estimation can be reduced. The method normalizes 3 kHz spectra by their peak values before averaging them down to 50 Hz. Over 3 h, we observe a significant reduction in the bias of the lidar data relative to the reference sonic data when the largest lidar focus distance is used. The more it rains, the more the bias is reduced.
Pedro José Roldán-Gómez, Jesús Fidel González-Rouco, Jason E. Smerdon, and Félix García-Pereira
Clim. Past, 19, 2361–2387, https://doi.org/10.5194/cp-19-2361-2023, https://doi.org/10.5194/cp-19-2361-2023, 2023
Short summary
Short summary
Analyses of reconstructed data suggest that the precipitation and availability of water have evolved in a similar way during the Last Millennium in different regions of the world, including areas of North America, Europe, the Middle East, southern Asia, northern South America, East Africa and the Indo-Pacific. To confirm this link between distant regions and to understand the reasons behind it, the information from different reconstructed and simulated products has been compiled and analyzed.
Nikolas Angelou, Jakob Mann, and Camille Dubreuil-Boisclair
Wind Energ. Sci., 8, 1511–1531, https://doi.org/10.5194/wes-8-1511-2023, https://doi.org/10.5194/wes-8-1511-2023, 2023
Short summary
Short summary
This study presents the first experimental investigation using two nacelle-mounted wind lidars that reveal the upwind and downwind conditions relative to a full-scale floating wind turbine. We find that in the case of floating wind turbines with small pitch and roll oscillating motions (< 1°), the ambient turbulence is the main driving factor that determines the propagation of the wake characteristics.
Markus Sommerfeld, Martin Dörenkämper, Jochem De Schutter, and Curran Crawford
Wind Energ. Sci., 8, 1153–1178, https://doi.org/10.5194/wes-8-1153-2023, https://doi.org/10.5194/wes-8-1153-2023, 2023
Short summary
Short summary
This study investigates the performance of pumping-mode ground-generation airborne wind energy systems by determining power-optimal flight trajectories based on realistic, k-means clustered, vertical wind velocity profiles. These profiles, derived from mesoscale weather simulations at an offshore and an onshore site in Europe, are incorporated into an optimal control model that maximizes average cycle power by optimizing the kite's trajectory.
Moritz Gräfe, Vasilis Pettas, Julia Gottschall, and Po Wen Cheng
Wind Energ. Sci., 8, 925–946, https://doi.org/10.5194/wes-8-925-2023, https://doi.org/10.5194/wes-8-925-2023, 2023
Short summary
Short summary
Inflow wind field measurements from nacelle-based lidar systems offer great potential for different applications including turbine control, load validation and power performance measurements. On floating wind turbines nacelle-based lidar measurements are affected by the dynamic behavior of the floating foundations. Therefore, the effects on lidar wind speed measurements induced by floater dynamics must be well understood. A new model for quantification of these effects is introduced in our work.
Philipp de Vrese, Goran Georgievski, Jesus Fidel Gonzalez Rouco, Dirk Notz, Tobias Stacke, Norman Julius Steinert, Stiig Wilkenskjeld, and Victor Brovkin
The Cryosphere, 17, 2095–2118, https://doi.org/10.5194/tc-17-2095-2023, https://doi.org/10.5194/tc-17-2095-2023, 2023
Short summary
Short summary
The current generation of Earth system models exhibits large inter-model differences in the simulated climate of the Arctic and subarctic zone. We used an adapted version of the Max Planck Institute (MPI) Earth System Model to show that differences in the representation of the soil hydrology in permafrost-affected regions could help explain a large part of this inter-model spread and have pronounced impacts on important elements of Earth systems as far to the south as the tropics.
Wei Fu, Alessandro Sebastiani, Alfredo Peña, and Jakob Mann
Wind Energ. Sci., 8, 677–690, https://doi.org/10.5194/wes-8-677-2023, https://doi.org/10.5194/wes-8-677-2023, 2023
Short summary
Short summary
Nacelle lidars with different beam scanning locations and two types of systems are considered for inflow turbulence estimations using both numerical simulations and field measurements. The turbulence estimates from a sonic anemometer at the hub height of a Vestas V52 turbine are used as references. The turbulence parameters are retrieved using the radial variances and a least-squares procedure. The findings from numerical simulations have been verified by the analysis of the field measurements.
Anna von Brandis, Gabriele Centurelli, Jonas Schmidt, Lukas Vollmer, Bughsin' Djath, and Martin Dörenkämper
Wind Energ. Sci., 8, 589–606, https://doi.org/10.5194/wes-8-589-2023, https://doi.org/10.5194/wes-8-589-2023, 2023
Short summary
Short summary
We propose that considering large-scale wind direction changes in the computation of wind farm cluster wakes is of high relevance. Consequently, we present a new solution for engineering modeling tools that accounts for the effect of such changes in the propagation of wakes. The new model is evaluated with satellite data in the German Bight area. It has the potential to reduce uncertainty in applications such as site assessment and short-term power forecasting.
Xiaoli Guo Larsén, Marc Imberger, Ásta Hannesdóttir, and Andrea N. Hahmann
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-102, https://doi.org/10.5194/wes-2022-102, 2023
Revised manuscript not accepted
Short summary
Short summary
We study how climate change will impact extreme winds and choice of turbine class. We use data from 18 CMIP6 members from a historic and a future period to access the change in the extreme winds. The analysis shows an overall increase in the extreme winds in the North Sea and the southern Baltic Sea, but a decrease over the Scandinavian Peninsula and most of the Baltic Sea. The analysis is inconclusive to whether higher or lower classes of turbines will be installed in the future.
Abdul Haseeb Syed, Jakob Mann, Andreas Platis, and Jens Bange
Wind Energ. Sci., 8, 125–139, https://doi.org/10.5194/wes-8-125-2023, https://doi.org/10.5194/wes-8-125-2023, 2023
Short summary
Short summary
Wind turbines extract energy from the incoming wind flow, which needs to be recovered. In very large offshore wind farms, the energy is recovered mostly from above the wind farm in a process called entrainment. In this study, we analyzed the effect of atmospheric stability on the entrainment process in large offshore wind farms using measurements recorded by a research aircraft. This is the first time that in situ measurements are used to study the energy recovery process above wind farms.
Hugo Rubio, Martin Kühn, and Julia Gottschall
Wind Energ. Sci., 7, 2433–2455, https://doi.org/10.5194/wes-7-2433-2022, https://doi.org/10.5194/wes-7-2433-2022, 2022
Short summary
Short summary
A proper development of offshore wind farms requires the accurate description of atmospheric phenomena like low-level jets. In this study, we evaluate the capabilities and limitations of numerical models to characterize the main jets' properties in the southern Baltic Sea. For this, a comparison against ship-mounted lidar measurements from the NEWA Ferry Lidar Experiment has been implemented, allowing the investigation of the model's capabilities under different temporal and spatial constraints.
Andrea N. Hahmann, Oscar García-Santiago, and Alfredo Peña
Wind Energ. Sci., 7, 2373–2391, https://doi.org/10.5194/wes-7-2373-2022, https://doi.org/10.5194/wes-7-2373-2022, 2022
Short summary
Short summary
We explore the changes in wind energy resources in northern Europe using output from simulations from the Climate Model Intercomparison Project (CMIP6) under the high-emission scenario. Our results show that climate change does not particularly alter annual energy production in the North Sea but could affect the seasonal distribution of these resources, significantly reducing energy production during the summer from 2031 to 2050.
Graziela Luzia, Andrea N. Hahmann, and Matti Juhani Koivisto
Wind Energ. Sci., 7, 2255–2270, https://doi.org/10.5194/wes-7-2255-2022, https://doi.org/10.5194/wes-7-2255-2022, 2022
Short summary
Short summary
This paper presents a comprehensive validation of time series produced by a mesoscale numerical weather model, a global reanalysis, and a wind atlas against observations by using a set of metrics that we present as requirements for wind energy integration studies. We perform a sensitivity analysis on the numerical weather model in multiple configurations, such as related to model grid spacing and nesting arrangements, to define the model setup that outperforms in various time series aspects.
Francisco José Cuesta-Valero, Hugo Beltrami, Stephan Gruber, Almudena García-García, and J. Fidel González-Rouco
Geosci. Model Dev., 15, 7913–7932, https://doi.org/10.5194/gmd-15-7913-2022, https://doi.org/10.5194/gmd-15-7913-2022, 2022
Short summary
Short summary
Inversions of subsurface temperature profiles provide past long-term estimates of ground surface temperature histories and ground heat flux histories at timescales of decades to millennia. Theses estimates complement high-frequency proxy temperature reconstructions and are the basis for studying continental heat storage. We develop and release a new bootstrap method to derive meaningful confidence intervals for the average surface temperature and heat flux histories from any number of profiles.
Felix Kelberlau and Jakob Mann
Atmos. Meas. Tech., 15, 5323–5341, https://doi.org/10.5194/amt-15-5323-2022, https://doi.org/10.5194/amt-15-5323-2022, 2022
Short summary
Short summary
Floating lidar systems are used for measuring wind speeds offshore, and their motion influences the measurements. This study describes the motion-induced bias on mean wind speed estimates by simulating the lidar sampling pattern of a moving lidar. An analytic model is used to validate the simulations. The bias is low and depends on amplitude and frequency of motion as well as on wind shear. It has been estimated for the example of the Fugro SEAWATCH wind lidar buoy carrying a ZX 300M lidar.
Markus Sommerfeld, Martin Dörenkämper, Jochem De Schutter, and Curran Crawford
Wind Energ. Sci., 7, 1847–1868, https://doi.org/10.5194/wes-7-1847-2022, https://doi.org/10.5194/wes-7-1847-2022, 2022
Short summary
Short summary
This research explores the ground-generation airborne wind energy system (AWES) design space and investigates scaling effects by varying design parameters such as aircraft wing size, aerodynamic efficiency and mass. Therefore, representative simulated onshore and offshore wind data are implemented into an AWES trajectory optimization model. We estimate optimal annual energy production and capacity factors as well as a minimal operational lift-to-weight ratio.
Carlos Calvo-Sancho, Javier Díaz-Fernández, Yago Martín, Pedro Bolgiani, Mariano Sastre, Juan Jesús González-Alemán, Daniel Santos-Muñoz, José Ignacio Farrán, and María Luisa Martín
Weather Clim. Dynam., 3, 1021–1036, https://doi.org/10.5194/wcd-3-1021-2022, https://doi.org/10.5194/wcd-3-1021-2022, 2022
Short summary
Short summary
Supercells are among the most complex and dangerous severe convective storms due to their associated phenomena (lightning, strong winds, large hail, flash floods, or tornadoes). In this survey we study the supercell synoptic configurations and convective environments in Spain using the atmospheric reanalysis ERA5. Supercells are grouped into hail (greater than 5 cm) and non-hail events in order to compare and analyze the two events. The results reveal statistically significant differences.
Beatriz Cañadillas, Maximilian Beckenbauer, Juan J. Trujillo, Martin Dörenkämper, Richard Foreman, Thomas Neumann, and Astrid Lampert
Wind Energ. Sci., 7, 1241–1262, https://doi.org/10.5194/wes-7-1241-2022, https://doi.org/10.5194/wes-7-1241-2022, 2022
Short summary
Short summary
Scanning lidar measurements combined with meteorological sensors and mesoscale simulations reveal the strong directional and stability dependence of the wake strength in the direct vicinity of wind farm clusters.
Wei Fu, Alfredo Peña, and Jakob Mann
Wind Energ. Sci., 7, 831–848, https://doi.org/10.5194/wes-7-831-2022, https://doi.org/10.5194/wes-7-831-2022, 2022
Short summary
Short summary
Measuring the variability of the wind is essential to operate the wind turbines safely. Lidars of different configurations have been placed on the turbines’ nacelle to measure the inflow remotely. This work found that the multiple-beam lidar is the only one out of the three employed nacelle lidars that can give detailed information about the inflow variability. The other two commercial lidars, which have two and four beams, respectively, measure only the fluctuation in the along-wind direction.
Nikolas Angelou, Jakob Mann, and Ebba Dellwik
Atmos. Chem. Phys., 22, 2255–2268, https://doi.org/10.5194/acp-22-2255-2022, https://doi.org/10.5194/acp-22-2255-2022, 2022
Short summary
Short summary
In this study we use state-of-the-art scanning wind lidars to investigate the wind field in the near-wake region of a mature, open-grown tree. Our measurements provide for the first time a picture of the mean and the turbulent spatial fluctuations in the flow in the wake of a tree in its natural environment. Our observations support the hypothesis that even simple models can realistically simulate the turbulent fluctuations in the wake and thus predict the effect of trees in flow models.
Elena Cantero, Javier Sanz, Fernando Borbón, Daniel Paredes, and Almudena García
Wind Energ. Sci., 7, 221–235, https://doi.org/10.5194/wes-7-221-2022, https://doi.org/10.5194/wes-7-221-2022, 2022
Short summary
Short summary
The impact of atmospheric stability on wind energy is widely demonstrated, so we have to know how to characterise it.
This work based on a meteorological mast located in a complex terrain compares and evaluates different instrument set-ups and methodologies for stability characterisation. The methods are examined considering their theoretical background, implementation complexity, instrumentation requirements and practical use in connection with wind energy applications.
Almudena García-García, Francisco José Cuesta-Valero, Hugo Beltrami, J. Fidel González-Rouco, and Elena García-Bustamante
Geosci. Model Dev., 15, 413–428, https://doi.org/10.5194/gmd-15-413-2022, https://doi.org/10.5194/gmd-15-413-2022, 2022
Short summary
Short summary
We study the sensitivity of a regional climate model to resolution and soil scheme changes. Our results show that the use of finer resolutions mainly affects precipitation outputs, particularly in summer due to changes in convective processes. Finer resolutions are associated with larger biases compared with observations. Changing the land surface model scheme affects the simulation of near-surface temperatures, yielding the lowest biases in mean temperature with the most complex soil scheme.
Marc Imberger, Xiaoli Guo Larsén, and Neil Davis
Adv. Geosci., 56, 77–87, https://doi.org/10.5194/adgeo-56-77-2021, https://doi.org/10.5194/adgeo-56-77-2021, 2021
Short summary
Short summary
Events like mid-latitude storms with their high winds have an impact on wind energy production and forecasting of such events is crucial. This study investigates the capabilities of a global weather prediction model MPAS and looks at how key parameters like storm intensity, arrival time and duration are represented compared to measurements and traditional methods. It is found that storm intensity is represented well while model drifts negatively influence estimation of arrival time and duration.
Jörge Schneemann, Frauke Theuer, Andreas Rott, Martin Dörenkämper, and Martin Kühn
Wind Energ. Sci., 6, 521–538, https://doi.org/10.5194/wes-6-521-2021, https://doi.org/10.5194/wes-6-521-2021, 2021
Short summary
Short summary
A wind farm can reduce the wind speed in front of it just by its presence and thus also slightly impact the available power. In our study we investigate this so-called global-blockage effect, measuring the inflow of a large offshore wind farm with a laser-based remote sensing method up to several kilometres in front of the farm. Our results show global blockage under a certain atmospheric condition and operational state of the wind farm; during other conditions it is not visible in our data.
Julia Gottschall and Martin Dörenkämper
Wind Energ. Sci., 6, 505–520, https://doi.org/10.5194/wes-6-505-2021, https://doi.org/10.5194/wes-6-505-2021, 2021
Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, J. Fidel González-Rouco, and Elena García-Bustamante
Clim. Past, 17, 451–468, https://doi.org/10.5194/cp-17-451-2021, https://doi.org/10.5194/cp-17-451-2021, 2021
Short summary
Short summary
We provide new global estimates of changes in surface temperature, surface heat flux, and continental heat storage since preindustrial times from geothermal data. Our analysis includes new measurements and a more comprehensive description of uncertainties than previous studies. Results show higher continental heat storage than previously reported, with global land mean temperature changes of 1 K and subsurface heat gains of 12 ZJ during the last half of the 20th century.
Pedro Santos, Jakob Mann, Nikola Vasiljević, Elena Cantero, Javier Sanz Rodrigo, Fernando Borbón, Daniel Martínez-Villagrasa, Belén Martí, and Joan Cuxart
Wind Energ. Sci., 5, 1793–1810, https://doi.org/10.5194/wes-5-1793-2020, https://doi.org/10.5194/wes-5-1793-2020, 2020
Short summary
Short summary
This study presents results from the Alaiz experiment (ALEX17), featuring the characterization of two cases with flow features ranging from 0.1 to 10 km in complex terrain. We show that multiple scanning lidars can capture in detail a type of atmospheric wave that can happen up to 10 % of the time at this site. The results are in agreement with multiple ground observations and demonstrate the role of atmospheric stability in flow phenomena that need to be better captured by numerical models.
Andreas Bechmann, Juan Pablo M. Leon, Bjarke T. Olsen, and Yavor V. Hristov
Wind Energ. Sci., 5, 1679–1688, https://doi.org/10.5194/wes-5-1679-2020, https://doi.org/10.5194/wes-5-1679-2020, 2020
Short summary
Short summary
When assessing wind resources for wind farm development, the first step is to measure the wind from tall meteorological masts. As met masts are expensive, they are not built at every planned wind turbine position but sparsely while trying to minimize the distance. However, this paper shows that it is better to focus on the
similaritybetween the met mast and the wind turbines than the distance. Met masts at similar positions reduce the uncertainty of wind resource assessments significantly.
Almudena García-García, Francisco José Cuesta-Valero, Hugo Beltrami, Fidel González-Rouco, Elena García-Bustamante, and Joel Finnis
Geosci. Model Dev., 13, 5345–5366, https://doi.org/10.5194/gmd-13-5345-2020, https://doi.org/10.5194/gmd-13-5345-2020, 2020
Andrea N. Hahmann, Tija Sīle, Björn Witha, Neil N. Davis, Martin Dörenkämper, Yasemin Ezber, Elena García-Bustamante, J. Fidel González-Rouco, Jorge Navarro, Bjarke T. Olsen, and Stefan Söderberg
Geosci. Model Dev., 13, 5053–5078, https://doi.org/10.5194/gmd-13-5053-2020, https://doi.org/10.5194/gmd-13-5053-2020, 2020
Short summary
Short summary
Wind energy resource assessment routinely uses numerical weather prediction model output. We describe the evaluation procedures used for picking the suitable blend of model setup and parameterizations for simulating European wind climatology with the WRF model. We assess the simulated winds against tall mast measurements using a suite of metrics, including the Earth Mover's Distance, which diagnoses the performance of each ensemble member using the full wind speed and direction distribution.
Nikolaos Schetakis, Rodrigo Crespo, José Luis Vázquez-Poletti, Mariano Sastre, Luis Vázquez, and Alessio Di Iorio
Geosci. Instrum. Method. Data Syst., 9, 407–415, https://doi.org/10.5194/gi-9-407-2020, https://doi.org/10.5194/gi-9-407-2020, 2020
Short summary
Short summary
In this paper, we present a compilation of the different radiation transport codes for the Martian surface that are currently used by various space agencies and institutions. In addition, as the execution of the tasks necessary to process all of these radiation data requires a high computational processing capacity, we link it to cloud computing, which is found to be an appropriate tool regarding the required resources.
Pedro Santos, Alfredo Peña, and Jakob Mann
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-960, https://doi.org/10.5194/acp-2020-960, 2020
Preprint withdrawn
Short summary
Short summary
We show that the vector of vertical flux of horizontal momentum and the vector of the mean vertical gradient of horizontal velocity are not aligned, based on Doppler wind lidar observations up to 500 m, both offshore and onshore. We illustrate that a mesoscale model output matches the observed mean wind speed and momentum fluxes well, but that this model output as well as idealized large-eddy simulations have deviations with the observations when looking at the turning of the wind.
Cited articles
Anderson, J. R., Hardy, E. E., Roach, J. T., and Witmer, R. E.: A land use
and land cover classification system for use with remote sensor data, Tech.
rep., United States Geological Service,
available at: https://pubs.usgs.gov/pp/0964/report.pdf (last access: 20 October 2020), 1976. a
Badger, J., Frank, H., Hahmann, A. N., and Giebel, G.: Wind-climate estimation
based on mesoscale and microscale modeling: Statistical-dynamical downscaling
for wind energy applications, J. Appl. Meteorol. Clim., 53, 1901–1919,
https://doi.org/10.1175/JAMC-D-13-0147.1, 2014. a, b
Badger, J., Sempreviva, A., Söderberg, S., Costa, P., Simoes, T.,
Estanqueiro, A., Gottschall, J., Dörenkämper, M., Callies, D.,
Navarro Montesinos, J., González Rouco, J., Garcia Bustamante, E., and
Bauwens, I.: Report on Link to Global Wind Atlas and National Wind Atlases – Deliverable D4.7, Technical Report, 37 pages 4.7, Technical University of
Denmark, https://doi.org/10.5281/zenodo.3243193, 2018. a
Barcons, J., Avila, M., and Folch, A.: Diurnal cycle RANS simulations applied
to wind resource assessment, Wind Energy, 22, 269–282,
https://doi.org/10.1002/we.2283, 2019. a
Danielson, J. J. and Gesch, D. B.: Global multi-resolution terrain elevation
data 2010 (GMTED2010), Tech. Rep. 2011-1073, U.S. Geological Survey
Open-File Report, available at: https://pubs.usgs.gov/of/2011/1073/ (last access: 19 October 2019), 2011. a
Dask Development Team: Dask: Library for dynamic task scheduling,
available at: https://dask.org (last access: 19 October 2019), 2016. a
de Ferranti, J.: Digital Elevation Data,
available at: http://viewfinderpanoramas.org/dem3.html (last access: 23 January 2020),
2014. a
Donlon, C. J., Martin, M., Stark, J. D., Roberts-Jones, J., Fiedler, E., and
Wimmer, W.: The Operational Sea Surface Temperature and Sea Ice analysis
(OSTIA), Remote Sens. Environ., 116, 140–158, https://doi.org/10.1016/j.rse.2010.10.017,
2012. a, b
Dörenkämper, M., Optis, M., Monahan, A., and Steinfeld, G.: On the
Offshore advection of Boundary-Layer Structures and the Influence
on Offshore Wind Conditions, Bound.-Lay. Meteorol., 155, 459–482,
https://doi.org/10.1007/s10546-015-0008-x, 2015. a
Doubrawa, P., Barthelmie, R. J., Pryor, S. C., Hasager, C. B., Badger, M., and
Karagali, I.: Satellite winds as a tool for offshore wind resource
assessment: The Great Lakes Wind Atlas, Remote Sens. Environ., 168,
349–359, https://doi.org/10.1016/j.rse.2015.07.008, 2015. a, b
Draxl, C., Clifton, A., Hodge, B.-M., and McCaa, J.: The Wind Integration
National Dataset (WIND) Toolkit, Appl. Energ., 151, 355–366,
https://doi.org/10.1016/j.apenergy.2015.03.121,
2015. a
Drüke, S., Steinfeld, G., Heinemann, D., and Günther, R.: Generation of
a wind and stability atlas for the optimized utilization of offshore wind
resources in the North Sea Region, Poster Presentation at EGU 2014, Vienna
EGU2014-14375, Geophysical Research Abstracts – Volume 16,
available at: https://www.muk.uni-hannover.de/uploads/tx_tkpublikationen/Poster_EGU_20140424_final_01.pdf (last access: 19 October 2019), 2014. a
Duraisamy, V. J., Dupont, E., and Carissimo, B.: Downscaling wind energy
resource from mesoscale to microscale model and data assimilating field
measurements, J. Phys.-Conf. Ser., 555, 012031,
https://doi.org/10.1088/1742-6596/555/1/012031, 2014. a
Farr, T., Rosen, P., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick,
M., Paller, M., Rodriguez, E., Roth, L., and Seal, D.: The shuttle radar
topography mission, Rev. Geophys., 45, 2, https://doi.org/10.1029/2005RG000183, 2007. a
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A.,
Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G.,
Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The
Modern-Era Retrospective Analysis for Research and Applications,
Version 2 (MERRA-2), J. Climate, 30, 5419–5454,
https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a
González-Rouco, J. F., García-Bustamante, E., Hahmann, A. N., Karagili,
I., Navarro, J., Olsen, B. T., Sile, T., and Witha, B.: NEWA Report on
uncertainty quantification Deliverable D4.4, Tech. rep., Univ. Complutense
Madrid, https://doi.org/10.5281/zenodo.3382572, 2019. a, b
GWA: Global Wind Atlas, available at: https://www.globalwindatlas.info/, last
access: 18 October 2019. a
Hahmann, A., Pian, A., Lennard, C., and Mortensen, N.: Mesoscale Modelling for
the Wind Atlas of South Africa (WASA) Project – Phase II, Tech. Rep.
E-0188, DTU Wind Energy, Denmark,
available at: https://orbit.dtu.dk/files/192964222/DTU_Wind_Energy_E_0188.pdf (last access: 20 October 2020),
2018. a
Hahmann, A. N., Badger, J., Vincent, C. L., Kelly, M. C., Volker, P. J. H., and
Refslund, J.: Mesoscale modeling for the wind atlas for South Africa (WASA)
Project, Tech. Rep. TR-0050, DTU Wind Energy,
available at: https://orbit.dtu.dk/files/107110172/DTU_Wind_Energy_E_0050.pdf (last access: 19 October 2019), 2014. a, b
Hahmann, A. N., Vincent, C. L., Peña, A., Lange, J., and Hasager, C. B.:
Wind climate estimation using WRF model output: Method and model
sensitivities over the sea, Int. J. Climatol., 35, 3422–3439,
https://doi.org/10.1002/joc.4217, 2015. a
Hahmann, A. N., Davis, N. N., Dörenkämper, M., Sile, T., Witha, B., and Trei,
W.: WRF configuration files for NEWA mesoscale ensemble and production
simulations, Zenodo, https://doi.org/10.5281/zenodo.3709088, 2020a. a
Hahmann, A. N., Sile, T., Witha, B., Davis, N. N., Dörenkämper, M., Ezber, Y., García-Bustamante, E., Fidel González Rouco, J., Navarro, J., Olsen, B. T., and Söderberg, S.: The making of the New European Wind Atlas –
Part 1: Model sensitivity, Geosci. Model Dev., 13, 5053–5078, https://doi.org/10.5194/gmd-13-5053-2020, 2020b. a, b, c, d, e, f, g, h, i
Hasager, C. B., Hahmann, A. N., Ahsbahs, T., Karagali, I., Sile, T., Badger, M., and Mann, J.: Europe's offshore winds assessed with synthetic aperture radar, ASCAT and WRF, Wind Energ. Sci., 5, 375–390, https://doi.org/10.5194/wes-5-375-2020, 2020. a, b, c
Hong, S.-Y., Dudhia, J., and Chen, S.-H.: A revised approach to ice
microphysical processes for the bulk parameterization of clouds and
precipitation, Mon. Weather Rev., 132, 103–120,
https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2, 2004. a, b
Horvath, K., Koracin, D., Vellore, R., Jiang, J., and Belu, R.: Sub-kilometer
dynamical downscaling of near-surface winds in complex terrain using WRF
and MM5 mesoscale models, J. Geophys. Res.-Atmos., 117, D11111, https://doi.org/10.1029/2012JD017432, 2012. a
Hoyer, S. and Hamman, J.: xarray: N-D labeled arrays and datasets in
Python, J. Open Res. Softw., 5, p. 10, https://doi.org/10.5334/jors.148, 2017. a
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9,
99–104, https://doi.org/10.1109/MCSE.2007.55, 2007. a
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A.,
and Collins, W. D.: Radiative forcing by long–lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys. Res.,
113, D13103, https://doi.org/10.1029/2008JD009944, 2008. a
Jackson, P. S. and Hunt, J. C. R.: Turbulent wind flow over a low hill, Q. J.
Roy. Meteorol. Soc., 101, 929–955, https://doi.org/10.1002/qj.49710143015, 1975. a, b
Janjic, Z. I. and Zavisa, I.: The Step–Mountain Eta Coordinate Model: Further
developments of the convection, viscous sublayer, and turbulence closure
schemes, Mon. Weather Rev., 122, 927–945,
https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2, 1994. a
Jimenez, P. A. and Dudhia, J.: Improving the Representation of Resolved and
Unresolved Topographic Effects on Surface Wind in the WRF Model, J. Appl.
Meteorol. Clim., 51, 300–316, https://doi.org/10.1175/JAMC-D-11-084.1, 2012. a
Jimenez, P. A., Fidel Gonzalez-Rouco, J., Garcia-Bustamante, E., Navarro, J.,
Montavez, J. P., Vila-Guerau de Arellano, J., Dudhia, J., and Munoz-Roldan,
A.: Surface Wind Regionalization over Complex Terrain: Evaluation and
Analysis of a High-Resolution WRF Simulation, J. Appl. Meteorol. Clim., 49,
268–287, https://doi.org/10.1175/2009JAMC2175.1, 2010. a
Jones, E., Oliphant, T., Peterson, P., Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Jarrod Millman, K., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Jonkman, J. M., Butterfield, S., Musial, W., and Scott, G.: Definition of a
5-MW reference wind turbine for offshore system development, Technical
Report, 75 pages, NREL/TP-500-38060, National Renewable Energy Laboratory,
1617 Cole Boulevard, Golden, Colorado 80401-3393, https://doi.org/10.2172/947422, 2009. a
Kain, J. S.: The Kain–Fritsch convective parameterization: An update, J.
Appl. Meteorol. Clim., 43, 170–181,
https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2, 2004. a
Karagali, I., Badger, M., Hahmann, A. N., Peña, A., Hasager, C. B., and
Sempreviva, A. M.: Spatial and temporal variability of winds in the Northern
European Seas, Renew. Energ., 57, 200–210, 2013. a
Kelly, M. and Jørgensen, H. E.: Statistical characterization of roughness
uncertainty and impact on wind resource estimation, Wind Energy Sci., 2,
189–209, https://doi.org/10.5194/wes-2-189-2017, 2017. a
Kelly, M. and Troen, I.: Probabilistic stability and “tall” wind profiles:
theory and method for use in wind resource assessment, Wind Energy, 19,
227–241, 2016. a
Kotroni, V., Lagouvardos, K., and Lykoudis, S.: High-resolution model-based
wind atlas for Greece, Renew Sust. Energ. Rev., 30, 479–489,
https://doi.org/10.1016/j.rser.2013.10.016, 2014. a, b, c
Liu, Y., Warner, T., Liu, Y., Vincent, C., Wu, W., Mahoney, B., Swerdlin, S.,
Parks, K., and Boehnert, J.: Simultaneous nested modeling from the synoptic
scale to the LES scale for wind energy applications, J. Wind Eng. Ind.
Aerod., 99, 308–319, https://doi.org/10.1016/j.jweia.2011.01.013, 5th
International Symposium on Computational Wind Engineering (CWE2010), Chapel
Hill, NC, MAY 23-27, 2010, 2011. a
Lundquist, J., DuVivier, K., Kaffine, D., and Tomaszewski, J.: Costs and
consequences of wind turbine wake effects arising from uncoordinated wind
energy development, Nat. Energy, 4, 26–34,
https://doi.org/10.1038/s41560-018-0281-2, 2019. a
Makkonen, L.: Models for the growth of rime, glaze, icicles and wet snow on
structures, Philos. T. Roy. Soc. A, 358, 2913–2939,
https://doi.org/10.1098/rsta.2000.0690, 2000. a
Mann, J., Angelou, N., Arnqvist, J., Callies, D., Cantero, E., Arroyo, R. C.,
Courtney, M., Cuxart, J., Dellwik, E., Gottschall, J., Ivanell, S., Kühn,
P., Lea, G., Matos, J. C., Palma, J. M. L. M., Pauscher, L., Peña, A.,
Rodrigo, J. S., Söderberg, S., Vasiljevic, N., and Rodrigues, C. V.:
Complex terrain experiments in the New European Wind Atlas, Philos.
T. Roy. Soc. A, 375, 20160101, https://doi.org/10.1098/rsta.2016.0101, 2017. a
McKinney, W.: Data Structures for Statistical Computing in Python, in:
Proceedings of the 9th Python in Science Conference, edited by: van der Walt,
S. and Millman, J., 51–56,
available at: https://conference.scipy.org/proceedings/scipy2010/pdfs/mckinney.pdf (last access: 19 October 2019), 2010. a
Mellor, G. L. and Yamada, T.: Development of a turbulence closure model for
geophysical fluid problems, Rev. Geophys. Space Phys., 20, 851–875,
https://doi.org/10.1029/RG020i004p00851, 1982. a
Mortensen, N. G.: Wind resource assessment using the WAsP software, Tech.
rep., DTU Wind Energy, 2018. a
Mortensen, N. G., Said Said, U., and Badger, J.: Wind Atlas for Egypt,
available at: https://orbit.dtu.dk/files/52612711/Wind_Atlas_for_Egypt_paper.pdf (last access: 18 October 2018), 2006. a
Mortensen, N. G., Tindal, A., and Landberg, L.: Field validation of the RIX
performance indicator for flow in complex terrain., Paper presented at 2008
European Wind Energy Conference and Exhibition, Brussels, Belgium,
available at: https://orbit.dtu.dk/files/6394929/2008_58.pdf (last
access: 19 October 2019), 2008. a
Mortensen, N. G., Heathfield, D. N., Rathmann, O., and Nielsen, M.: Wind Atlas
Analysis and Application Program: WAsP 10 Help Facility, Tech. rep., DTU
Wind Energy,
available at: https://orbit.dtu.dk/files/116352660/WAsP_10_Help_Facility.pdf (last access: 20 October 2020),
2011. a
Mortensen, N. G., Hansen, J. C., and Kelly, M. C.: Wind Atlas for South Africa
(WASA) Western Cape and parts of Northern and Eastern Cape Observational Wind
Atlas for 10 Met. Masts in Northern, Western and Eastern Cape Provinces,
Tech. Rep. April, DTU Wind Energy,
available at: https://orbit.dtu.dk/ws/files/110948908/DTU_Wind_Energy_E_0072.pdf (last access: 19 October 2019), 2014. a, b
MWKEL: Windatlas Rheinland-Pfalz, Technical report, 48 pages, Ministerium
für Wirtschaft, Klimaschutz, Energie und Landesplanung Rheinland-Pfalz,
available at: https://mueef.rlp.de/fileadmin/mulewf/Themen/Energie_und_Strahlenschutz/Energie/1_rlp_windatlas_stand_24072013.pdf (last access: 18 October 2018), 2013. a
Nawri, N., Petersen, G., Bjornsson, H., Hahmann, A., Jónasson, K.,
Hasager, C., and Clausen, N.-E.: The wind energy potential of Iceland,
Renew. Energy, 69, 290–299, https://doi.org/10.1016/j.renene.2014.03.040, 2014. a
NCAR: WRF Model User's Page, WRF Version 3.8.1, https://doi.org/10.5065/D6MK6B4K, 2020. a
Oliphant, T. E.: A guide to NumPy,
available at: http://web.mit.edu/dvp/Public/numpybook.pdf (last access:
19 October 2019), 2006. a
Olsen, B. T.: Mesoscale to microscale coupling for determining site conditions
in complex terrain, PhD thesis, DTU Wind Energy, https://doi.org/10.11581/00000036,
2018. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python, J. Mach. Learn.
Res., 12, 2825–2830, 2011. a
Peña Diaz, A., Hahmann, A., Hasager, C., Bingöl, F., Karagali, I.,
Badger, J., Badger, M., and Clausen, N.-E.: South Baltic Wind Atlas: South
Baltic Offshore Wind Energy Regions Project, Tech. rep., Technical
University of Denmark,
available at: https://orbit.dtu.dk/files/5578113/ris-r-1775.pdf (last access: 20 October 2020), 2011. a, b
Petersen, E. L.: In search of the wind energy potential, J. Renew. Sustain.
Energy, 9, 052301, https://doi.org/10.1063/1.4999514, 2017. a
Petersen, E. L., Troen, I., Jørgensen, H. E., and Mann, J.: Are local wind
power resources well estimated?, Environ. Res. Lett., 8, 011005,
https://doi.org/10.1088/1748-9326/8/1/011005, 2013. a
Pineda, N., Jorba, O., Jorge, J., and Baldasano: Using NOAA-AVHRR and SPOT-VGT
data to estimate surface parameters: Application to a mesoscale
meteorological model, 1st Int. Symp. Recent Adv. Quant. Remote Sens., 1161,
16–20, https://doi.org/10.1080/0143116031000115201, 2002. a
Poulter, B., MacBean, N., Hartley, A., Khlystova, I., Arino, O., Betts, R., Bontemps, S., Boettcher, M., Brockmann, C., Defourny, P., Hagemann, S., Herold, M., Kirches, G., Lamarche, C., Lederer, D., Ottlé, C., Peters, M., and Peylin, P.: Plant functional type classification for earth system models: results from the European Space Agency's Land Cover Climate Change Initiative, Geosci. Model Dev., 8, 2315–2328, https://doi.org/10.5194/gmd-8-2315-2015, 2015. a
PyWAsP: PyWAsP, available at: https://www.wasp.dk/, last access: 9 January 2020. a
Rodrigues, C. V., Palma, J. M. L. M., and Rodrigues, Á. H.: Atmospheric
Flow over a Mountainous Region by a One-Way Coupled Approach Based on
Reynolds-Averaged Turbulence Modelling, Bound.-Lay. Meteorol., 159,
407–437, https://doi.org/10.1007/s10546-015-0116-7, 2016. a
Rohrig, K., Berkhout, V., Callies, D., Durstewitz, M., Faulstich,
S., Hahn, B., Jung, M., Pauscher, L., Seibel, A., Shan, M., Siefert, M., Steffen, J., Collmann, M., Czichon, S., Dörenkämper, M., Gottschall, J., Lange, B., Ruhle, A., Sayer, F., Stoevesandt, B., and Wenske, J.: Powering the 21st
century by wind energy – Options, facts, figures, Appl. Phys. Rev., 6,
031303, https://doi.org/10.1063/1.5089877, 2019. a
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P.,
Behringer, D., Hou, Y.-T., Chuang, H.-Y., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M.P., van den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E.: The NCEP climate forecast
system version 2, J. Climate, 27, 2185–2208, https://doi.org/10.1175/JCLI-D-12-00823.1,
2014. a
Santoni, C., García-Cartagena, E., Ciri, U., Iungo, G., and Leonardi,
S.: Coupling of mesoscale Weather Research and Forecasting model to a
high fidelity Large Eddy Simulation, J. Phys.-Conf. Ser., 1037,
062010, https://doi.org/10.1088/1742-6596/1037/6/062010, 2018. a
Sanz Rodrigo, J., Chávez Arroyo, R., Moriarty, P., Churchfield, M.,
Kosović, B., Réthoré, P.-E., Hansen, K., Hahmann, A., Mirocha, J., and
Rife, D.: Mesoscale to microscale wind farm flow modeling and evaluation,
WIREs Energy Environ., 6, e214, https://doi.org/10.1002/wene.214, 2017. a, b
Sanz Rodrigo, J., Chavez Arroyo, R. A., Witha, B., Dörenkämper, M.,
Gottschall, J., Avila, M., Arnqvist, J., Hahmann, A. N., and Sīle, T.:
The New European Wind Atlas Model Chain, J. Phys.-Conf. Ser., 1452, 012087, https://doi.org/10.1088/1742-6596/1452/1/012087, 2020. a
Sibson, R.: A brief description of natural neighbor interpolation (Chapter
2), in: Interpolating Multivar, Data, 21–36, John Wiley, 1981. a
Silva, J., Ribeiro, C., and Guedes, R.: Roughness length classification of
Corine Land Cover Classes, Proceedings of EWEC 2007, 710, 110,
available at: https://www.researchgate.net/publication/228474930_Roughness_length_classification_of_Corine_Land_Cover_classes (last access: 19 October 2019), 2007. a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda,
M. G., Huang, X.-Y., Wang, W., and Powers, J. G.: A Description of the
Advanced Research WRF Version 3, Tech. Rep. NCAR/TN-475+STR, National Center
for Atmospheric Research,
available at: https://opensky.ucar.edu/islandora/object/technotes3A500/datastream/PDF/view (last access: 19 October 2019), 2008. a, b
Starkov, A. and Landberg, L.: Wind atlas of Russia, in: World Renew, Energy
Congr. VI, 1217–1220, Pergamon, https://doi.org/10.1016/B978-008043865-8/50252-X,
2000. a
Storm, B., Dudhia, J., Basu, S., Swift, A., and Giammanco, I.: Evaluation of
the Weather Research and Forecasting model on forecasting low-level jets:
implications for wind energy, Wind Energy, 12, 81–90, https://doi.org/10.1002/we.288,
2009. a
Tammelin, B., Vihma, T., Atlaskin, E., Badger, J., Fortelius, C., Gregow, H.,
Horttanainen, M., Hyvönen, R., Kilpinen, J., Latikka, J., Ljungberg, K.,
Mortensen, N. G., Niemelä, S., Ruosteenoja, K., Salonen, K., Suomi, I.,
and Venäläinen, A.: Production of the Finnish Wind Atlas, Wind
Energy, 16, 19–35, https://doi.org/10.1002/we.517, 2013. a, b, c
Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M. A., Mitchell, K., Ek,
M., Gayno, G., Wegiel, J., and Cuenca, R. H.: Implementation and verification
of the unified Noah land surface model in the WRF model., in: 20th
conference on weather analysis and forecasting/16th conference on numerical
weather prediction, Seattle, 12–16 January 2004, AMS,
available at: https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm (last access: 19 October 2019), 2004. a
Troen, I. and Petersen, E. L.: European Wind Atlas, Published for the
Commission of the European Communities, Directorate-General for Science,
Research, and Development, Brussels, Belgium by Risø National Laboratory,
available at: https://orbit.dtu.dk/files/112135732/european_wind_atlas.pdf (last
access: 19 October 2019), 1989. a, b, c, d
Van Der Walt, S., Colbert, S. C., and Varoquaux, G.: The NumPy array: A
structure for efficient numerical computation, Comput. Sci. Eng., 13,
22–30, https://doi.org/10.1109/MCSE.2011.37, 2011. a
Vincent, C. L. and Hahmann, A. N.: The Impact of Grid and Spectral Nudging on
the Variance of the Near-Surface Wind Speed, J. Appl. Meteorol. Clim., 54,
1021–1038, https://doi.org/10.1175/JAMC-D-14-0047.1, 2015. a
Wang, W., Dudhia, J., and Chen, M.: Application of WRF – How to get better
performance, National Center for Atmospheric Research, Boulder, CO, USA,
available at: http://www2.mmm.ucar.edu/wrf/users/tutorial/201901/chen_best_practices.pdf,
last access: 19 December 2019. a
Weiter, A., Schneider, M., Peltret, D., and Mengelkamp, H.-T.: Electricity
production by wind turbines as a means for the verification of wind
simulations, Meteorologische Z., 28, 69–77,
https://doi.org/10.1127/metz/2019/0924, 2019. a, b, c
Westerhellweg, A., Neumann, T., and Riedel, V.: FINO1 Mast Correction,
available at: https://pdfs.semanticscholar.org/cf85/2b7bc731b071162e537edf45f9578f4ec86e.pdf (last access: 10 August 2020), 2012. a
Wijnant, I., van Ulft, B., van Stratum, B., Barkmeijer, J., Onvlee, J.,
de Valk, C., Knoop, S., Kok, S., Marseille, G., Baltink, H. K., and Stepek,
A.: The Dutch Offshore Wind Atlas (DOWA): Description of the dataset, Tech.
Rep. TR-380, Royal Netherlands Meteorological Institute (KNMI),
available at: https://www.dutchoffshorewindatlas.nl/ (last access:
21 January 2020), 2019. a, b
Short summary
This is the second of two papers that document the creation of the New European Wind Atlas (NEWA). The paper includes a detailed description of the technical and practical aspects that went into running the mesoscale simulations and the microscale downscaling for generating the climatology. A comprehensive evaluation of each component of the NEWA model chain is presented using observations from a large set of tall masts located all over Europe.
This is the second of two papers that document the creation of the New European Wind Atlas...