Articles | Volume 13, issue 6
https://doi.org/10.5194/gmd-13-2805-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-2805-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Description and validation of the ice-sheet model Yelmo (version 1.0)
Complutense University of Madrid, Madrid, Spain
Geosciences Institute CSIC-UCM, Madrid, Spain
Potsdam Institute for Climate Impact Research, Potsdam, Germany
Jorge Alvarez-Solas
Complutense University of Madrid, Madrid, Spain
Geosciences Institute CSIC-UCM, Madrid, Spain
Marisa Montoya
Complutense University of Madrid, Madrid, Spain
Geosciences Institute CSIC-UCM, Madrid, Spain
Heiko Goelzer
Institute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, the Netherlands
Laboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, Belgium
Ralf Greve
Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
Arctic Research Center, Hokkaido University, Sapporo, Japan
Catherine Ritz
Institute for Geosciences and Environmental Research, Grenoble, France
Viewed
Total article views: 3,368 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 02 Oct 2019)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,362 | 936 | 70 | 3,368 | 90 | 71 |
- HTML: 2,362
- PDF: 936
- XML: 70
- Total: 3,368
- BibTeX: 90
- EndNote: 71
Total article views: 2,422 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 24 Jun 2020)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,802 | 561 | 59 | 2,422 | 77 | 58 |
- HTML: 1,802
- PDF: 561
- XML: 59
- Total: 2,422
- BibTeX: 77
- EndNote: 58
Total article views: 946 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 02 Oct 2019)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
560 | 375 | 11 | 946 | 13 | 13 |
- HTML: 560
- PDF: 375
- XML: 11
- Total: 946
- BibTeX: 13
- EndNote: 13
Viewed (geographical distribution)
Total article views: 3,368 (including HTML, PDF, and XML)
Thereof 2,866 with geography defined
and 502 with unknown origin.
Total article views: 2,422 (including HTML, PDF, and XML)
Thereof 2,152 with geography defined
and 270 with unknown origin.
Total article views: 946 (including HTML, PDF, and XML)
Thereof 714 with geography defined
and 232 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
17 citations as recorded by crossref.
- FastIsostasy v1.0 – a regional, accelerated 2D glacial isostatic adjustment (GIA) model accounting for the lateral variability of the solid Earth J. Swierczek-Jereczek et al. 10.5194/gmd-17-5263-2024
- Simulating the Laurentide Ice Sheet of the Last Glacial Maximum D. Moreno-Parada et al. 10.5194/tc-17-2139-2023
- Design and performance of ELSA v2.0: an isochronal model for ice-sheet layer tracing T. Rieckh et al. 10.5194/gmd-17-6987-2024
- A comparison of the stability and performance of depth-integrated ice-dynamics solvers A. Robinson et al. 10.5194/tc-16-689-2022
- Holocene warmth explains the Little Ice Age advance of Sermeq Kujalleq K. Kajanto et al. 10.1016/j.quascirev.2024.108840
- Reversibility of Greenland ice sheet mass loss under artificial carbon dioxide removal scenarios D. Höning et al. 10.1088/1748-9326/ad2129
- Glacial inception through rapid ice area increase driven by albedo and vegetation feedbacks M. Willeit et al. 10.5194/cp-20-597-2024
- Holocene thinning in central Greenland controlled by the Northeast Greenland Ice Stream I. Tabone et al. 10.1038/s41467-024-50772-5
- Antarctic tipping points triggered by the mid-Pliocene warm climate J. Blasco et al. 10.5194/cp-20-1919-2024
- The Earth system model CLIMBER-X v1.0 – Part 1: Climate model description and validation M. Willeit et al. 10.5194/gmd-15-5905-2022
- Exploring the impact of atmospheric forcing and basal drag on the Antarctic Ice Sheet under Last Glacial Maximum conditions J. Blasco et al. 10.5194/tc-15-215-2021
- Benchmarking the vertically integrated ice-sheet model IMAU-ICE (version 2.0) C. Berends et al. 10.5194/gmd-15-5667-2022
- Antarctic sensitivity to oceanic melting parameterizations A. Juarez-Martinez et al. 10.5194/tc-18-4257-2024
- Overshooting the critical threshold for the Greenland ice sheet N. Bochow et al. 10.1038/s41586-023-06503-9
- Modeling the Greenland englacial stratigraphy A. Born & A. Robinson 10.5194/tc-15-4539-2021
- Improvements on the discretisation of boundary conditions to the momentum balance for glacial ice C. Berends et al. 10.1017/jog.2024.45
- The Utrecht Finite Volume Ice-Sheet Model: UFEMISM (version 1.0) C. Berends et al. 10.5194/gmd-14-2443-2021
17 citations as recorded by crossref.
- FastIsostasy v1.0 – a regional, accelerated 2D glacial isostatic adjustment (GIA) model accounting for the lateral variability of the solid Earth J. Swierczek-Jereczek et al. 10.5194/gmd-17-5263-2024
- Simulating the Laurentide Ice Sheet of the Last Glacial Maximum D. Moreno-Parada et al. 10.5194/tc-17-2139-2023
- Design and performance of ELSA v2.0: an isochronal model for ice-sheet layer tracing T. Rieckh et al. 10.5194/gmd-17-6987-2024
- A comparison of the stability and performance of depth-integrated ice-dynamics solvers A. Robinson et al. 10.5194/tc-16-689-2022
- Holocene warmth explains the Little Ice Age advance of Sermeq Kujalleq K. Kajanto et al. 10.1016/j.quascirev.2024.108840
- Reversibility of Greenland ice sheet mass loss under artificial carbon dioxide removal scenarios D. Höning et al. 10.1088/1748-9326/ad2129
- Glacial inception through rapid ice area increase driven by albedo and vegetation feedbacks M. Willeit et al. 10.5194/cp-20-597-2024
- Holocene thinning in central Greenland controlled by the Northeast Greenland Ice Stream I. Tabone et al. 10.1038/s41467-024-50772-5
- Antarctic tipping points triggered by the mid-Pliocene warm climate J. Blasco et al. 10.5194/cp-20-1919-2024
- The Earth system model CLIMBER-X v1.0 – Part 1: Climate model description and validation M. Willeit et al. 10.5194/gmd-15-5905-2022
- Exploring the impact of atmospheric forcing and basal drag on the Antarctic Ice Sheet under Last Glacial Maximum conditions J. Blasco et al. 10.5194/tc-15-215-2021
- Benchmarking the vertically integrated ice-sheet model IMAU-ICE (version 2.0) C. Berends et al. 10.5194/gmd-15-5667-2022
- Antarctic sensitivity to oceanic melting parameterizations A. Juarez-Martinez et al. 10.5194/tc-18-4257-2024
- Overshooting the critical threshold for the Greenland ice sheet N. Bochow et al. 10.1038/s41586-023-06503-9
- Modeling the Greenland englacial stratigraphy A. Born & A. Robinson 10.5194/tc-15-4539-2021
- Improvements on the discretisation of boundary conditions to the momentum balance for glacial ice C. Berends et al. 10.1017/jog.2024.45
- The Utrecht Finite Volume Ice-Sheet Model: UFEMISM (version 1.0) C. Berends et al. 10.5194/gmd-14-2443-2021
Latest update: 18 Jan 2025
Short summary
Here we describe Yelmo v1.0, an intuitive and state-of-the-art hybrid ice sheet model. The model design and physics are described, and benchmark simulations are provided to validate its performance. Yelmo is a versatile ice sheet model that can be applied to a wide variety of problems.
Here we describe Yelmo v1.0, an intuitive and state-of-the-art hybrid ice sheet model. The model...