
Geosci. Model Dev., 13, 2805–2823, 2020
https://doi.org/10.5194/gmd-13-2805-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Description and validation of the ice-sheet model Yelmo (version 1.0)
Alexander Robinson1,2,3, Jorge Alvarez-Solas1,2, Marisa Montoya1,2, Heiko Goelzer4,5, Ralf Greve6,7, and
Catherine Ritz8

1Complutense University of Madrid, Madrid, Spain
2Geosciences Institute CSIC-UCM, Madrid, Spain
3Potsdam Institute for Climate Impact Research, Potsdam, Germany
4Institute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, the Netherlands
5Laboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, Belgium
6Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
7Arctic Research Center, Hokkaido University, Sapporo, Japan
8Institute for Geosciences and Environmental Research, Grenoble, France

Correspondence: Alexander Robinson (robinson@ucm.es)

Received: 24 September 2019 – Discussion started: 2 October 2019
Revised: 2 May 2020 – Accepted: 18 May 2020 – Published: 24 June 2020

Abstract. We describe the physics and features of the ice-
sheet model Yelmo, an open-source project intended for
collaborative development. Yelmo is a thermomechanical
model, solving for the coupled velocity and temperature so-
lutions of an ice sheet simultaneously. The ice dynamics
are currently treated via a “hybrid” approach combining the
shallow-ice and shallow-shelf/shelfy-stream approximations,
which makes Yelmo an apt choice for studying a wide variety
of problems. Yelmo’s main innovations lie in its flexible and
user-friendly infrastructure, which promotes portability and
facilitates long-term development. In particular, all physics
subroutines have been designed to be self-contained, so that
they can be easily ported from Yelmo to other models, or
easily replaced by improved or alternate methods in the fu-
ture. Furthermore, hard-coded model choices are eschewed,
replaced instead with convenient parameter options that al-
low the model to be adapted easily to different contexts. We
show results for different ice-sheet benchmark tests, and we
illustrate Yelmo’s performance for the Antarctic ice sheet.

1 Introduction

The field of continental-scale ice-sheet modeling started with
a handful of pioneering models (e.g., Huybrechts et al., 1988;
Ritz et al., 1997; Greve, 1997a). These models were com-
putationally efficient for the resources available at the time.

Typical grid resolutions were on the order of 20–40 km, and
generally the shallow ice approximation (SIA) was used to
solve the ice dynamics. These classic models have been most
useful for long-timescale paleo simulations in part because
they are fast but also because they are relatively simple in
design, usually relying on low-tech solutions to numerical
problems. Most of these models were designed before the
era of the high-performance computing cluster, which made
it challenging to build models otherwise.

Nowadays, a large number of ice-sheet models exist, sup-
ported by a growing and active community of developers.
Models today represent a broad spectrum of approaches
that incorporate different levels of physical complexity and
computational ingenuity. These models include hybrid ap-
proaches that heuristically combine the SIA with the shallow
shelf approximation (SSA) (e.g., Bueler and Brown, 2009;
Winkelmann et al., 2011; Pollard and DeConto, 2012; Pattyn,
2017; Quiquet et al., 2018) and higher-order approximations
(e.g., Goldberg, 2011; Cornford et al., 2013; Hoffman et al.,
2018; Lipscomb et al., 2019), including full Stokes solutions
(e.g., Larour et al., 2012; Gagliardini et al., 2013). Newer
models often feature finite-element/finite-volume methods
(e.g., Larour et al., 2012; Gagliardini et al., 2013; Hoffman
et al., 2018) or adaptive mesh refinement (Cornford et al.,
2013), which allows simulation of complex terrain and very
high resolution where it is needed (e.g., at the grounding line
in Antarctica). While more complex models are driving ad-
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vances in our understanding of the physics and relevant pro-
cesses of ice sheets over a range of timescales, simpler and
thus faster methods are still required to understand the evo-
lution of the ice sheets on multimillennial timescales.

Here we introduce the ice-sheet model Yelmo1, which is
intended to provide access to complex and robust model
physics through an intuitive model design. It is a hybrid
ice-dynamics model that is easy to use and configure. We
expect that Yelmo will be useful for long-timescale simu-
lations of the continental ice sheets, coupled climate–ice-
sheet modeling, ensemble simulations and uncertainty stud-
ies, as well as for teaching. Below, we first describe the
model design (Sect. 2), followed by the physics (Sect. 3),
timestepping approach (Sect. 4) and application program-
ming interface (API; Sect. 5). Then, we present results for
several benchmark experiments to validate the model per-
formance (Sect. 6) and simulations of the present-day and
glacial Antarctic ice sheet (Sect. 7), followed by the conclu-
sions (Sect. 8).

2 Model design

Yelmo has been inspired and largely derived from classical
ice-sheet models that have been used successfully for many
years – with the most in common with GRISLI (Ritz et al.,
1997; Quiquet et al., 2018) and SICOPOLIS (Greve, 1997a,
2019). However, in contrast to many models, Yelmo was de-
signed from scratch to run as a modular library that can be
called by other programs rather than as a stand-alone exe-
cutable. The strict application of this philosophy drove many
design choices and allowed us to develop a robust ice-sheet
model library with a clear API that would be difficult to de-
velop in an ad hoc way later. Thus, developing this frame-
work was a primary reason to build a new model, rather than
continuing the development of other active projects such as
GRISLI and SICOPOLIS.

Yelmo is written in Fortran 2003, which provides continu-
ity from previous code bases and supports the fact that clar-
ity and readability of the code are important features. Like
SICOPOLIS and other models, we have opted for “low-tech”
solutions whenever possible, meaning that internally coded
routines are preferred, and, thus, the external dependencies
of the model are kept to a minimum. This ensures that the
algorithms used remain accessible and easily changeable.
Nonetheless, Yelmo has two key dependencies: the NetCDF
library for convenient community-standard input/output ca-
pability and the Library of Iterative Solvers for linear sys-
tems (https://www.ssisc.org/lis/, last access: 2 May 2020)
(Lis, Nishida, 2010), which is used for solving the ellipti-
cal SSA equations. The latter can be compiled with OpenMP
parallelization active, which can speed up this computation-
ally intensive step.

1The name Yelmo refers to a semi-domed, rocky mountain in
the Guadarrama Mountains outside of Madrid, Spain.

Yelmo has been designed to be user friendly (i.e., straight-
forward to understand), accessible, portable and adaptable.
These features were facilitated by the design choice to sep-
arate what we call the “model accounting” from the model
physics itself and by following an object-oriented approach.
There are no global variables in Yelmo (except for a few
global constants related to the general physics of the planet
being simulated), which means that variables and parameters
are saved together in containers (called derived types in For-
tran) specific to each of the main Yelmo components, such
as dynamics or thermodynamics, as described in the sections
below. These containers make up the individual components
of the overall Yelmo object (itself a container) that contains
all of the variables, parameters and information needed to
simulate a given domain of the ice sheet. Multiple instances
of the Yelmo object can therefore be defined in a program
(e.g., one Yelmo-object instance for Greenland and one for
Antarctica), and each one will operate fully in isolation from
the others. This is the model accounting, which is of a spe-
cific design built into Yelmo and is thus the only part not
easily portable to other models.

The model physics, meanwhile, consists of subroutines
that are fully portable and, whenever possible, only rely on
native data types (e.g., scalar, vector and array). In other
words, the specific, non-portable design structure of the
Yelmo object does not contaminate the physics subroutines,
since the necessary variables and parameters are always
passed as arguments. This approach requires that all input
and output to subroutines must be defined as arguments. Each
argument must further always be given an intent characteris-
tic (in Fortran, the intent of an argument can be one of IN,
OUT or INOUT), which ensures that only the variables des-
tined for output from the routine can be modified inside it.
This approach not only aides debugging and provides pro-
grammatic safety but also provides a clear blueprint to users
of what each subroutine does. Most importantly, the subrou-
tines are thus fully self-contained and can be used in other
programs and contexts, as long as the correct arguments can
be provided.

Concerning the model accounting, the Yelmo object con-
tains all parameters and variables needed to run a given do-
main. For clarity and convenience, it has been divided into
four components: topography, dynamics, material properties
and thermodynamics (Fig. 1). Each component has an associ-
ated set of functions to load parameters, allocate and initial-
ize the variables, update the variables (i.e., the actual physics
calculation step), and finally terminate the instance of the
component at the end of the program. This pattern is fol-
lowed for all four components and represents the component-
level API.

Each component contains variables and parameters neces-
sary for the calculation of its specific physics; however each
component also relies on the variables defined in other com-
ponents since the ice sheet is a highly coupled and nonlin-
ear system. The benefit of the somewhat artificial division
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Figure 1. Overview of the Yelmo model structure highlighting state variables in the four components: topography, dynamics, material and
thermodynamics, as well as the boundary conditions required to run the model. The thick black border for boundary variables indicates that
these fields are never modified internally by Yelmo, while the components with a thin black border or dashed line are allowed to be modified
depending on the context. When, for example, the topography is updated (dashed line), no other components are allowed to be modified
(solid lines).

of components made here is that the use of INTENT state-
ments ensures that variables of a given component can only
be modified in the corresponding module. For example, when
the update subroutine of the topography module is called,
only the object containing topography variables is defined
as INTENT=INOUT, while the objects containing dynam-
ics, material and thermodynamics variables are all defined as
INTENT=IN. Analogous to the design of the physics sub-
routines, the use of intent statements here not only makes the
model blueprint clear but also enforces consistency with the
overall design of the Yelmo structure. The hope is that this
will not only make the model more user friendly but that it
will also naturally lead to more disciplined model develop-
ment in the future.

In addition to the four components that contain prognostic
and diagnostic model variables, the Yelmo object includes a
boundary component, which defines all fields that Yelmo re-
quires as input from external sources (Fig. 1). These fields
can be obtained from other coupled models or simply by
loading data; however Yelmo does not make any assump-
tions about their source. The boundary component is defined
as INTENT=IN in all modules, so that Yelmo does not have
the right to modify them internally. This conceptual isolation
of the ice-sheet model serves to ensure that coupling with
other models is as straightforward as possible, because it is
clear by design which variables should be provided to Yelmo
as boundary conditions. This is a key feature of Yelmo in
comparison with many other models.

Yelmo also makes use of a working precision variable,
which allows for the model to be compiled with any real
precision. For most applications, single precision (32 bits)
is sufficient. Double precision (64 bits) gives equivalent re-
sults for the tests we have made. Nonetheless, this choice is
left open to the user.

In terms of model physics, each component of Yelmo was
built to work independently, in the sense that a given com-

ponent is agnostic to the methods used to calculate variables
from other components. For example, the temperature and
velocity fields are used by the material component without
any knowledge about the physics and numerical approxima-
tions behind them. This means that sometimes simplifying
assumptions cannot be used, even though they may be valid
in some cases (such as assuming that the strain rate is only
due to SIA terms where the ice sheet is frozen to the bed).
However, the benefit is that typically the most general solu-
tions possible have been implemented for each component.
Thus, when the physics of one component is changed or up-
graded, it is likely that the other modules will not require any
modification.

Grid information is also stored in the main Yelmo object,
and a single grid is defined for use with all components. Like
many ice-sheet models, Yelmo uses the Arakawa C-grid stag-
gering approach (Arakawa and Lamb, 1977) extended to 3D,
as shown in Fig. 2. Scalar variables, such as temperature, are
defined at the cell centers, which in Yelmo are designated
as “aa-nodes”. Velocity components and gradients are calcu-
lated on cell edges (“ac-nodes”), and scalar coefficients, like
diffusivity in the SIA approach, are calculated on cell cor-
ners (“ab-nodes”). The specific numerical discretization of
the finite difference equations largely follows the approach
of Macayeal (1997). The advantage of this approach is that it
benefits from the natural staggering that occurs when calcu-
lating gradients (e.g., the surface slope is naturally defined on
the ac-nodes), but it also results in greater numerical stability
of the model (Macayeal, 1997).

Yelmo requires an evenly spaced Cartesian grid in the hori-
zontal direction, while the vertical component follows a clas-
sic sigma-coordinate system (Greve and Blatter, 2009). The
vertical axis ζ represents the relative height within the ice
sheet, running from ζ = 0 at the ice-sheet base to ζ = 1 at
the ice-sheet surface:

ζ(z)= h(z)/H, (1)
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Figure 2. Yelmo staggered grid definition and nomenclature. The
(a) horizontal grid assumes constant resolution in the x and y direc-
tions, while in the (b) vertical variable resolution is allowed. With
any given cell defined as a 3D box, scalar variables are calculated
on cell centers (aa-nodes), velocities are calculated on cell faces
(ac-nodes, edges in 2D), and scalar coefficients are calculated on
cell edges (ab-nodes, corners in 2D). Figure design adapted from
Hoffman et al. (2018).

where z is the elevation relative to present-day sea level, h(z)
is the ice thickness up to the elevation z within the ice sheet
and H is the total ice thickness. Yelmo can be defined with
any specified number of vertical grid points, which can be un-
evenly spaced. Typically, we have set nz = 20, and the ζ axis
is defined with higher resolution near the base and surface of
the ice sheet, which is important for resolving thermodynam-
ics and ages accurately. Use of the sigma-coordinate system
simplifies the numerics of an evolving domain in the verti-
cal direction and inherently results in higher resolution for
grid points with less ice thickness (Greve and Blatter, 2009).
Vertical velocities are calculated on ac-nodes in the vertical
and aa-nodes in the horizontal, while horizontal velocities
are calculated on ac-nodes in the horizontal and aa-nodes in
the vertical. Boundary conditions in a vertical column are
applied directly at the ice base and ice surface, which corre-
spond to ac-nodes (see Fig. 2).

3 Model physics

Yelmo solves for two prognostic variables using coupled
equations of mass and energy conservation: the ice thickness
(2D field) and ice temperature (3D field). Velocity (3D vector
field) is diagnosed from approximations of ice flow assum-
ing a nonlinear flow law. These equations are described in
the subsections below, along with additional considerations
related to each component. For more details on the deriva-
tion of the equations, thorough explanations can be found in
various references (Greve and Blatter, 2009; Cuffey and Pa-
terson, 2010) and thus are not repeated here.

3.1 Topography

The evolution of the ice thickness in the model is determined
from mass conservation:

∂H

∂t
=−O ·Hu+ ȧ+ ḃg+ ḃf− ċ, (2)

whereH is the ice thickness, u= (u,v) is the depth-averaged
horizontal velocity, ȧ is the surface mass balance, ḃg and ḃf
are the basal mass balance for grounded and floating ice, re-
spectively, and ċ is the calving rate at floating ice margins.
In Yelmo, in order to obtain more accurate mass balance ac-
counting, the advection of ice and source contributions are
treated separately as follows. First, a forward Euler explicit
method (or optionally an upwind implicit method) is used to
solve for the ice thickness without accounting for ȧ, ḃg, ḃf or
ċ. The depth-averaged horizontal velocity is obtained from
the dynamics component from the previous iteration (see
Timestepping below). Next the mass balance terms ȧ, ḃg and
ḃf are applied. It should be noted that the basal mass balance
of floating ice is a boundary variable for Yelmo (i.e., it is ob-
tained externally and passed to Yelmo), while the basal mass
balance of the grounded ice is calculated internally as part
of the thermodynamics solver (see Thermodynamics section
below).

Yelmo also includes special treatment of grid points at
the floating margin of the ice sheet, by making a distinc-
tion between ice-covered grid points that are totally and par-
tially filled following Albrecht et al. (2011) and Lipscomb
et al. (2019). This is done in a relatively simple, yet effec-
tive way to avoid artificially thin ice thickness at the ice
margin. For each floating ice-covered grid point that has an
ice-free neighbor, the reference ice thickness of the margin
point (Href) is defined as the minimum thickness of the di-
rect, ice-covered neighbors. This represents the minimum ice
thickness for which the cell can be considered completely
ice covered. The fraction of ice cover is then defined as
fice =min(H/Href,1). Whenever fice < 1, the grid cell is
considered dynamically inactive, which ensures zero ice flux
through the downstream edge of a partially filled margin cell.
In this way, the ice cell can be filled with ice from upstream,
and when the threshold of fice = 1 is reached, the ice shelf
can advance.

In the final mass conservation step, calving ċ is treated
at the floating ice margins. Currently, a simple threshold
method has been implemented, as well as a threshold+flux
method (Peyaud et al., 2007). In both methods, the calving
rate applied to the ice sheet is defined following Lipscomb
et al. (2019):

ċ =
Href−H

τc
, (3)

where τc is the characteristic calving time, usually set to
1–10 years, and Href is the margin ice thickness as defined
above. Setting τc to higher values facilitates ice-shelf growth
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and thus grounding-line advance in transient, glacial simula-
tions but has little impact on the steady-state distribution of
ice shelves for the present day. This calving rate is applied
only when the ice thickness of ice margin points is below a
threshold value (simple threshold method) or when the ice
thickness is below a threshold value and the upstream flux is
not sufficient to return the ice thickness to above the thresh-
old (threshold+flux method). For paleo simulations the lat-
ter is our preferred method, as it allows for more robust ice
shelf advance (Peyaud et al., 2007).

Once the ice thickness has been updated, Yelmo diagnoses
whether the ice should be grounded or floating. To facilitate
this step, the height above flotation as measured in ice thick-
ness, i.e., how close a grid point is to the Archimedes flota-
tion criterion, is calculated on each aa-node:

Hg =H −
ρsw

ρ
max(zsl− zb,0) , (4)

where ρ is the ice density and ρsw the seawater density, and
zsl and zb are the boundary fields of sea level and bedrock
elevation, respectively.Hg can thus be positive, zero or nega-
tive. WhenHg is positive, the ice thickness exceeds the flota-
tion criterion and is considered grounded, while when Hg is
zero or negative, the ice is considered floating.

Yelmo also calculates the grounded fraction of each grid
point, fg. On aa-nodes, fg is only assigned binary values to
maintain consistency with the overall grid definition: zero
when Hg ≤ 0 or one when Hg > 0. However, on ac-nodes,
the values of fg,acx and fg,acy are determined by linearly in-
terpolating Hg from the two bounding aa-nodes. When both
bounding aa-nodes are positive fg,ac = 1, and when both are
negative fg,ac = 0. When one aa-node is positive (Hg+ ) and
one aa-node is negative (Hg− ), the grounded fraction on the
ac-node is determined from linear interpolation:

fg,ac =
Hg+

(Hg+ −Hg−)
. (5)

Alternatively, it is possible to calculate fg via subgrid bilin-
ear interpolation of Hg to intermediate points to determine
the grounded area fraction. However, this operation is more
computationally intensive, and we find that in practice, the
simple linear interpolation method is sufficient.

The surface elevation (zs) is calculated following Pattyn
(2017) as

zs =max
[
zb+H,zsl+ (1−

ρ

ρsw
)H

]
. (6)

This approach ensures that the surface elevation solution
is consistent with the Archimedes flotation criterion on aa-
nodes.

The remaining tasks of the topography component are to
diagnose other useful topographic characteristics, such as
surface and ice thickness gradients (on ac-nodes) and topo-
graphic masks.

3.2 Material

The material component of Yelmo handles the calculation
of the rate factor, the strain rate tensor and effective strain
rate, the effective viscosity, and, optionally, the age of the
ice. Essentially, the material variables make the link between
thermodynamics and dynamics, since the rate factor depends
on temperature, and the strain rate depends on velocity. No
distinction is made between the type of approximation used
to solve the dynamics here – rather all equations follow from
the more general hydrostatic approximation (Greve and Blat-
ter, 2009).

The effective viscosity, used to determine strain heating in
the thermodynamics component, is calculated as

η =
1
2

(
ε̇2
) 1−n

2n
(
A−1/n

)
, (7)

where ε̇ is the effective strain rate, n is the Glen’s Flow law
exponent (Glen, 1955; Greve and Blatter, 2009), typically set
to n= 3, and A is the rate factor. The effective strain rate is
given by the second invariant of the strain rate tensor (ε̇ij),

ε̇ =

(
1
2
ε̇ijε̇ij

) 1
2
, (8)

and the strain rate tensor itself, following index notation, is

ε̇ij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
, i,j = 1,2,3. (9)

The rate factor, A(x,y,z), can be prescribed to be a constant
value or calculated as a function of ice temperature following
an Arrhenius equation:

A
(
T ′
)
= EfA0e

−Qa/RT
′

. (10)

Here R is the ideal gas constant; A0 and Qa are the
temperature-dependent rate factor coefficient and activation
energy, respectively (see Greve and Blatter, 2009).Ef is a so-
called enhancement factor, which is used to approximate the
effect of anisotropic flow. In Yelmo, it is possible to spec-
ify different values of the enhancement factor for different
flow regimes (shear, stream and shelf). The shelf value is
prescribed anywhere ice is floating, while the inland value
of Ef is a weighted average between the shear and stream
value with the weighting given by a diagnosis of the vertical
shearing fraction at any given point:

fshr =

(
ε̇2

xz+ ε̇
2
yz

)
ε̇2 . (11)

Typical values of the enhancement factor for the shearing,
streaming and shelf regime are Eshr = 3.0, Estrm = 1.0 and
Eshlf = 0.7, respectively (Ma et al., 2010).

In addition, it is possible to track the deposition time (i.e.,
age) or other conservative tracers of the ice using an Eulerian
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tracer advection model. The general 3D advection equation
of a conservative variable X,

∂X

∂t
=−u

∂X

∂x
− v

∂X

∂y
−w

∂X

∂z
, (12)

is solved with a second-order, upwind explicit method. The
ice surface boundary condition must be imposed. When trac-
ing the ice deposition time, the ice surface boundary condi-
tion is X(t)= t . At the ice base, an initial deposition time
is prescribed to be several thousand years before the start of
the simulation; however this plays little role in the resulting
vertical profile of deposition times. When ice is melting at
the base

(
ḃ < 0

)
, the following flux boundary condition is

defined (Rybak and Huybrechts, 2003):

∂X

∂t
=−ub

∂X

∂x
− vb

∂X

∂y
− ḃ

∂X

∂z
. (13)

Basal freeze-on is assumed to be negligible. It is well known
that Eulerian solvers lose accuracy towards the base of the
ice sheet, and therefore this method can only be considered
to give a first-order estimate of a conservative tracer (Greve
et al., 2002; Rybak and Huybrechts, 2003). It can nonetheless
be useful for diagnosing the age of ice, in order to know the
timescale of different dynamic properties or to, e.g., impose
an age-dependent enhancement factor (Greve, 1997b).

3.3 Dynamics

The Yelmo dynamics component is currently representative
of a “hybrid” class of ice-sheet model, treating different
modes of ice deformation via a combination of the simplify-
ing shallow-ice and shallow-shelf approximations (SIA and
SSA, respectively). In the following, the description of the
dynamics equations follows closely the notation and defini-
tions of Greve and Blatter (2009) and Pollard and DeConto
(2012).

Yelmo treats the horizontal velocity u(x,y,z) and
v (x,y,z) as the sum of transport via internal shear (ui, vi)
and basal sliding (ub, vb):

u= ui+ ub

v = vi+ vb.
(14)

Here, and analogously for v, ub (x,y) is vertically constant,
and ui (x,y,zb)= 0, where the subindex “b” here represents
the basal boundary of the ice sheet. It also holds that in the
vertical average (denoted by a bar), u= ui+ub. To calculate
ui and vi, Yelmo uses zero-order SIA equations:

ui(z)=−

2|Oτ d|
(n−1)

z∫
zb

A
(
zs− z

′
)ndz′

τd,x

vi(z)=−

2|Oτ d|
(n−1)

z∫
zb

A
(
zs− z

′
)ndz′

τd,y, (15)

where ui(z) and vi(z) are the horizontal components of the
SIA velocity as a function of depth at a given location, A
is the material rate factor of the ice, which is obtained from
the material component (Eq. 10), n is the Glen’s Flow law
exponent (Glen, 1955; Greve and Blatter, 2009), and τ d =(
τd,x,τd,y

)
= ρgHOzs is the driving stress. In the horizontal

plane, the term in brackets is calculated on the ab-nodes for
stability and improved mass conservation (Huybrechts et al.,
1996), and then it is staggered onto the ac-nodes where it
is multiplied with the driving stress. In the vertical plane,
the horizontal velocities are calculated at the vertical center
of each grid point (aa-nodes). Following Bueler and Brown
(2009), we use the SSA solution to calculate the transport
implied by sliding at the base (i.e., in regions of ice streams
and floating ice shelves):

∂

∂x

[
Hηd

(
4
∂ub

∂x
+ 2

∂vb

∂y

)]
+
∂

∂y

[
Hηd

(
∂ub

∂y
+
∂vb

∂x

)]
= τd,x− τb,x

∂

∂y

[
Hηd

(
4
∂vb

∂y
+ 2

∂ub

∂x

)]
+
∂

∂x

[
Hηd

(
∂ub

∂y
+
∂vb

∂x

)]
= τd,y− τb,y,

(16)

where
(
τb,x,τb,y

)
=−β (ub,vb) (or in vector notation τ b =

−βub) is the basal stress due to friction. The basal friction
coefficient β is set to zero for floating ice shelves and can
otherwise be set to a constant value or follow another user-
defined formulation (power law, regularized Coulomb, etc.),
depending on the context (see basal friction description be-
low for details). The depth-averaged (2D) effective viscosity,
which is only used for solving the SSA dynamics, is defined
as

ηd =
1
2
B
(
ε̇2

d + ε̇
2
0

) 1−n
2n (17)

B = 1
H

∫ zs
zb
A−1/ndz is the vertically averaged ice hardness, ε̇d

is the 2D effective strain rate and ε̇2
0 is a small regularization

factor for avoiding a potential singularity when velocity gra-
dients are zero. The 2D effective strain rate is calculated as a
reduced form of the second invariant of the strain rate tensor
(Eq. 9) that does not include vertical shear terms:

ε̇2
d =

(
∂ub

∂x

)2

+

(
∂vb

∂y

)2

+
∂ub

∂x

∂vb

∂y
+

1
4

(
∂ub

∂y
+
∂vb

∂x

)2

. (18)

In Yelmo, ε̇d is only used for calculating ηd, while the 3D
effective strain rate is calculated from the full strain rate ten-
sor in the material component (see Sect. 3.2). Calculating the
full tensor during the iterative SSA solution procedure would
be much more computationally expensive, while the 2D ef-
fective strain rate is already sufficient for the vertically inte-
grated SSA equations (Pollard and DeConto, 2012).
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The stress boundary condition imposed at the floating ice
front, following Winkelmann et al. (2011) and Greve and
Blatter (2009), is

Hηd

(
4
∂u

∂x
+ 2

∂v

∂y

)
nx +Hηd

(
∂u

∂y
+
∂v

∂x

)
ny

=

(
1
2
ρgH 2

−
1
2
ρswgH

2
o

)
nx

Hηd

(
4
∂v

∂y
+ 2

∂u

∂x

)
ny +Hηd

(
∂v

∂x
+
∂u

∂y

)
nx

=

(
1
2
ρgH 2

−
1
2
ρswgH

2
o

)
ny . (19)

The depth of the seawater up to the flotation depth, Ho, is
defined as Ho =min

(
max(zsl− zb,0) ,

ρ
ρsw
H
)

. This is the
depth of the ocean directly adjacent to the ice sheet, which
acts to reduce the outward pressure at the floating ice mar-
gin. In contrast to Winkelmann et al. (2011), this boundary
condition is not currently used in Yelmo for grounded ice,
where Eq. (16) applies.

The SSA equations are nonlinear, elliptical, partial dif-
ferential equations with nonlocal solutions. Yelmo uses Lis
for the numerical solution using the biconjugate gradient
method. The subroutine to discretize the equations and to
call Lis was ported from the latest SICOPOLIS version 5-
dev (Greve, 2019; Rückamp et al., 2019) and subsequently
modified for model design choices in Yelmo. We use a Picard
iteration method to account for the nonlinear dependence of
the effective viscosity (ηd) and, potentially, the basal friction
coefficient (β) on velocity. Convergence of the SSA solution
is tested using the L2 relative error norm (Gagliardini et al.,
2013):

δu,v =
2
√∑

(u1− u0)
2
+
∑
(v1− v0)

2√∑
(u1+ u0)

2
+
∑
(v1+ v0)

2
, (20)

where (u1,v1) and (u0,v0) are the velocity solutions for the
current and previous iterations, respectively, and the sum is
made over all grid points with nonzero velocity being con-
sidered by the SSA solver. By default, we consider a con-
vergence limit of δu,v = 10−2, which is typically achieved
within 1–10 iterations, depending on the context. This limit
can be specified by the user.

The result of solving the above equations is the hybrid, 3D
horizontal velocity field (u, v). The vertical velocity w can
then be diagnosed by applying a kinematic boundary condi-
tion at the base and integrating the continuity equation for
incompressible flow (Greve and Blatter, 2009), from zb to z,

w(z)= ḃ−

(
ub
∂zb

∂x
+ vb

∂zb

∂y

)
−

z∫
zb

(
∂u

∂x
+
∂v

∂y

)
dz′. (21)

The vertical velocity is naturally defined on the ac-nodes in
the vertical plane, analogous to the horizontal velocity in the

horizontal plane. The above dynamics update results in a 3D
hybrid velocity field (u, v, w).

Basal frictional stress, as it appears in the SSA elliptical
equations, is defined as

τ b =−βub, (22)

where β represents the basal friction coefficient (with units
of Pa yr m−1), which can be defined in several ways. β is
prescribed to be zero for floating ice and otherwise can be
set to a constant or a spatially varying field, and, depending
on the formulation used, it can depend on velocity itself. For
this reason, we also define cb as the bed friction coefficient,
which we consider to only provide information about condi-
tions at the physical bed (the nature of basal sediments, basal
hydrology, effective pressure, etc.), independent of velocity.
In the model, therefore, β is defined as

β = cbf (ub) . (23)

Thus in all formulations implemented in Yelmo, the term
f (ub) has units of years per meter (yr m−1), and the coef-
ficient cb has units of pascals (Pa), which helps to facilitate
its physical interpretation.

Most commonly, β is defined using a linear (e.g. Quiquet
et al., 2018), power-law (e.g. Pattyn, 2017), pseudo-plastic
power-law (e.g. Aschwanden et al., 2013) or regularized-
Coulomb (Joughin et al., 2019) formulation. The linear and
power-law formulations are contained within the pseudo-
plastic power-law formulation, so only the latter and the
regularized-Coulomb formulation are needed to represent all
four cases.

The pseudo-plastic power-law formulation (Schoof, 2010;
Aschwanden et al., 2013) is

τ b =−cb

(
|ub|

u0

)q ub

|ub|
, (24)

and thus β = cbu0
−q |ub|

q−1, with the pseudo-plastic expo-
nent q ∈ (0,1) and threshold speed u0. This expression re-
sults in purely plastic friction for q = 0, linear friction for
q = 1 and power-law friction for 0< q < 1. With q = 1 and
u0 = 1, for example, β = cb, and friction scales linearly with
velocity. To obtain the power-law formulation used in the
original MISMIP experiments (Pattyn et al., 2012), the fol-
lowing parameter values can be prescribed: q = 1/3, u0 =

1 m yr−1 and cb = 3.165176× 104 Pa.
Alternatively, the regularized Coulomb law (Schoof, 2005;

Brondex et al., 2019; Joughin et al., 2019) is defined as

τ b =−cb

(
|ub|

|ub| + u0

)q ub

|ub|
, (25)

and thus β = cb(|ub| + u0)
−q
|ub|

q−1. Again q is the nonlin-
ear exponent, and u0 is an empirical threshold speed that
dictates the transition from Coulomb friction when cavita-
tion effects dominate at the base (typically for a hard bed) to
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Coulomb-plastic friction, when friction saturates (typically
for weak till). When u0 = 0 or q = 0, purely plastic friction
is recovered.

The merits and physical basis of the different possible fric-
tion formulations and nonlinear exponents are still under ac-
tive debate (Aschwanden et al., 2013; Stearns and van der
Veen, 2018; Brondex et al., 2019; Joughin et al., 2019), and
all of the above formulations are used in ice-sheet model-
ing today. However, given the large uncertainty in bound-
ary conditions provided to an ice-sheet model, which include
bedrock topography, sediment composition and distribution,
basal hydrology and its temporal evolution, etc., it is clear
that the use of any formulation will rely on empirical tun-
ing. Also, as noted above, different choices for the friction
exponents or threshold values can reduce a given formula-
tion to another. Although modeling studies have shown that
all four cases above can produce realistic velocity fields of
the present-day ice sheets (e.g. Goelzer et al., 2018; Joughin
et al., 2019), it remains to be seen how the choice of friction
formulation may impact transient changes in the ice sheet.

For these reasons, we have chosen to implement the fric-
tion formulations in the most general way possible in the
code, with essentially two free parameters: q as a nonlinear
exponent and u0 as a threshold speed. Meanwhile, cb is a 2D
field that can be set to a constant value or a spatially and/or
temporally varying field based on, e.g., whether the ice is
frozen to the bed or temperate, on till strength (Bueler and
van Pelt, 2015), effective pressure, or other user-defined cri-
teria. As mentioned above, a Picard iteration method is used
to solve for basal friction, ηd and the SSA velocity solution
until convergence of the velocity solution is reached.
β and cb are initially defined on aa-nodes. cb is naturally

defined on the grid center, while when β = f (ub), the ve-
locity components that are defined on ac-nodes must be stag-
gered to the grid center. Once β has been calculated using
one of the above formulations, it must be staggered to the
ac-nodes for use in the elliptical solver. For purely floating
points (i.e., fg = 0 at both bounding aa-nodes) βac = 0, and
for purely grounded points, βac is the average of the two
neighbors. At the grounding line, Yelmo allows several op-
tions to handle staggering. These include simple averaging,
taking the upstream value of β, taking the downstream value
of β or taking the weighted average based on the grounded
fraction of the ac-node.

3.4 Thermodynamics

Thermodynamics in Yelmo is treated in the classical way by
solving the following energy conservation equation:

∂T

∂t
=
k

ρc

∂2T

∂z2 − u
∂T

∂x
− v

∂T

∂y
−w

∂T

∂z
+
8

ρc
, (26)

where k and c are the ice thermal conductivity and specific
heat capacity, respectively. The evolution of the ice tempera-
ture T is driven by vertical diffusion, horizontal and vertical

advection, and internal strain heating due to ice shearing, 8,
where

8= 4ηε̇2. (27)

Horizontal diffusion is assumed to be negligible (Greve and
Blatter, 2009). At the air–ice interface (i.e., the ice sur-
face), the ice temperature is prescribed via the input bound-
ary temperature field Ts, limited to a maximum value of
T0 = 273.15 K. At the base of floating ice, the ice temper-
ature is prescribed to be the expected freezing temperature of
seawater as a function of depth (Jenkins, 1991), except near
the grounding line, where the temperature is prescribed to be
the pressure melting point of ice. At the base of grounded
ice, when the ice temperature is below the pressure melting
point, the vertical gradient of temperature is prescribed as
∂T /∂z=−Qgeo/k, where the geothermal heat flux (Qgeo)
is provided as a boundary field to Yelmo. If the temperature
at the ice base reaches the pressure melting point, then the
temperature is set to the pressure melting point, and the basal
mass balance is diagnosed as (Cuffey and Paterson, 2010):

ḃg =−
1
ρL

(
Qb+ k

∂T

∂z

∣∣∣∣
b
+Qgeo

)
, (28)

where ḃg is the basal mass balance of grounded ice (negative
for melting), L is the latent heat of fusion for ice, Qb is the

basal heat production to due sliding and ∂T
∂z

∣∣∣∣
b

is the ice tem-

perature gradient at the base. Yelmo calculates ḃg, which is a
model output, in contrast to ḃf (basal mass balance of float-
ing ice), which is prescribed in Yelmo as a boundary condi-
tion. Once the ice base is temperate (i.e., at the pressure melt-
ing point), it will remain so as long asWtil−

(
ρw
ρ
ḃg

)
1t > 0,

where ḃg is used from the previous timestep, and Wtil is the
water layer thickness in the till beneath the ice sheet. In other
words, if it is expected that an energy deficit will result in
freeze-on of the total available liquid water at the ice base,
then the point is treated as a non-temperate ice point.

Yelmo simulates the evolution of the basal water layer
thickness in the till following Bueler and van Pelt (2015):

∂Wtil

∂t
=−

ρ

ρw
ḃg−Cd, (29)

where Cd is the prescribed till drainage rate, usually set to
Cd = 0.001 m yr−1. Wtil is limited to the range 0≤Wtil ≤

Wtil,max, where maximum is usually set to Wtil,max = 2 m.
This approach allows for Wtil to maintain consistency with
the thermodynamic state of the ice sheet at all times. It does
not include horizontal transport, as this could potentially be
treated by an external basal hydrology model. It is also possi-
ble to disable calculation of Wtil inside of Yelmo and instead
consider it as a boundary variable. However, given the adap-
tive timestepping approach used by Yelmo, we have found
that updating Wtil internally at each timestep helps to avoid
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artificial oscillations that may develop otherwise when the
thermodynamics and basal friction are coupled.

Equation (26) is solved with an implicit method in the ver-
tical direction, while the horizontal advection is solved sepa-
rately applying an explicit, second-order upwind forward Eu-
ler method. This separation allows the energy conservation
in the vertical to be solved as a 1D column model. The dis-
cretization of vertical diffusion follows the form presented by
Hoffman et al. (2018), while the discretization of vertical ad-
vection follows a second-order central difference scheme. A
given column of grid points consists of temperatures defined
on the grid-centers (aa-nodes) and boundary values defined
directly at the surface and base of the ice sheet.

4 Timestepping

Yelmo makes use of a predictor–corrector (PC) method com-
bined with adaptive timestepping to balance speed and stabil-
ity, following the method developed by Cheng et al. (2017).
This approach requires calculating the ice thickness twice
per timestep, while all other variables can be calculated only
once per timestep. Applying a PC method significantly im-
proves the accuracy of the solution compared to a simple for-
ward Euler timestepping method. Furthermore, it facilitates
the calculation of a stability metric at each timestep that can
be used to evaluate model performance and forms the basis of
a robust adaptive timestepping approach (Cheng et al., 2017).
A given timestep therefore consists of three parts:

1. Predictor step. The topography component (namely the
ice thickness) is predicted using the dynamics, material
and thermodynamics solutions from previous timesteps.

2. Update step. Using the predicted topography solution,
the dynamics, material and thermodynamics compo-
nents are then also updated.

3. Corrector step. Using the updated dynamics, material
and thermodynamics component solutions, the topogra-
phy component is finally calculated again, starting from
the ice thickness solution of the previous timestep.

In Yelmo, the predictor step is calculated via the second-
order Adams–Bashforth (AB) method (Cheng et al., 2017),

H ?
n+1 =Hn+1tn

[
β1f (Hn,un)+β2f (Hn−1,un−1)

]
, (30)

where H ? is the predicted ice thickness, 1t is the timestep,
and β1 = 1+ ζt

2 , β2 =−
ζt
2 and ζt = 1tn

1tn−1
. The labels n, n−1

and n+ 1 indicate the current, previous and next timestep,
respectively. Here, f (H,u) is shorthand for ∂H

∂t
as a func-

tion of the ice thickness and depth-averaged horizontal ve-
locity field, noting that u is also a function of the ice thick-
ness, material and potentially thermodynamic state of the
ice sheet. For this algorithm, β1, β2 and ζt are timestep de-
pendent, but the subscript n has been dropped for clarity.

Once H ?
n+1 has been calculated, the other components are

updated, and finally the corrector step is then calculated via
the semi-implicit Adams–Moulton (SAM) method (Cheng
et al., 2017),

Hn+1 =Hn+
1tn

2

[
f
(
H ?
n+1,un+1

)
+ f (Hn,un)

]
, (31)

where Hn+1 is the corrected ice thickness for the next
timestep.

For the AB–SAM timestepping method, Cheng et al.
(2017) derived the following expression for the leading term
of the local truncation error:

τn+1 =
ζt
(
Hn+1−H

?
n+1

)
(3ζt + 3)1tn

. (32)

The local truncation error is valuable for diagnosing the per-
formance of the model and can be used as an indicator of
numerical stability. For a small enough timestep, H ?

n+1 and
Hn+1 should be indistinguishable, and τn+1

∼ 0. However,
as the timestep increases, the local truncation error will also
increase.

An adaptive timestepping approach based on a
proportional-integral (PI) controller method is therefore
used to maximize the timestep while maintaining the
truncation error below a specified threshold (Cheng et al.,
2017; Söderlind and Wang, 2006). Defining the maximum
truncation error over all grounded grid points as η =max |τ |,
the next timestep is calculated using the so-called PI4.2
controller (Söderlind, 2002):

1tn+1 =

(
ε

ηn+1

)(kI+kp)( ε
ηn

)−kp
1tn, (33)

where ε is the target tolerance, and kI = 2/10 and kp = 1/10
are reasonable control parameters for the second-order AB–
SAM timestepping method used here (Söderlind and Wang,
2006). This algorithm ensures that the timestep increases
when η < ε and decreases when η > ε. The use of both
ηn+1 and ηn helps to avoid rapid fluctuations in the timestep,
which improves model stability and results in a predictable
timestep size as a function of the target tolerance.

For practical purposes, the timestep is further treated as
follows. The timestep must be larger than a user-prescribed
minimum value but smaller than the Courant–Friedrichs–
Lewy (CFL) 2D advective limit:

1tcfl = Ccfl max
∣∣∣∣ u1x + v

1y

∣∣∣∣−1

, (34)

where the maximum is taken over all grid points and Ccfl =

1.0. Furthermore, the adaptive timestep is adjusted to ensure
that the model stays synchronized with the frequency that
Yelmo is being called externally. We found that the latter re-
quirement often results in highly uneven timestepping; e.g., if
Yelmo is called with a timestep of 1ttot = 2.0 yr and the first
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adaptive timestep is determined to be 1t1 = 1.9 yr, then the
second timestep would likely be 1t2 = 0.1 yr. To avoid this
possibility and increase stability, the condition is imposed
that if any given adaptive timestep is predicted in the range of
0.51ttot <1t < 1ttot, then 1t = 0.51ttot. In this example,
this condition would ensure that 1t1 =1t2 = 1.0 yr, unless
1t2 needed to be smaller for stability. Finally, if the maxi-
mum local truncation error η is larger than a specified thresh-
old for any given integration, then the integration is discarded
and repeated with a progressively smaller timestep until η di-
minishes and stability is restored, or the timestep reaches the
minimum allowed value.

5 Model interface

The Yelmo model interface is designed to be clear and simple
but also flexible. In its essence, there are three main model
functions: yelmo_init to initialize the model variables,
yelmo_update to perform the ice-sheet model calcula-
tions for a given timestep and yelmo_end to terminate the
Yelmo object (free it from memory).

The first subroutine, yelmo_init, is used to load pa-
rameters, initialize variables in memory (i.e., allocate arrays)
and, optionally, to initialize the topographic state variables
(ice thickness, masks, etc.). No other variables are initial-
ized here in the sense of being populated with data val-
ues, which is left to the user. An additional, optional helper
function can be used, yelmo_init_state, which pop-
ulates the remaining model variables in the material, ther-
modynamics and dynamics components. This initialization
step is separated from that of topography because in prac-
tice, sometimes boundary variables (e.g., surface tempera-
ture) need the surface elevation as input in order to be de-
termined. In contrast, the remaining variables, namely dy-
namics and thermodynamics, often rely on boundary vari-
ables to be initialized. Thus, a typical initialization sequence
for a stand-alone ice-sheet model simulation could first call
yelmo_init, then load or calculate boundary variables
and then call yelmo_init_state to finalize the initial-
ization of all Yelmo variables. After this sequence, the Yelmo
state should be consistent with running the model for one
timestep with the prescribed boundary conditions and a fixed
topography. If the model will be initialized from a restart file,
then these data are loaded in each case based on parameter
choices.

The next subroutine, yelmo_update, is used to ad-
vance the model state to a new timestep. Any modifica-
tions to boundary variables are left to the user externally,
and Yelmo expects that the boundary conditions are valid for
this timestep. The subroutine does not take any arguments
to modify the model behavior – rather, all model configu-
ration choices are specified in the parameters of the Yelmo
object itself. These are initially loaded from a parameter file
in the call to yelmo_init; however, it is possible to mod-

ify any parameter values during simulations, allowing for
changing the model configuration transiently depending on
the experimental setup. An additional optional subroutine,
yelmo_update_equil, is available to facilitate equili-
bration. This routine effectively calls yelmo_update for
a specified time window with unchanging boundary condi-
tions and allows for the temporary modification of some key
model parameters (such as the maximum allowed adaptive
timestep and the maximum allowed SSA velocity).

The last subroutine, yelmo_end, simply removes the
Yelmo object from memory (i.e., all domain variables are
deallocated). After calling yelmo_end, it is possible to
reinitialize the Yelmo object via yelmo_init, for exam-
ple, in order to test a different grid resolution or other config-
uration.

There are several input/output routines defined for Yelmo.
yelmo_write_init can be used to initialize a NetCDF
model output file with the axes of model dimensions defined
from the Yelmo object and writing of static fields like domain
masks. The writing of model output for individual timesteps
is left to the user to maintain flexibility, as most programs
require specific fields to be written (examples can be found
in the test programs included with the code – see further be-
low). In addition, yelmo_restart_write will create a
NetCDF file and write all Yelmo fields as a snapshot, which
can be used to restart the model (loading of a restart file can
be activated with parameter choices).

As mentioned above, given the object-oriented approach,
it is possible to run multiple Yelmo domains in one
program. Each domain must be initialized separately via
yelmo_init and the variable fields populated with initial
values; then separate calls to yelmo_update are needed
during timestepping, and finally each object should be ter-
minated at the end of the program via yelmo_end. With
this structure, minimum modification of another model, like
a global climate model is needed, to incorporate online ice-
sheet evolution or to simulate an ensemble of ice sheets in
one program. Furthermore, all fields are directly accessible
within the main program to facilitate coupling. For exam-
ple, the 2D array of surface elevation of the topography com-
ponent of the Yelmo Antarctica domain could be referenced
as yelmo_ant%tpo%now%z_srf. While it is clear that
the nesting of several containers (derived types) results in a
rather long variable reference, it is unambiguous and straight-
forward to use.

6 Model validation and benchmarks

Yelmo has been tested against several ice-sheet model val-
idation tests and benchmarks in wide use today. These in-
clude the Halfar dome experiment (Halfar, 1983; Bueler
et al., 2005), the EISMINT1 (Huybrechts et al., 1996)
and EISMINT2 (Payne et al., 2000) model intercompari-
son experiments that test uncoupled and coupled dynamics–
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Figure 3. Root mean square error (RMSE) of the Halfar dome ex-
periment after 200 yr simulated by Yelmo compared to the analyt-
ical solution versus model resolution. The value of p = 1.01 indi-
cates the order of convergence as the resolution increases.

thermodynamics, respectively, and MISMIP (Pattyn et al.,
2012) for ice-shelf dynamics, among others. By design,
many of these experiments allow isolation of specific model
features for testing. When the model passes more complex
benchmark tests, the simpler experiments are somewhat re-
dundant (if the model passes a coupled thermodynamics–
dynamics benchmark, the model should necessarily also be
able to pass a dynamics-only benchmark). However, it should
be noted that in the process of model development, all tests
prove to be extremely useful. The results of all tests will not
be reported here, but several are highlighted below to demon-
strate that Yelmo performs well.

The Halfar dome experiment, a specific case of the more
general Test B of Bueler et al. (2005), tests the ice-sheet
model dynamics using the SIA solver alone. This test con-
sists of simulating a radially symmetric ice-sheet with zero
mass balance and resting on a flat bed, deforming under
gravitational stress. The analytical solution is known at ev-
ery time, allowing a direct comparison of the simulation to
the desired result. The simulation parameters consist of the
margin radius and dome elevation, in this case set to the
values suggested by Halfar (1983): R0 = 21.2132 km and
H0 = 707.1 m – see Bueler et al. (2005) for further details.
Figure 3 shows the root mean square error (RMSE) of the
simulation with the analytical result after 200 years for a
range of model resolutions. Yelmo demonstrates first-order
(p = 1.01) numerical convergence with resolution towards
the analytical result.

The EISMINT1 moving margin experiment also tests the
ice-sheet model dynamics using the SIA solver alone, with an

imposed constant rate factor and diagnosed thermodynamics
(i.e., thermodynamics do not impact the ice-sheet configu-
ration). Radial steady-state surface mass balance and back-
ground surface temperature fields are imposed as boundary
conditions. Starting from ice-free conditions, the ice sheet
simulated by Yelmo grows to dynamic and thermodynamic
equilibrium within 25 and 100 kyr, respectively. The steady-
state summit elevation of Yelmo is 3006.6 m compared to
the reported range of 2997.5± 7.4 m for so-called “Type-I”
discretization models like Yelmo (where diffusivity is stag-
gered to the ab-nodes). The basal temperature relative to the
pressure melting point (i.e., homologous temperature) at the
summit simulated by Yelmo is −13.37 ◦C, which lies within
the EISMINT1 range of −13.40± 0.56 ◦C. These and other
relevant statistics are given in Table 1.

We also use the EISMINT1 moving margin experiment to
demonstrate the capability of the adaptive timestepping ap-
proach in Yelmo. By setting the tolerance parameter ε, Yelmo
automatically adjusts the timestep to maintain the truncation
error in ice thickness η around this value. Figure 4a shows
the time series of the adaptive timestep used by Yelmo for a
25 kyr simulation for different resolutions. The timestep ex-
hibits oscillations around a mean value, which is typical for
such a PI approach (Cheng et al., 2017). When the timestep
grows larger, the truncation error increases. This leads to a
reduction in the timestep, and the error decreases. Figure 4b
shows the mean timestep used by Yelmo over the last 10 kyr
of the simulation versus model resolution. Given a tolerance
of ε = 10−2, Yelmo’s mean timestep is 1t = 6.96 yr, 1t =
1.59 yr, 1t = 0.24 yr and 1t = 0.06 yr for resolutions of 50,
25, 10 and 5 km, respectively. As expected, the timestep must
be reduced for higher resolutions. These results are in line
with those of Cheng et al. (2017) for the same experiment
(1t = 12.4 yr for 60 km resolution). It should be noted that
the truncation error increases nonlinearly as a function of the
timestep, so setting a higher tolerance does not translate di-
rectly into a larger timestep.

Next we validate the thermodynamics component first by
performing the benchmark experiments Test A and Test B of
Kleiner et al. (2015). In contrast to an enthalpy solver, Yelmo
uses a temperature solver that assumes all water produced in
the ice column drains directly to the bed, and so temperate ice
in the vertical column has no water content. In cases where
water content of up to 3 % could be present in the basal layers
of the column, Yelmo’s solver would be inaccurate. Nonethe-
less, we expect that the temperature solver should be suf-
ficiently accurate to simulate ice sheets on long timescales
and large spatial domains. Figure 5 shows the performance
of Yelmo’s temperature solver for Test A of Kleiner et al.
(2015), which simulates a column of ice in a parallel-sided
slab with no horizontal advection and no internal strain heat-
ing that undergoes warming and subsequent cooling at the
surface. In this case, no water content should develop in the
vertical column, so a temperature and enthalpy solver should
give identical, energy-conserving results. Yelmo’s basal melt
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Table 1. Yelmo performance in the EISMINT1 moving margin experiment (“Moving”), as well as in the EISMINT2 experiments A and F.
Where available, metrics with the ensemble mean and standard deviation from the original benchmark experiments are also provided for
comparison.

Divide
Volume Area Melt Divide Divide basal homologous basal

Experiment Model (106 km3) (106 km2) fraction thickness (m) temperature (K) temperature (◦C)

Moving EISMINT1 – – – 2997.5± 7.4 – −13.40± 0.56
Yelmo 1.980 1.003 0.66 3006.6 257.2 −13.37

A EISMINT2 2.128± 0.073 1.034± 0.043 0.72± 0.15 3688± 48 255.6± 1.4 –
Yelmo 2.170 1.031 0.75 3678 254.7 −15.26

F EISMINT2 – – – – – –
Yelmo 2.373 1.031 0.55 4266 240.7 −28.80

Figure 4. (a) Adaptive timestepping for the EISMINT1 moving margin experiment. Time series of the timestep used by Yelmo for grid
resolutions of 50 km, 25 km and 10 km and a tolerance of ε = 10−2 and (b) the mean adaptive timestep in the time range of 15–25 kyr versus
model resolution. Separate lines in (b) show results for different values of the tolerance parameter ε.

rate is essentially identical to the analytical solution for this
problem, and its transient behavior is robust.

In contrast, Fig. 6 shows the results of Yelmo’s tempera-
ture solver for Test B, which simulates a parallel-sided slab
on a sloping bed with a prescribed horizontal velocity and
strain heating profile in steady state. In this case, water is
generated in the basal layers of the ice column (see Fig. 6c);
however Yelmo cannot reproduce this solution. Nonetheless,
because temperature is limited to the pressure-melting point,
the simulated ice temperature profile is in full agreement
with the analytical profile. This is true both for a very high
resolution case (1z= 0.5 m) and a lower-resolution case
(1z= 10 m), which allows us to conclude that the perfor-
mance of the temperature solver is robust.

The EISMINT2 benchmark experiments A and F are
useful for testing the thermodynamically coupled ice-sheet
model with SIA dynamics like in EISMINT1. The exper-
iments are identical to the EISMINT1 moving margin ex-
periment, except the resolution is doubled (25 km), and the
surface temperature is prescribed to be independent of ice
thickness. Experiment A prescribes a summit temperature of
238.15 K, while experiment F is 15.00 K colder, which pro-
motes an increase in the region of ice frozen to the bedrock.
The statistics for these experiments are listed in Table 1 as

well. Figure 7 shows the basal homologous temperature dis-
tribution for experiments A and F. Yelmo produces tempera-
ture patterns in both experiments, which are consistent with
both the benchmark results (Payne et al., 2000) and other
more recent models (e.g., Bueler et al., 2007; Hoffman et al.,
2018). Axial symmetry, assessed by comparing the basal
temperature field with a mirror of itself along the x or y axis,
is maintained to a precision of 10−2 K. This symmetry is not
critical to realistic applications, but a lack of at least axial
symmetry in this test is often indicative of numerical arti-
facts. In experiment F, Yelmo produces the so-called “cold
spokes”, which have been shown to be related to internal
strain heating in regions of steep gradients in ice thickness
and are largely numerical in nature (Bueler et al., 2007).

We also test the capability of the SSA solver and
grounding-line treatment by running the MISMIP proto-
col experiments (Pattyn et al., 2012). Particularly, MISMIP
EXP 1 (advance) and EXP 2 (retreat) are useful for testing the
reversibility of grounding-line advance, given the bedrock is
defined as a linear downward-sloping bed. The rate factor
is prescribed according to steps that first decrease, allow-
ing grounding-line advance, then increase back to the orig-
inal value. According to theory (Weertman, 1974; Schoof,
2007), only one steady-state grounding line position should
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Figure 5. Time series of the (a) basal temperature, (b) basal melt
rate and (c) basal water layer corresponding to the thermodynamic
benchmark experiment Exp. A (Kleiner et al., 2015). The analytical
solution (thick, light-red line) for the basal melt rate is compared
to Yelmo results (black lines). Not that where the Yelmo results are
not visible, they overlap with the analytical solution.

exist for each step – i.e., the ice sheet should advance and
retreat symmetrically without showing hysteresis. It is now
well known, however, that ice-sheet models at coarse res-
olutions (1 km and greater) are unable to capture proper
grounding-line migration, even when subgrid parameteriza-
tions to mimic higher resolution are applied (Seroussi et al.,
2014; Gladstone et al., 2017).

In the MISMIP experiment performed here, the linear,
downward-sloping bedrock is defined in the x direction as
zb = 720.0–778.5(x/750.0) with x in kilometers and zb in
meters. The bedrock elevation does not change in the y di-
rection, which extends to ±50 km to allow the simulation of
a symmetric ice stream flowing in the positive x direction.
The power-law formulation of Eq. (24) is used with the pa-
rameter values q = 1/3, u0 = 1 m yr−1 and cb = 3.165176×
104 Pa. The rate factor is initially prescribed to be A= 1×
10−16 Pa−3 yr−1, and the simulation is run for 25 kyr to equi-
librate. Next, the rate factor is stepped evenly in log-space ev-

ery 10 kyr until reaching A= 1× 10−19 Pa−3 yr−1, and then
the rate factor is increased in the same way until returning to
the original value.

Figure 8 shows results for this MISMIP experiment with
Yelmo at different grid resolutions, ranging from 20 km
down to 2.5 km, and with different treatments of basal fric-
tion near the grounding line. When the default model setup
is used, with no special treatment at the grounding line,
the grounding-line advance is consistent for all resolutions.
However, none of the lowest-resolution simulations show
grounding line retreat as the rate factor increases again. At
a resolution of 5 km, some minor grounding line retreat can
be seen, and for 2.5 km, the model is more successful at re-
treating though it remains 400 km from the target. In con-
trast, when the basal friction β is scaled at the grounding line
by the grounded fraction of the ac-node (fg,ac), the hystere-
sis is greatly reduced. The 5 km simulation retreats to within
200 km of the original position, and the 2.5 km simulation re-
treats to within 100 km of the original position, thus showing
convergence to the correct solution with resolution. With this
setup, even the 10 and 20 km simulations retreat significantly.
In a third case, the basal friction is also linearly scaled to
zero as the ice sheet approaches flotation (Leguy et al., 2014;
Gladstone et al., 2017). In this case, the hysteresis and dif-
ferences between different-resolution simulations are further
reduced; however, the system also tends to advance much
less given all other conditions are the same.

Yelmo’s Eulerian conservative tracer model is validated
with a simulation of ice age in an idealized configuration
against the analytical solution presented by Rybak and Huy-
brechts (2003). In this case, summit-like conditions are im-
posed, in that horizontal advection is neglected, and the ver-
tical velocity is assumed to decrease linearly with depth. Fig-
ure 9 shows the solution with Yelmo as compared to the an-
alytical result. For a nominal vertical resolution of nz = 30
points and single or double precision, the age tracer gives er-
rors in the range of 0.2 %–0.5 % over most of the column of
the ice sheet, with higher errors at the base. Increasing the
vertical resolution to nz = 50 points decreases the error by
an order of magnitude, while using nz = 30 with higher res-
olution at the base of the ice sheet allows a similar reduction
in error with significant computational savings. For Eemian-
age ice in such simplified conditions, the latter case gives
an uncertainty of less than 1 kyr. It is expected that the error
would increase for more realistic 3D domains; however the
Eulerian age solver can be used for a first-order estimate of
the age–depth profile in the ice sheet (Rybak and Huybrechts,
2003).

7 Antarctica

As further validation of the model’s performance, we
ran steady-state simulations of the present-day and glacial
Antarctic ice sheet. These simulations, run at 32 km resolu-
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Figure 6. Steady-state vertical profiles of (a) enthalpy, (b) temperature and (c) water content for the thermodynamic benchmark experiment
Exp. B (Kleiner et al., 2015). The analytical solution (thick, light-red lines) is compared to Yelmo results for a vertical resolution of 1z=
0.5 m (nz = 400, black lines) and 1z= 10 m (nz = 20, light green lines). The vertical grey line in (b) shows the pressure-melting point as
prescribed in this experiment. Note that where the analytical solution is not visible, it overlaps with the Yelmo results.

Figure 7. Steady-state, basal homologous temperature (◦C) distribution after 100 kyr obtained by Yelmo in EISMINT2 (a) experiment A
and (b) experiment F. Areas that have reached the pressure-melting point have been shaded grey. The contour lines represent ice thickness at
500 m intervals up to 3500 m.

tion, have been deliberately simplified to include the mini-
mum complexity necessary to simulate the ice sheet without
additional external components. There was no active isostasy
model, and geothermal heat flux was set to 50 mW m−2 ev-
erywhere. Basal friction followed a linear law, where β =(
cf λb/u0

)
(ρgH) with u0 = 100 m yr−1 used as a scaling

constant. We prescribed cf = 0.15 (unitless) for most of the
domain, except for ad hoc adjustments in specific regions to
improve the match with observations. This was additionally
scaled by an exponential function of bedrock elevation: λb =

min[1.0,exp((zb−z1)/(z1−z0))], analogous to the approach
of (Martin et al., 2011). We set z1 = 250 m everywhere and
z0 =−2000 m for West Antarctic Ice Sheet (WAIS) regions
feeding the Ronne ice shelf and z1 =−200 m elsewhere.
Friction was scaled by the grounded fraction at the grounding
line, but no additional scaling is applied. The enhancement
factor parameters set for these simulations were Eshr = 2.5,

Estrm = 0.7 and Eshlf = 0.5. The bedrock topography and
initial ice thickness were prescribed from the RTOPO2.1
dataset (Schaffer et al., 2016), after which the model ran for
50 kyr, reaching a steady-state modeled ice distribution.

For the simulation of the present-day state, surface mass
balance (SMB) and surface temperature boundary fields were
prescribed from a RACMO2.3 simulation driven by ERA-
Interim data and averaged over 1981–2010 (van Wessem
et al., 2018). The ice-shelf basal mass balance was set to a
spatially constant value of −0.2 m a−1 where floating ice ex-
ists today and to −2.0 m a−1 elsewhere. Figures 10 and 11
show a comparison of the simulations with the observed to-
pography (RTOPO2.1) and the present-day observed velocity
(Rignot et al., 2011). With this relatively simple model setup,
it is possible to obtain reasonable agreement with observa-
tions. The root mean square errors (RMSEs) in ice thick-
ness, velocity and log(velocity) are 320 m, 270 m yr−1 and
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Figure 8. Yelmo performance in the MISMIP bedrock advance and
retreat simulations on a linear sloping bed. Panel (a) shows the im-
posed rate factor A, with 10 kyr steps of decreasing and then in-
creasing values. Panels (b), (c) and (d) show the grounding line
position evolution for each of three model configurations, respec-
tively: “Default” is the standard model setup, with no special treat-
ment of friction at or near the grounding line; “Subgrid” uses the
grounded fraction at the grounding line to scale the basal friction;
and “Scaling” applies both the grounded fraction and imposes a lin-
ear reduction in basal friction as the ice sheet approaches flotation.
Separate simulations were run for resolutions ranging from 20 km
down to 2.5 km.

1.9 log(m yr−1), respectively, which fall in the range of other
models in the initMIP-Antarctica intercomparison project
(Seroussi et al., 2019). The simulated ice sheet is thinner than
the observed ice sheet over large parts of East Antarctica,
with a broad positive bias near the South Pole (Fig. 11). The
margins of the ice sheet are the most difficult to match, in par-
ticular, the grounding-line positions of the large ice shelves,
leading to larger biases in these regions. This pattern is quite
consistent with other studies (e.g., Martin et al., 2011; Qui-
quet et al., 2018; Albrecht et al., 2020). Overall, the dome
configuration, slow deformational speeds and even most ice
streams as they penetrate inland are well represented by the
model (Figs. 10 and 11).

Figure 9. Analytical age–depth profile for idealized summit com-
pared to Yelmo Eulerian age tracing. (a) The ice age relative to
present day is shown for the analytical solution (thick, light-red
line) and Yelmo with a resolution of nz = 30 with a linear vertical
axis and compiled at double precision (black line). (b) The associ-
ated relative error is given for this case (black line), as well as for a
higher resolution of nz = 50 and for nz = 30 compiled at single pre-
cision (grey lines), and finally for a resolution of nz = 30 compiled
at double precision but with exponentially increasing resolution at
the base instead of a linear axis (green line).

We use the same setup with modified boundary conditions
to simulate a configuration resembling that of a deep glacial
period like the Last Glacial Maximum. The surface temper-
ature was set to 10 ◦C colder, and the present-day SMB was
maintained, except that points with a low or negative SMB
were prescribed with a minimum value of 0.1 m a−1. The ice
shelf basal mass balance was set to a spatially constant value
of 0 m a−1, and sea level was lowered by 120 m. In this case,
the grounded ice sheet advances until the continental shelf
break and thickens inland (Fig. 10). A similar structure of ice
streams can be seen, due to the topographic dependence of
β, but their speed is greatly reduced compared to those of the
present-day simulation. We do not expect this configuration
to be realistic, given that isostasy plays no role and a present-
day-like SMB has been imposed. However, this test demon-
strates that Yelmo is capable of resolving continental-scale
changes in the ice sheet configuration in a plausible way.
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Figure 10. (a) Antarctica present-day ice sheet configuration and surface velocities from observations, compared to (b) a steady-state simu-
lation with Yelmo. (c) In contrast, Antarctica glacial configuration and surface velocities simulated by Yelmo. Simulations were performed at
32 km resolution. The colors show surface velocity in meters per year, and the dark grey contours show surface elevation in 500 m intervals
(thick lines correspond to 1000, 2000 and 3000 m above sea level). The black line shows the grounding-line position.

Figure 11. (a) Simulated present-day ice-thickness minus observations and (b) simulated versus observed ice surface velocity. The colors in
(a) show the ice thickness difference in meters, and the dark grey contours show surface elevation in 500 m intervals (thick lines correspond
to 1000, 2000 and 3000 m above sea level). The black line shows the grounding-line position. In (b), the dark red line indicates a perfect
correlation between model and observations.

8 Conclusions and future work

We have described the features and physics of the hybrid ice-
sheet–shelf model Yelmo. Yelmo includes the physics to sim-
ulate continental-scale ice sheets and floating ice shelves us-
ing “shallow” approximations of the ice dynamics. The fully
coupled thermomechanical ice-sheet model has been vali-
dated against several benchmark tests and has been shown
to simulate the dynamic configuration of the Antarctic ice
sheet well.

Yelmo is expected to be useful for long-timescale simula-
tions and/or ensembles. It is particularly suited for easy cou-
pling with other models. For example, the simulation of mul-
tiple ice-sheet domains with independent parameter configu-
rations coupled to a global climate model can be achieved in
a simple and straightforward way. Also, given that the sub-
routines representing the physics of the model have been iso-
lated from the “model accounting”, it is possible to test in-

dividual model components in different contexts easily. This
should facilitate future model development and comparison
of different methods.

The model framework has been designed to facilitate the
incorporation of new and different physics. Thus, this initial
release of Yelmo lays the foundation for several future de-
velopments. These may include more advanced calving and
basal friction schemes, as well as improved treatment of the
grounding line. We also plan to transition to an enthalpy-
based thermodynamics solver; however this will require an
adaptive vertical axis to be able to map the height of tran-
sition between temperate and cold ice accurately. We also
plan to implement a variationally derived “depth-integrated-
viscosity approximation” solver (following, e.g., Goldberg,
2011; Pollard and DeConto, 2012; Lipscomb et al., 2019) in
the near future.
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Code availability. Yelmo is maintained as a git repository hosted
at https://github.com/palma-ice/yelmo (last access: 2 May 2020;
palma-ice, 2020) under the license GPL-3.0. Model documenta-
tion can be found at https://palma-ice.github.io/yelmo-docs/ (last
access: 2 May 2020; Yelmo-docs, 2020). The exact version of
the model, along with the necessary input data, used to pro-
duce the results used in this paper is archived on Zenodo
(https://doi.org/10.5281/zenodo.3782650, Robinson et al., 2020)
and has been tagged in the repository as v1.02.

Author contributions. AR, JA-S and MM conceived the model de-
sign and features. AR wrote the model code with contributions from
the remaining authors. All authors contributed to the model testing
and writing the paper.

Competing interests. Heiko Goelzer is a member of the editorial
board of the journal.

Acknowledgements. We would like to thank Mahé Perrette,
Christophe Dumas, Gunter Leguy and Bill Lipscomb for valu-
able discussions about model design that improved Yelmo, Akira
Nishida for help with Lis, and Ilaria Tabone and Javier Blasco for
extensive model testing at intermediate development points. We are
also grateful to the reviewers for helpful comments.

Financial support. This research has been supported by the Span-
ish Ministry of Science and Innovation project RIMA (grant
no. CGL2017-85975-R). Alexander Robinson was funded by the
Ramón y Cajal Programme of the Spanish Ministry for Science,
Innovation and Universities (grant no. RYC-2016-20587). Heiko
Goelzer has received funding from the program of the Nether-
lands Earth System Science Centre (NESSC), financially supported
by the Dutch Ministry of Education, Culture and Science (OCW)
(grant no. 024.002.001). Ralf Greve was supported by the Japan
Society for the Promotion of Science (JSPS) KAKENHI (grant
nos. JP16H02224, JP17H06104 and JP17H06323), by the Japanese
Ministry of Education, Culture, Sports, Science and Technology
(MEXT) through the Arctic Challenge for Sustainability (ArCS)
project, and through the Arctic Challenge for Sustainability (ArCS)
project (program grant no. JPMXD1300000000).

Review statement. This paper was edited by Steven Phipps and re-
viewed by Fuyuki Saito and one anonymous referee.

References

Albrecht, T., Martin, M., Haseloff, M., Winkelmann, R.,
and Levermann, A.: Parameterization for subgrid-scale mo-
tion of ice-shelf calving fronts, The Cryosphere, 5, 35–44,
https://doi.org/10.5194/tc-5-35-2011, 2011.

Albrecht, T., Winkelmann, R., and Levermann, A.: Glacial-cycle
simulations of the Antarctic Ice Sheet with the Parallel Ice

Sheet Model (PISM) – Part 2: Parameter ensemble analy-
sis, The Cryosphere, 14, 633–656, https://doi.org/10.5194/tc-14-
633-2020, 2020.

Arakawa, A. and Lamb, V. R.: Computational Design of the Ba-
sic Dynamical Processes of the UCLA General Circulation
Model, in: General Circulation Models of the Atmosphere, edited
by: Chang, J., Vol. 17 of Methods in Computational Physics:
Advances in Research and Applications, 173–265, Elsevier,
https://doi.org/10.1016/B978-0-12-460817-7.50009-4, 1977.

Aschwanden, A., Aðalgeirsdéttir, G., and Khroulev, C.: Hindcast-
ing to measure ice sheet model sensitivity to initial states, The
Cryosphere, 7, 1083–1093, https://doi.org/10.5194/tc-7-1083-
2013, 2013.

Brondex, J., Gillet-Chaulet, F., and Gagliardini, O.: Sensitiv-
ity of centennial mass loss projections of the Amundsen
basin to the friction law, The Cryosphere, 13, 177–195,
https://doi.org/10.5194/tc-13-177-2019, 2019.

Bueler, E. and Brown, J.: Shallow shelf approximation as a “sliding
law” in a thermomechanically coupled ice sheet model, J. Geo-
phys. Res., 114, F03008, https://doi.org/10.1029/2008JF001179,
2009.

Bueler, E. and van Pelt, W.: Mass-conserving subglacial hydrology
in the Parallel Ice Sheet Model version 0.6, Geosci. Model Dev.,
8, 1613–1635, https://doi.org/10.5194/gmd-8-1613-2015, 2015.

Bueler, E., Lingle, C. S., Kallen-Brown, J. A., Covey, D. N., and
Bowman, L. N.: Exact solutions and verification of numeri-
cal model for isothermal ice sheets, J. Glaciol., 51, 291–306,
https://doi.org/10.3189/172756505781829449, 2005.

Bueler, E., Brown, J., and Lingle, C.: Exact solutions
to the thermocoupled shallow ice approximation: ef-
fective tools for verification, J. Glaciol., 53, 499–516,
https://doi.org/10.3189/002214307783258396, 2007.

Cheng, G., Lötstedt, P., and von Sydow, L.: Accurate and stable
time stepping in ice sheet modeling, J. Comput. Phys., 329, 29–
47, https://doi.org/10.1016/j.jcp.2016.10.060, 2017.

Cornford, S. L., Martin, D. F., Graves, D. T., Ranken, D. F.,
Le Brocq, A. M., Gladstone, R. M., Payne, A. J., Ng, E. G.,
and Lipscomb, W. H.: Adaptive mesh, finite volume model-
ing of marine ice sheets, J. Comput. Phys., 232, 529–549,
https://doi.org/10.1016/j.jcp.2012.08.037, 2013.

Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, Aca-
demic Press, Burlington, MA, USA, 2010.

Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier,
L., de Fleurian, B., Greve, R., Malinen, M., Martín, C., Råback,
P., Ruokolainen, J., Sacchettini, M., Schäfer, M., Seddik, H.,
and Thies, J.: Capabilities and performance of Elmer/Ice, a new-
generation ice sheet model, Geosci. Model Dev., 6, 1299–1318,
https://doi.org/10.5194/gmd-6-1299-2013, 2013.

Gladstone, R. M., Warner, R. C., Galton-Fenzi, B. K., Gagliardini,
O., Zwinger, T., and Greve, R.: Marine ice sheet model per-
formance depends on basal sliding physics and sub-shelf melt-
ing, The Cryosphere, 11, 319–329, https://doi.org/10.5194/tc-11-
319-2017, 2017.

Glen, J. W.: The creep of polycrystalline ice, P. Roy. Soc. A Math.
Phy., 228, 519–538, 1955.

Goelzer, H., Nowicki, S., Edwards, T., Beckley, M., Abe-Ouchi,
A., Aschwanden, A., Calov, R., Gagliardini, O., Gillet-Chaulet,
F., Golledge, N. R., Gregory, J., Greve, R., Humbert, A., Huy-
brechts, P., Kennedy, J. H., Larour, E., Lipscomb, W. H., Le

https://doi.org/10.5194/gmd-13-2805-2020 Geosci. Model Dev., 13, 2805–2823, 2020

https://github.com/palma-ice/yelmo
https://palma-ice.github.io/yelmo-docs/
https://doi.org/10.5281/zenodo.3782650
https://doi.org/10.5194/tc-5-35-2011
https://doi.org/10.5194/tc-14-633-2020
https://doi.org/10.5194/tc-14-633-2020
https://doi.org/10.1016/B978-0-12-460817-7.50009-4
https://doi.org/10.5194/tc-7-1083-2013
https://doi.org/10.5194/tc-7-1083-2013
https://doi.org/10.5194/tc-13-177-2019
https://doi.org/10.1029/2008JF001179
https://doi.org/10.5194/gmd-8-1613-2015
https://doi.org/10.3189/172756505781829449
https://doi.org/10.3189/002214307783258396
https://doi.org/10.1016/j.jcp.2016.10.060
https://doi.org/10.1016/j.jcp.2012.08.037
https://doi.org/10.5194/gmd-6-1299-2013
https://doi.org/10.5194/tc-11-319-2017
https://doi.org/10.5194/tc-11-319-2017


2822 A. Robinson et al.: Yelmo ice-sheet model

clec’h, S., Lee, V., Morlighem, M., Pattyn, F., Payne, A. J.,
Rodehacke, C., Rückamp, M., Saito, F., Schlegel, N., Seroussi,
H., Shepherd, A., Sun, S., van de Wal, R., and Ziemen, F.
A.: Design and results of the ice sheet model initialisation ex-
periments initMIP-Greenland: an ISMIP6 intercomparison, The
Cryosphere, 12, 1433–1460, https://doi.org/10.5194/tc-12-1433-
2018, 2018.

Goldberg, D. N.: A variationally derived and depth-
integrated approximation to a and higher-order
glaciological flow model, J. Glaciol., 57, 157–169,
https://doi.org/10.3189/002214311795306763, 2011.

Greve, R.: A continuum–mechanical formulation for shallow poly-
thermal ice sheets, Philos. T. R. Soc. S-A, 355, 921–974,
https://doi.org/10.1098/rsta.1997.0050, 1997a.

Greve, R.: Application of a Polythermal Three-Dimensional
Ice Sheet Model to the Greenland Ice Sheet: Re-
sponse to Steady-State and Transient Climate Scenarios,
J. Climate, 10, 901–918, https://doi.org/10.1175/1520-
0442(1997)010<0901:AOAPTD>2.0.CO;2, 1997b.

Greve, R.: Geothermal heat flux distribution for the Greenland
ice sheet, derived by combining a global representation and
information from deep ice cores, Polar Data J., 3, 22–36,
https://doi.org/10.20575/00000006, 2019.

Greve, R. and Blatter, H.: Dynamics of Ice Sheets and Glaciers,
Springer-Verlag, Berlin, 2009.

Greve, R., Wang, Y., and Mügge, B.: Comparison of nu-
merical schemes for the solution of the advective age
equation in ice sheets, Ann. Glaciol., 35, 487–494,
https://doi.org/10.3189/172756402781817112, 2002.

Halfar, P.: On the Dynamics and of the Ice and Sheets 2, J. Geophys.
Res., 88, 6043–6051, https://doi.org/10.1029/JC088iC10p06043,
1983.

Hoffman, M. J., Perego, M., Price, S. F., Lipscomb, W. H.,
Zhang, T., Jacobsen, D., Tezaur, I., Salinger, A. G., Tumi-
naro, R., and Bertagna, L.: MPAS-Albany Land Ice (MALI):
a variable-resolution ice sheet model for Earth system model-
ing using Voronoi grids, Geosci. Model Dev., 11, 3747–3780,
https://doi.org/10.5194/gmd-11-3747-2018, 2018.

Huybrechts, P., Instituut, G., and Oerlemans, J.: Evo-
lution of the East Antarctic Ice Sheet: A Numeri-
cal Study of Thermo-Mechanical Response Patterns
With Changing Climate, Ann. Glaciol., 11, 52–59,
https://doi.org/10.3189/S0260305500006327, 1988.

Huybrechts, P., Payne, T., Abe-Ouchi, A., Calov, R., Fabre, A., Fas-
took, J. L., Greve, R., Hindmarsh, R. C., Hoydal, O., Jóhan-
nesson, T., MacAyeal, D. R., Marsiat, I., Ritz, C., Verbitsky,
M. Y., Waddington, E. D., and Warner, R.: The EISMINT bench-
marks for testing ice-sheet models, Ann. Glaciol., 23, 1–12,
https://doi.org/10.3189/S0260305500013197, 1996.

Jenkins, A.: A One-Dimensional and Model of Ice and Shelf-
Ocean Interaction, J. Geophys. Res., 96, 20671–20677,
https://doi.org/10.1029/91JC01842, 1991.

Joughin, I., Smith, B. E., and Schoof, C. G.: Regularized Coulomb
Friction Laws for Ice Sheet Sliding: Application to Pine Is-
land Glacier, Antarctica, Geophys. Res. Lett., 46, 4764–4771,
https://doi.org/10.1029/2019gl082526, 2019.

Kleiner, T., Rückamp, M., Bondzio, J. H., and Humbert, A.: En-
thalpy benchmark experiments for numerical ice sheet models,

The Cryosphere, 9, 217–228, https://doi.org/10.5194/tc-9-217-
2015, 2015.

Larour, E., Seroussi, H., Morlighem, M., and Rignot, E.: Continen-
tal scale, high order, high spatial resolution, ice sheet modeling
using the Ice Sheet System Model (ISSM), J. Geophys. Res., 117,
F01022, https://doi.org/10.1029/2011JF002140, 2012.

Leguy, G. R., Asay-Davis, X. S., and Lipscomb, W. H.: Param-
eterization of basal friction near grounding lines in a one-
dimensional ice sheet model, The Cryosphere, 8, 1239–1259,
https://doi.org/10.5194/tc-8-1239-2014, 2014.

Lipscomb, W. H., Price, S. F., Hoffman, M. J., Leguy, G. R., Ben-
nett, A. R., Bradley, S. L., Evans, K. J., Fyke, J. G., Kennedy,
J. H., Perego, M., Ranken, D. M., Sacks, W. J., Salinger, A. G.,
Vargo, L. J., and Worley, P. H.: Description and evaluation of the
Community Ice Sheet Model (CISM) v2.1, Geosci. Model Dev.,
12, 387–424, https://doi.org/10.5194/gmd-12-387-2019, 2019.

Ma, Y., Gagliardini, O., Ritz, C., Gillet-Chaulet, F., Du-
rand, G., and Montagnat, M.: Enhancement factors
for grounded ice and ice-shelf both inferred from an
anisotropic ice flow model, J. Glaciol., 56, 805–812,
https://doi.org/10.3189/002214310794457209, 2010.

Macayeal, D.: EISMINT: Lessons in Ice-Sheet Modeling, available
at: http://geosci.uchicago.edu/pdfs/macayeal/lessons.pdf (last
access: 2 May 2020), 1997.

Martin, M. A., Winkelmann, R., Haseloff, M., Albrecht, T., Bueler,
E., Khroulev, C., and Levermann, A.: The Potsdam Parallel Ice
Sheet Model (PISM-PIK) – Part 2: Dynamic equilibrium simu-
lation of the Antarctic ice sheet, The Cryosphere, 5, 727–740,
https://doi.org/10.5194/tc-5-727-2011, 2011.

Nishida, A.: Experience in Developing an Open Source Scalable
Software Infrastructure in Japan, in: Computational Science and
Its Applications – ICCSA 2010, edited by: Taniar, D., Gervasi,
O., Murgante, B., Pardede, E., and Apduhan, B. O., 448–462,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

palma-ice: Yelmo, GitHub, available at: https://github.com/
palma-ice/yelmo, last access: 2 May 2020.

Pattyn, F.: Sea-level response to melting of Antarctic ice shelves on
multi-centennial timescales with the fast Elementary Thermome-
chanical Ice Sheet model (f.ETISh v1.0), The Cryosphere, 11,
1851–1878, https://doi.org/10.5194/tc-11-1851-2017, 2017.

Pattyn, F., Schoof, C., Perichon, L., Hindmarsh, R. C. A., Bueler,
E., de Fleurian, B., Durand, G., Gagliardini, O., Gladstone,
R., Goldberg, D., Gudmundsson, G. H., Huybrechts, P., Lee,
V., Nick, F. M., Payne, A. J., Pollard, D., Rybak, O., Saito,
F., and Vieli, A.: Results of the Marine Ice Sheet Model In-
tercomparison Project, MISMIP, The Cryosphere, 6, 573–588,
https://doi.org/10.5194/tc-6-573-2012, 2012.

Payne, A. J., Huybrechts, P., Abe-Ouchi, A., Calov, R.,
Fastook, J. L., Greve, R., Marshall, S. J., Marsiat, I.,
Ritz, C., Tarasov, L., and Thomassen, M. P.: Results
from the EISMINT model intercomparison: The effects
of thermomechanical coupling, J. Glaciol., 46, 227–238,
https://doi.org/10.3189/172756500781832891, 2000.

Peyaud, V., Ritz, C., and Krinner, G.: Modelling the Early
Weichselian Eurasian Ice Sheets: role of ice shelves and
influence of ice-dammed lakes, Clim. Past, 3, 375–386,
https://doi.org/10.5194/cp-3-375-2007, 2007.

Geosci. Model Dev., 13, 2805–2823, 2020 https://doi.org/10.5194/gmd-13-2805-2020

https://doi.org/10.5194/tc-12-1433-2018
https://doi.org/10.5194/tc-12-1433-2018
https://doi.org/10.3189/002214311795306763
https://doi.org/10.1098/rsta.1997.0050
https://doi.org/10.1175/1520-0442(1997)010<0901:AOAPTD>2.0.CO;2
https://doi.org/10.1175/1520-0442(1997)010<0901:AOAPTD>2.0.CO;2
https://doi.org/10.20575/00000006
https://doi.org/10.3189/172756402781817112
https://doi.org/10.1029/JC088iC10p06043
https://doi.org/10.5194/gmd-11-3747-2018
https://doi.org/10.3189/S0260305500006327
https://doi.org/10.3189/S0260305500013197
https://doi.org/10.1029/91JC01842
https://doi.org/10.1029/2019gl082526
https://doi.org/10.5194/tc-9-217-2015
https://doi.org/10.5194/tc-9-217-2015
https://doi.org/10.1029/2011JF002140
https://doi.org/10.5194/tc-8-1239-2014
https://doi.org/10.5194/gmd-12-387-2019
https://doi.org/10.3189/002214310794457209
http://geosci.uchicago.edu/pdfs/macayeal/lessons.pdf
https://doi.org/10.5194/tc-5-727-2011
https://github.com/palma-ice/yelmo
https://github.com/palma-ice/yelmo
https://doi.org/10.5194/tc-11-1851-2017
https://doi.org/10.5194/tc-6-573-2012
https://doi.org/10.3189/172756500781832891
https://doi.org/10.5194/cp-3-375-2007


A. Robinson et al.: Yelmo ice-sheet model 2823

Pollard, D. and DeConto, R. M.: Description of a hybrid ice sheet-
shelf model, and application to Antarctica, Geosci. Model Dev.,
5, 1273–1295, https://doi.org/10.5194/gmd-5-1273-2012, 2012.

Quiquet, A., Dumas, C., Ritz, C., Peyaud, V., and Roche, D. M.: The
GRISLI ice sheet model (version 2.0): calibration and validation
for multi-millennial changes of the Antarctic ice sheet, Geosci.
Model Dev., 11, 5003–5025, https://doi.org/10.5194/gmd-11-
5003-2018, 2018.

Rignot, E., Mouginot, J., and Scheuchl, B.: Ice Flow
of the Antarctic Ice Sheet, Science, 333, 1427–1430,
https://doi.org/10.1126/science.1208336, 2011.

Ritz, C., Fabre, A., and Letréguilly, A.: Sensitivity of a Green-
land ice sheet model to ice flow and ablation parameters: con-
sequences for the evolution through the last climatic cycle, Clim.
Dynam., 13, 11–23, https://doi.org/10.1007/s003820050149,
1997.

Robinson, A., Alvarez-Solas, J., Montoya, M., Goelzer, H.,
Greve, R., and Ritz, C.: Yelmo source code snapshot, Zenodo,
https://doi.org/10.5281/zenodo.3782650, 2020.

Rückamp, M., Greve, R., and Humbert, A.: Comparative
simulations of the evolution of the Greenland ice sheet
under simplified Paris Agreement scenarios with the
models SICOPOLIS and ISSM, Polar Sci., 21, 14–25,
https://doi.org/10.1016/j.polar.2018.12.003, 2019.

Rybak, O. and Huybrechts, P.: A comparison of Eule-
rian and Lagrangian methods for dating in numer-
ical ice-sheet models, Ann. Glaciol., 37, 150–158,
https://doi.org/10.3189/172756403781815393, 2003.

Schaffer, J., Timmermann, R., Arndt, J. E., Kristensen, S. S.,
Mayer, C., Morlighem, M., and Steinhage, D.: A global, high-
resolution data set of ice sheet topography, cavity geome-
try, and ocean bathymetry, Earth Syst. Sci. Data, 8, 543–557,
https://doi.org/10.5194/essd-8-543-2016, 2016.

Schoof, C.: The effect of cavitation on glacier slid-
ing, P. Roy. Soc. A Math. Phy., 461, 609–627,
https://doi.org/10.1098/rspa.2004.1350, 2005.

Schoof, C.: Ice sheet grounding line dynamics: Steady states,
stability, and hysteresis, J. Geophys. Res., 112, F03S28,
https://doi.org/10.1029/2006JF000664, 2007.

Schoof, C.: Ice-sheet acceleration driven by melt supply variabil-
ity, Nature, 468, 803–806, https://doi.org/10.1038/nature09618,
2010.

Seroussi, H., Morlighem, M., Larour, E., Rignot, E., and
Khazendar, A.: Hydrostatic grounding line parameteriza-
tion in ice sheet models, The Cryosphere, 8, 2075–2087,
https://doi.org/10.5194/tc-8-2075-2014, 2014.

Seroussi, H., Nowicki, S., Simon, E., Abe-Ouchi, A., Albrecht, T.,
Brondex, J., Cornford, S., Dumas, C., Gillet-Chaulet, F., Goelzer,
H., Golledge, N. R., Gregory, J. M., Greve, R., Hoffman, M.
J., Humbert, A., Huybrechts, P., Kleiner, T., Larour, E., Leguy,
G., Lipscomb, W. H., Lowry, D., Mengel, M., Morlighem, M.,
Pattyn, F., Payne, A. J., Pollard, D., Price, S. F., Quiquet, A.,
Reerink, T. J., Reese, R., Rodehacke, C. B., Schlegel, N.-J.,
Shepherd, A., Sun, S., Sutter, J., Van Breedam, J., van de Wal,
R. S. W., Winkelmann, R., and Zhang, T.: initMIP-Antarctica:
an ice sheet model initialization experiment of ISMIP6, The
Cryosphere, 13, 1441–1471, https://doi.org/10.5194/tc-13-1441-
2019, 2019.

Söderlind, G.: Automatic Control and Adaptive
Time-Stepping, Numer. Algorithms, 31, 281–310,
https://doi.org/10.1023/A:1021160023092, 2002.

Söderlind, G. and Wang, L.: Adaptive time-stepping and com-
putational stability, J. Comput. Appl. Math., 185, 225–243,
https://doi.org/10.1016/j.cam.2005.03.008, 2006.

Stearns, L. A. and van der Veen, C. J.: Friction at the bed
does not control fast glacier flow, Science, 361, 273–277,
https://doi.org/10.1126/science.aat2217, 2018.

van Wessem, J. M., van de Berg, W. J., Noël, B. P. Y., van Meijgaard,
E., Amory, C., Birnbaum, G., Jakobs, C. L., Krüger, K., Lenaerts,
J. T. M., Lhermitte, S., Ligtenberg, S. R. M., Medley, B., Reijmer,
C. H., van Tricht, K., Trusel, L. D., van Ulft, L. H., Wouters,
B., Wuite, J., and van den Broeke, M. R.: Modelling the climate
and surface mass balance of polar ice sheets using RACMO2 –
Part 2: Antarctica (1979–2016), The Cryosphere, 12, 1479–1498,
https://doi.org/10.5194/tc-12-1479-2018, 2018.

Weertman, J.: Stability of the junction of an ice
sheet and an ice shelf, J. Glaciol., 13, 3–11,
https://doi.org/10.3189/S0022143000023327 , 1974.

Winkelmann, R., Martin, M. A., Haseloff, M., Albrecht, T., Bueler,
E., Khroulev, C., and Levermann, A.: The Potsdam Parallel
Ice Sheet Model (PISM-PIK) – Part 1: Model description, The
Cryosphere, 5, 715–726, https://doi.org/10.5194/tc-5-715-2011,
2011.

Yelmo-docs: Yelmo, General model structure – classes and
usage, Yelmo-docs, avaialable at: https://palma-ice.github.io/
yelmo-docs/, last access: 2 May 2020.

https://doi.org/10.5194/gmd-13-2805-2020 Geosci. Model Dev., 13, 2805–2823, 2020

https://doi.org/10.5194/gmd-5-1273-2012
https://doi.org/10.5194/gmd-11-5003-2018
https://doi.org/10.5194/gmd-11-5003-2018
https://doi.org/10.1126/science.1208336
https://doi.org/10.1007/s003820050149
https://doi.org/10.5281/zenodo.3782650
https://doi.org/10.1016/j.polar.2018.12.003
https://doi.org/10.3189/172756403781815393
https://doi.org/10.5194/essd-8-543-2016
https://doi.org/10.1098/rspa.2004.1350
https://doi.org/10.1029/2006JF000664
https://doi.org/10.1038/nature09618
https://doi.org/10.5194/tc-8-2075-2014
https://doi.org/10.5194/tc-13-1441-2019
https://doi.org/10.5194/tc-13-1441-2019
https://doi.org/10.1023/A:1021160023092
https://doi.org/10.1016/j.cam.2005.03.008
https://doi.org/10.1126/science.aat2217
https://doi.org/10.5194/tc-12-1479-2018
https://doi.org/10.3189/S0022143000023327 
https://doi.org/10.5194/tc-5-715-2011
https://palma-ice.github.io/yelmo-docs/
https://palma-ice.github.io/yelmo-docs/

	Abstract
	Introduction
	Model design
	Model physics
	Topography
	Material
	Dynamics
	Thermodynamics

	Timestepping
	Model interface
	Model validation and benchmarks
	Antarctica
	Conclusions and future work
	Code availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

