Articles | Volume 13, issue 6
https://doi.org/10.5194/gmd-13-2645-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-2645-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Simulated wind farm wake sensitivity to configuration choices in the Weather Research and Forecasting model version 3.8.1
Jessica M. Tomaszewski
CORRESPONDING AUTHOR
Department of Atmospheric and Oceanic Sciences, University of Colorado, 311 UCB, Boulder, CO 80309, USA
Julie K. Lundquist
Department of Atmospheric and Oceanic Sciences, University of Colorado, 311 UCB, Boulder, CO 80309, USA
National Renewable Energy Laboratory, Golden, CO, USA
Related authors
Jessica M. Tomaszewski and Julie K. Lundquist
Wind Energ. Sci., 6, 1–13, https://doi.org/10.5194/wes-6-1-2021, https://doi.org/10.5194/wes-6-1-2021, 2021
Short summary
Short summary
We use a mesoscale numerical weather prediction model to conduct a case study of a thunderstorm outflow passing over and interacting with a wind farm. These simulations and observations from a nearby radar and surface station confirm that interactions with the wind farm cause the outflow to reduce its speed by over 20 km h−1, with brief but significant impacts on the local meteorology, including temperature, moisture, and winds. Precipitation accumulation across the region was unaffected.
Jessica M. Tomaszewski, Julie K. Lundquist, Matthew J. Churchfield, and Patrick J. Moriarty
Wind Energ. Sci., 3, 833–843, https://doi.org/10.5194/wes-3-833-2018, https://doi.org/10.5194/wes-3-833-2018, 2018
Short summary
Short summary
Wind energy development has increased rapidly in rural locations of the United States, areas that also serve general aviation airports. The spinning rotor of a wind turbine creates an area of increased turbulence, and we question if this turbulent air could pose rolling hazards for light aircraft flying behind turbines. We analyze high-resolution simulations of wind flowing past a turbine to quantify the rolling risk and find that wind turbines pose no significant roll hazards to light aircraft.
Miguel Sanchez Gomez, Julie K. Lundquist, Jeffrey D. Mirocha, and Robert S. Arthur
Wind Energ. Sci., 8, 1049–1069, https://doi.org/10.5194/wes-8-1049-2023, https://doi.org/10.5194/wes-8-1049-2023, 2023
Short summary
Short summary
The wind slows down as it approaches a wind plant; this phenomenon is called blockage. As a result, the turbines in the wind plant produce less power than initially anticipated. We investigate wind plant blockage for two atmospheric conditions. Blockage is larger for a wind plant compared to a stand-alone turbine. Also, blockage increases with atmospheric stability. Blockage is amplified by the vertical transport of horizontal momentum as the wind approaches the front-row turbines in the array.
David Rosencrans, Julie K. Lundquist, Mike Optis, Alex Rybchuk, Nicola Bodini, and Michael Rossol
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-38, https://doi.org/10.5194/wes-2023-38, 2023
Revised manuscript under review for WES
Short summary
Short summary
The U.S. offshore wind industry is developing rapidly. Using yearlong simulations of wind plants in the U.S. mid-Atlantic, we assess the impacts of wind turbine wakes. While wakes are strongest and longest during summertime stably stratified conditions, when New England grid demand peaks, they are predictable and thus manageable. Over a year, wakes reduce power output by over 35 %. Wakes within a wind plant contribute most to that reduction, while wakes between wind plants play a secondary role.
Paul Veers, Katherine Dykes, Sukanta Basu, Alessandro Bianchini, Andrew Clifton, Peter Green, Hannele Holttinen, Lena Kitzing, Branko Kosovic, Julie K. Lundquist, Johan Meyers, Mark O'Malley, William J. Shaw, and Bethany Straw
Wind Energ. Sci., 7, 2491–2496, https://doi.org/10.5194/wes-7-2491-2022, https://doi.org/10.5194/wes-7-2491-2022, 2022
Short summary
Short summary
Wind energy will play a central role in the transition of our energy system to a carbon-free future. However, many underlying scientific issues remain to be resolved before wind can be deployed in the locations and applications needed for such large-scale ambitions. The Grand Challenges are the gaps in the science left behind during the rapid growth of wind energy. This article explains the breadth of the unfinished business and introduces 10 articles that detail the research needs.
Alex Rybchuk, Timothy W. Juliano, Julie K. Lundquist, David Rosencrans, Nicola Bodini, and Mike Optis
Wind Energ. Sci., 7, 2085–2098, https://doi.org/10.5194/wes-7-2085-2022, https://doi.org/10.5194/wes-7-2085-2022, 2022
Short summary
Short summary
Numerical weather prediction models are used to predict how wind turbines will interact with the atmosphere. Here, we characterize the uncertainty associated with the choice of turbulence parameterization on modeled wakes. We find that simulated wind speed deficits in turbine wakes can be significantly sensitive to the choice of turbulence parameterization. As such, predictions of future generated power are also sensitive to turbulence parameterization choice.
Rachel Robey and Julie K. Lundquist
Atmos. Meas. Tech., 15, 4585–4622, https://doi.org/10.5194/amt-15-4585-2022, https://doi.org/10.5194/amt-15-4585-2022, 2022
Short summary
Short summary
Our work investigates the behavior of errors in remote-sensing wind lidar measurements due to turbulence. Using a virtual instrument, we measured winds in simulated atmospheric flows and decomposed the resulting error. Dominant error mechanisms, particularly vertical velocity variations and interactions with shear, were identified in ensemble data over three test cases. By analyzing the underlying mechanisms, the response of the error behavior to further varying flow conditions may be projected.
Vincent Pronk, Nicola Bodini, Mike Optis, Julie K. Lundquist, Patrick Moriarty, Caroline Draxl, Avi Purkayastha, and Ethan Young
Wind Energ. Sci., 7, 487–504, https://doi.org/10.5194/wes-7-487-2022, https://doi.org/10.5194/wes-7-487-2022, 2022
Short summary
Short summary
In this paper, we have assessed to which extent mesoscale numerical weather prediction models are more accurate than state-of-the-art reanalysis products in characterizing the wind resource at heights of interest for wind energy. The conclusions of our work will be of primary importance to the wind industry for recommending the best data sources for wind resource modeling.
Adam S. Wise, James M. T. Neher, Robert S. Arthur, Jeffrey D. Mirocha, Julie K. Lundquist, and Fotini K. Chow
Wind Energ. Sci., 7, 367–386, https://doi.org/10.5194/wes-7-367-2022, https://doi.org/10.5194/wes-7-367-2022, 2022
Short summary
Short summary
Wind turbine wake behavior in hilly terrain depends on various atmospheric conditions. We modeled a wind turbine located on top of a ridge in Portugal during typical nighttime and daytime atmospheric conditions and validated these model results with observational data. During nighttime conditions, the wake deflected downwards following the terrain. During daytime conditions, the wake deflected upwards. These results can provide insight into wind turbine siting and operation in hilly regions.
Hannah Livingston, Nicola Bodini, and Julie K. Lundquist
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-68, https://doi.org/10.5194/wes-2021-68, 2021
Preprint withdrawn
Short summary
Short summary
In this paper, we assess whether hub-height turbulence can easily be quantified from either other hub-height variables or ground-level measurements in complex terrain. We find a large variability across the three considered locations when trying to model hub-height turbulence intensity and turbulence kinetic energy. Our results highlight the nonlinear and complex nature of atmospheric turbulence, so that more powerful techniques should instead be recommended to model hub-height turbulence.
Miguel Sanchez Gomez, Julie K. Lundquist, Petra M. Klein, and Tyler M. Bell
Earth Syst. Sci. Data, 13, 3539–3549, https://doi.org/10.5194/essd-13-3539-2021, https://doi.org/10.5194/essd-13-3539-2021, 2021
Short summary
Short summary
In July 2018, the International Society for Atmospheric Research using Remotely-piloted Aircraft (ISARRA) hosted a flight week to demonstrate unmanned aircraft systems' capabilities in sampling the atmospheric boundary layer. Three Doppler lidars were deployed during this week-long experiment. We use data from these lidars to estimate turbulence dissipation rate. We observe large temporal variability and significant differences in dissipation for lidars with different sampling techniques.
Miguel Sanchez Gomez, Julie K. Lundquist, Jeffrey D. Mirocha, Robert S. Arthur, and Domingo Muñoz-Esparza
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-57, https://doi.org/10.5194/wes-2021-57, 2021
Revised manuscript not accepted
Short summary
Short summary
Winds decelerate upstream of a wind plant as turbines obstruct and extract energy from the flow. This effect is known as wind plant blockage. We assess how atmospheric stability modifies the upstream wind plant blockage. We find stronger stability amplifies this effect. We also explore different approaches to quantifying blockage from field-like observations. We find different methodologies may induce errors of the same order of magnitude as the blockage-induced velocity deficits.
Alex Rybchuk, Mike Optis, Julie K. Lundquist, Michael Rossol, and Walt Musial
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-50, https://doi.org/10.5194/gmd-2021-50, 2021
Preprint withdrawn
Short summary
Short summary
We characterize the wind resource off the coast of California by conducting simulations with the Weather Research and Forecasting (WRF) model between 2000 and 2019. We compare newly simulated winds to those from the WIND Toolkit. The newly simulated winds are substantially stronger, particularly in the late summer. We also conduct a refined analysis at three areas that are being considered for commercial development, finding that stronger winds translates to substantially more power here.
Tyler M. Bell, Petra M. Klein, Julie K. Lundquist, and Sean Waugh
Earth Syst. Sci. Data, 13, 1041–1051, https://doi.org/10.5194/essd-13-1041-2021, https://doi.org/10.5194/essd-13-1041-2021, 2021
Short summary
Short summary
In July 2018, numerous weather sensing remotely piloted aircraft systems (RPASs) were flown in a flight week called Lower Atmospheric Process Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE). As part of LAPSE-RATE, ground-based remote and in situ systems were also deployed to supplement and enhance observations from the RPASs. These instruments include multiple Doppler lidars, thermodynamic profilers, and radiosondes. This paper describes data from these systems.
Caroline Draxl, Rochelle P. Worsnop, Geng Xia, Yelena Pichugina, Duli Chand, Julie K. Lundquist, Justin Sharp, Garrett Wedam, James M. Wilczak, and Larry K. Berg
Wind Energ. Sci., 6, 45–60, https://doi.org/10.5194/wes-6-45-2021, https://doi.org/10.5194/wes-6-45-2021, 2021
Short summary
Short summary
Mountain waves can create oscillations in low-level wind speeds and subsequently in the power output of wind plants. We document such oscillations by analyzing sodar and lidar observations, nacelle wind speeds, power observations, and Weather Research and Forecasting model simulations. This research describes how mountain waves form in the Columbia River basin and affect wind energy production and their impact on operational forecasting, wind plant layout, and integration of power into the grid.
Jessica M. Tomaszewski and Julie K. Lundquist
Wind Energ. Sci., 6, 1–13, https://doi.org/10.5194/wes-6-1-2021, https://doi.org/10.5194/wes-6-1-2021, 2021
Short summary
Short summary
We use a mesoscale numerical weather prediction model to conduct a case study of a thunderstorm outflow passing over and interacting with a wind farm. These simulations and observations from a nearby radar and surface station confirm that interactions with the wind farm cause the outflow to reduce its speed by over 20 km h−1, with brief but significant impacts on the local meteorology, including temperature, moisture, and winds. Precipitation accumulation across the region was unaffected.
Gijs de Boer, Adam Houston, Jamey Jacob, Phillip B. Chilson, Suzanne W. Smith, Brian Argrow, Dale Lawrence, Jack Elston, David Brus, Osku Kemppinen, Petra Klein, Julie K. Lundquist, Sean Waugh, Sean C. C. Bailey, Amy Frazier, Michael P. Sama, Christopher Crick, David Schmale III, James Pinto, Elizabeth A. Pillar-Little, Victoria Natalie, and Anders Jensen
Earth Syst. Sci. Data, 12, 3357–3366, https://doi.org/10.5194/essd-12-3357-2020, https://doi.org/10.5194/essd-12-3357-2020, 2020
Short summary
Short summary
This paper provides an overview of the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE) field campaign, held from 14 to 20 July 2018. This field campaign spanned a 1-week deployment to Colorado's San Luis Valley, involving over 100 students, scientists, engineers, pilots, and outreach coordinators. This overview paper provides insight into the campaign for a special issue focused on the datasets collected during LAPSE-RATE.
Antonia Englberger, Julie K. Lundquist, and Andreas Dörnbrack
Wind Energ. Sci., 5, 1623–1644, https://doi.org/10.5194/wes-5-1623-2020, https://doi.org/10.5194/wes-5-1623-2020, 2020
Short summary
Short summary
Wind turbines rotate clockwise. The rotational direction of the rotor interacts with the nighttime veering wind, resulting in a rotational-direction impact on the wake. In the case of counterclockwise-rotating blades the streamwise velocity in the wake is larger in the Northern Hemisphere whereas it is smaller in the Southern Hemisphere.
Antonia Englberger, Andreas Dörnbrack, and Julie K. Lundquist
Wind Energ. Sci., 5, 1359–1374, https://doi.org/10.5194/wes-5-1359-2020, https://doi.org/10.5194/wes-5-1359-2020, 2020
Short summary
Short summary
At night, the wind direction often changes with height, and this veer affects structures near the surface like wind turbines. Wind turbines usually rotate clockwise, but this rotational direction interacts with veer to impact the flow field behind a wind turbine. If another turbine is located downwind, the direction of the upwind turbine's rotation will affect the downwind turbine.
Nicola Bodini, Julie K. Lundquist, and Mike Optis
Geosci. Model Dev., 13, 4271–4285, https://doi.org/10.5194/gmd-13-4271-2020, https://doi.org/10.5194/gmd-13-4271-2020, 2020
Short summary
Short summary
While turbulence dissipation rate (ε) is an essential parameter for the prediction of wind speed, its current representation in weather prediction models is inaccurate, especially in complex terrain. In this study, we leverage the potential of machine-learning techniques to provide a more accurate representation of turbulence dissipation rate. Our results show a 30 % reduction in the average error compared to the current model representation of ε and a total elimination of its average bias.
Patrick Murphy, Julie K. Lundquist, and Paul Fleming
Wind Energ. Sci., 5, 1169–1190, https://doi.org/10.5194/wes-5-1169-2020, https://doi.org/10.5194/wes-5-1169-2020, 2020
Short summary
Short summary
We present and evaluate an improved method for predicting wind turbine power production based on measurements of the wind speed and direction profile across the rotor disk for a wind turbine in complex terrain. By comparing predictions to actual power production from a utility-scale wind turbine, we show this method is more accurate than methods based on hub-height wind speed or surface-based atmospheric characterization.
Paul Fleming, Jennifer King, Eric Simley, Jason Roadman, Andrew Scholbrock, Patrick Murphy, Julie K. Lundquist, Patrick Moriarty, Katherine Fleming, Jeroen van Dam, Christopher Bay, Rafael Mudafort, David Jager, Jason Skopek, Michael Scott, Brady Ryan, Charles Guernsey, and Dan Brake
Wind Energ. Sci., 5, 945–958, https://doi.org/10.5194/wes-5-945-2020, https://doi.org/10.5194/wes-5-945-2020, 2020
Short summary
Short summary
This paper presents the results of a field campaign investigating the performance of wake steering applied at a section of a commercial wind farm. It is the second phase of the study for which the first phase was reported in a companion paper (https://wes.copernicus.org/articles/4/273/2019/). The authors implemented wake steering on two turbine pairs and compared results with the latest FLORIS model of wake steering, showing good agreement in overall energy increase.
Philipp Gasch, Andreas Wieser, Julie K. Lundquist, and Norbert Kalthoff
Atmos. Meas. Tech., 13, 1609–1631, https://doi.org/10.5194/amt-13-1609-2020, https://doi.org/10.5194/amt-13-1609-2020, 2020
Short summary
Short summary
We present an airborne Doppler lidar simulator (ADLS) based on high-resolution atmospheric wind fields (LES). The ADLS is used to evaluate the retrieval accuracy of airborne wind profiling under turbulent, inhomogeneous wind field conditions inside the boundary layer. With the ADLS, the error due to the violation of the wind field homogeneity assumption used for retrieval can be revealed. For the conditions considered, flow inhomogeneities exert a dominant influence on wind profiling error.
Simon K. Siedersleben, Andreas Platis, Julie K. Lundquist, Bughsin Djath, Astrid Lampert, Konrad Bärfuss, Beatriz Cañadillas, Johannes Schulz-Stellenfleth, Jens Bange, Tom Neumann, and Stefan Emeis
Geosci. Model Dev., 13, 249–268, https://doi.org/10.5194/gmd-13-249-2020, https://doi.org/10.5194/gmd-13-249-2020, 2020
Short summary
Short summary
Wind farms affect local weather and microclimates. These effects can be simulated in weather models, usually by removing momentum at the location of the wind farm. Some debate exists whether additional turbulence should be added to capture the enhanced mixing of wind farms. By comparing simulations to measurements from airborne campaigns near offshore wind farms, we show that additional turbulence is necessary. Without added turbulence, the mixing is underestimated during stable conditions.
Miguel Sanchez Gomez and Julie K. Lundquist
Wind Energ. Sci., 5, 125–139, https://doi.org/10.5194/wes-5-125-2020, https://doi.org/10.5194/wes-5-125-2020, 2020
Short summary
Short summary
Wind turbine performance depends on various atmospheric conditions. We quantified the effect of the change in wind direction and speed with height (direction and speed wind shear) on turbine power at a wind farm in Iowa. Turbine performance was affected during large direction shear and small speed shear conditions and favored for the opposite scenarios. These effects make direction shear significant when analyzing the influence of different atmospheric variables on turbine operation.
Norman Wildmann, Nicola Bodini, Julie K. Lundquist, Ludovic Bariteau, and Johannes Wagner
Atmos. Meas. Tech., 12, 6401–6423, https://doi.org/10.5194/amt-12-6401-2019, https://doi.org/10.5194/amt-12-6401-2019, 2019
Short summary
Short summary
Turbulence is the variation of wind velocity on short timescales. In this study we introduce a new method to measure turbulence in a two-dimensionial plane with lidar instruments. The method allows for the detection and quantification of subareas of distinct turbulence conditions in the observed plane. We compare the results to point and profile measurements with more established instruments. It is shown that turbulence below low-level jets and in wind turbine wakes can be investigated this way.
Laura Bianco, Irina V. Djalalova, James M. Wilczak, Joseph B. Olson, Jaymes S. Kenyon, Aditya Choukulkar, Larry K. Berg, Harindra J. S. Fernando, Eric P. Grimit, Raghavendra Krishnamurthy, Julie K. Lundquist, Paytsar Muradyan, Mikhail Pekour, Yelena Pichugina, Mark T. Stoelinga, and David D. Turner
Geosci. Model Dev., 12, 4803–4821, https://doi.org/10.5194/gmd-12-4803-2019, https://doi.org/10.5194/gmd-12-4803-2019, 2019
Short summary
Short summary
During the second Wind Forecast Improvement Project, improvements to the parameterizations were applied to the High Resolution Rapid Refresh model and its nested version. The impacts of the new parameterizations on the forecast of 80 m wind speeds and power are assessed, using sodars and profiling lidars observations for comparison. Improvements are evaluated as a function of the model’s initialization time, forecast horizon, time of the day, season, site elevation, and meteorological phenomena.
Paul Fleming, Jennifer King, Katherine Dykes, Eric Simley, Jason Roadman, Andrew Scholbrock, Patrick Murphy, Julie K. Lundquist, Patrick Moriarty, Katherine Fleming, Jeroen van Dam, Christopher Bay, Rafael Mudafort, Hector Lopez, Jason Skopek, Michael Scott, Brady Ryan, Charles Guernsey, and Dan Brake
Wind Energ. Sci., 4, 273–285, https://doi.org/10.5194/wes-4-273-2019, https://doi.org/10.5194/wes-4-273-2019, 2019
Short summary
Short summary
Wake steering is a form of wind farm control in which turbines use yaw offsets to affect wakes in order to yield an increase in total energy production. In this first phase of a study of wake steering at a commercial wind farm, two turbines implement a schedule of offsets. For two closely spaced turbines, an approximate 14 % increase in energy was measured on the downstream turbine over a 10° sector, with a 4 % increase in energy production of the combined turbine pair.
Nicola Bodini, Julie K. Lundquist, Raghavendra Krishnamurthy, Mikhail Pekour, Larry K. Berg, and Aditya Choukulkar
Atmos. Chem. Phys., 19, 4367–4382, https://doi.org/10.5194/acp-19-4367-2019, https://doi.org/10.5194/acp-19-4367-2019, 2019
Short summary
Short summary
To improve the parameterization of the turbulence dissipation rate (ε) in numerical weather prediction models, we have assessed its temporal and spatial variability at various scales in the Columbia River Gorge during the WFIP2 field experiment. The turbulence dissipation rate shows large spatial variability, even at the microscale, with larger values in sites located downwind of complex orographic structures or in wind farm wakes. Distinct diurnal and seasonal cycles in ε have also been found.
Robert Menke, Nikola Vasiljević, Jakob Mann, and Julie K. Lundquist
Atmos. Chem. Phys., 19, 2713–2723, https://doi.org/10.5194/acp-19-2713-2019, https://doi.org/10.5194/acp-19-2713-2019, 2019
Short summary
Short summary
This research utilizes several months of lidar measurements from the Perdigão 2017 campaign to investigate flow recirculation zones that occur at the two parallel ridges at the measurement site in Portugal. We found that recirculation occurs in over 50 % of the time when the wind direction is perpendicular to the direction of the ridges. Moreover, we show three-dimensional changes of the zones along the ridges and the implications of recirculation on wind turbines that are operating downstream.
Joseph C. Y. Lee, M. Jason Fields, and Julie K. Lundquist
Wind Energ. Sci., 3, 845–868, https://doi.org/10.5194/wes-3-845-2018, https://doi.org/10.5194/wes-3-845-2018, 2018
Short summary
Short summary
To find the ideal way to quantify long-term wind-speed variability, we compare 27 metrics using 37 years of wind and energy data. We conclude that the robust coefficient of variation can effectively assess and correlate wind-speed and energy-production variabilities. We derive adequate results via monthly mean data, whereas uncertainty arises in interannual variability calculations. We find that reliable estimates of wind-speed variability require 10 ± 3 years of monthly mean wind data.
Jessica M. Tomaszewski, Julie K. Lundquist, Matthew J. Churchfield, and Patrick J. Moriarty
Wind Energ. Sci., 3, 833–843, https://doi.org/10.5194/wes-3-833-2018, https://doi.org/10.5194/wes-3-833-2018, 2018
Short summary
Short summary
Wind energy development has increased rapidly in rural locations of the United States, areas that also serve general aviation airports. The spinning rotor of a wind turbine creates an area of increased turbulence, and we question if this turbulent air could pose rolling hazards for light aircraft flying behind turbines. We analyze high-resolution simulations of wind flowing past a turbine to quantify the rolling risk and find that wind turbines pose no significant roll hazards to light aircraft.
Nicola Bodini, Julie K. Lundquist, and Rob K. Newsom
Atmos. Meas. Tech., 11, 4291–4308, https://doi.org/10.5194/amt-11-4291-2018, https://doi.org/10.5194/amt-11-4291-2018, 2018
Short summary
Short summary
Turbulence within the atmospheric boundary layer is critically important to transfer heat, momentum, and moisture. Currently, improved turbulence parametrizations are crucially needed to refine the accuracy of model results at fine horizontal scales. In this study, we calculate turbulence dissipation rate from sonic anemometers and discuss a novel approach to derive turbulence dissipation from profiling lidar measurements.
Rochelle P. Worsnop, Michael Scheuerer, Thomas M. Hamill, and Julie K. Lundquist
Wind Energ. Sci., 3, 371–393, https://doi.org/10.5194/wes-3-371-2018, https://doi.org/10.5194/wes-3-371-2018, 2018
Short summary
Short summary
This paper uses four statistical methods to generate probabilistic wind speed and power ramp forecasts from the High Resolution Rapid Refresh model. The results show that these methods can provide necessary uncertainty information of power ramp forecasts. These probabilistic forecasts can aid in decisions regarding power production and grid integration of wind power.
Joseph C. Y. Lee and Julie K. Lundquist
Geosci. Model Dev., 10, 4229–4244, https://doi.org/10.5194/gmd-10-4229-2017, https://doi.org/10.5194/gmd-10-4229-2017, 2017
Short summary
Short summary
We evaluate the wind farm parameterization (WFP) in the Weather Research and Forecasting (WRF) model, a powerful tool to simulate wind farms and their meteorological impacts numerically. In our case study, the WFP simulations with fine vertical grid resolution are skilful in matching the observed winds and the actual power productions. Moreover, the WFP tends to underestimate power in windy conditions. We also illustrate that the modeled wind speed is a critical determinant to improve the WFP.
Nicola Bodini, Dino Zardi, and Julie K. Lundquist
Atmos. Meas. Tech., 10, 2881–2896, https://doi.org/10.5194/amt-10-2881-2017, https://doi.org/10.5194/amt-10-2881-2017, 2017
Short summary
Short summary
Wind turbine wakes have considerable impacts on downwind turbines in wind farms, given their slower wind speeds and increased turbulence. Based on lidar measurements, we apply a quantitative algorithm to assess wake parameters for wakes from a row of four turbines in CWEX-13 campaign. We describe how wake characteristics evolve, and for the first time we quantify the relation between wind veer and a stretching of the wake structures, and we highlight different results for inner and outer wakes.
Clara M. St. Martin, Julie K. Lundquist, Andrew Clifton, Gregory S. Poulos, and Scott J. Schreck
Wind Energ. Sci., 2, 295–306, https://doi.org/10.5194/wes-2-295-2017, https://doi.org/10.5194/wes-2-295-2017, 2017
Short summary
Short summary
We use upwind and nacelle-based measurements from a wind turbine and investigate the influence of atmospheric stability and turbulence regimes on nacelle transfer functions (NTFs) used to correct nacelle-mounted anemometer measurements. This work shows that correcting nacelle winds using NTFs results in similar energy production estimates to those obtained using upwind tower-based wind speeds. Further, stability and turbulence metrics have been found to have an effect on NTFs below rated speed.
Laura Bianco, Katja Friedrich, James M. Wilczak, Duane Hazen, Daniel Wolfe, Ruben Delgado, Steven P. Oncley, and Julie K. Lundquist
Atmos. Meas. Tech., 10, 1707–1721, https://doi.org/10.5194/amt-10-1707-2017, https://doi.org/10.5194/amt-10-1707-2017, 2017
Short summary
Short summary
XPIA is a study held in 2015 at NOAA's Boulder Atmospheric Observatory facility, aimed at assessing remote-sensing capabilities for wind energy applications. We use well-defined reference systems to validate temperature retrieved by two microwave radiometers (MWRs) and virtual temperature measured by wind profiling radars with radio acoustic sounding systems (RASSs). Water vapor density and relative humidity by the MWRs were also compared with similar measurements from the reference systems.
Rob K. Newsom, W. Alan Brewer, James M. Wilczak, Daniel E. Wolfe, Steven P. Oncley, and Julie K. Lundquist
Atmos. Meas. Tech., 10, 1229–1240, https://doi.org/10.5194/amt-10-1229-2017, https://doi.org/10.5194/amt-10-1229-2017, 2017
Short summary
Short summary
Doppler lidars are remote sensing instruments that use infrared light to measure wind velocity in the lowest 2 to 3 km of the atmosphere. Quantifying the uncertainty in these measurements is crucial for applications ranging from wind resource assessment to model data assimilation. In this study, we evaluate three methods for estimating the random uncertainty by comparing the lidar wind measurements with nearly collocated in situ wind measurements at multiple levels on a tall tower.
Mithu Debnath, Giacomo Valerio Iungo, W. Alan Brewer, Aditya Choukulkar, Ruben Delgado, Scott Gunter, Julie K. Lundquist, John L. Schroeder, James M. Wilczak, and Daniel Wolfe
Atmos. Meas. Tech., 10, 1215–1227, https://doi.org/10.5194/amt-10-1215-2017, https://doi.org/10.5194/amt-10-1215-2017, 2017
Short summary
Short summary
The XPIA experiment was conducted in 2015 at the Boulder Atmospheric Observatory to estimate capabilities of various remote-sensing techniques for the characterization of complex atmospheric flows. Among different tests, XPIA provided the unique opportunity to perform simultaneous virtual towers with Ka-band radars and scanning Doppler wind lidars. Wind speed and wind direction were assessed against lidar profilers and sonic anemometer data, highlighting a good accuracy of the data retrieved.
Mithu Debnath, G. Valerio Iungo, Ryan Ashton, W. Alan Brewer, Aditya Choukulkar, Ruben Delgado, Julie K. Lundquist, William J. Shaw, James M. Wilczak, and Daniel Wolfe
Atmos. Meas. Tech., 10, 431–444, https://doi.org/10.5194/amt-10-431-2017, https://doi.org/10.5194/amt-10-431-2017, 2017
Short summary
Short summary
Triple RHI scans were performed with three simultaneous scanning Doppler wind lidars and assessed with lidar profiler and sonic anemometer data. This test is part of the XPIA experiment. The scan strategy consists in two lidars performing co-planar RHI scans, while a third lidar measures the transversal velocity component. The results show that horizontal velocity and wind direction are measured with good accuracy, while the vertical velocity is typically measured with a significant error.
Katherine McCaffrey, Paul T. Quelet, Aditya Choukulkar, James M. Wilczak, Daniel E. Wolfe, Steven P. Oncley, W. Alan Brewer, Mithu Debnath, Ryan Ashton, G. Valerio Iungo, and Julie K. Lundquist
Atmos. Meas. Tech., 10, 393–407, https://doi.org/10.5194/amt-10-393-2017, https://doi.org/10.5194/amt-10-393-2017, 2017
Short summary
Short summary
During the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) field campaign, the wake and flow distortion from a 300-meter meteorological tower was identified using pairs of sonic anemometers mounted on opposite sides of the tower, as well as profiling and scanning lidars. Wind speed deficits up to 50% and TKE increases of 2 orders of magnitude were observed at wind directions in the wake, along with wind direction differences (flow deflection) outside of the wake.
Aditya Choukulkar, W. Alan Brewer, Scott P. Sandberg, Ann Weickmann, Timothy A. Bonin, R. Michael Hardesty, Julie K. Lundquist, Ruben Delgado, G. Valerio Iungo, Ryan Ashton, Mithu Debnath, Laura Bianco, James M. Wilczak, Steven Oncley, and Daniel Wolfe
Atmos. Meas. Tech., 10, 247–264, https://doi.org/10.5194/amt-10-247-2017, https://doi.org/10.5194/amt-10-247-2017, 2017
Short summary
Short summary
This paper discusses trade-offs among various wind measurement strategies using scanning Doppler lidars. It is found that the trade-off exists between being able to make highly precise point measurements versus covering large spatial extents. The highest measurement precision is achieved when multiple lidar systems make wind measurements at one point in space, while highest spatial coverage is achieved through using single lidar scanning measurements and using complex retrieval techniques.
Clara M. St. Martin, Julie K. Lundquist, Andrew Clifton, Gregory S. Poulos, and Scott J. Schreck
Wind Energ. Sci., 1, 221–236, https://doi.org/10.5194/wes-1-221-2016, https://doi.org/10.5194/wes-1-221-2016, 2016
Short summary
Short summary
We use turbine nacelle-based measurements and measurements from an upwind tower to calculate wind turbine power curves and predict the production of energy. We explore how different atmospheric parameters impact these power curves and energy production estimates. Results show statistically significant differences between power curves and production estimates calculated with turbulence and stability filters, and we suggest implementing an additional step in analyzing power performance data.
Nicola Bodini, Julie K. Lundquist, Dino Zardi, and Mark Handschy
Wind Energ. Sci., 1, 115–128, https://doi.org/10.5194/wes-1-115-2016, https://doi.org/10.5194/wes-1-115-2016, 2016
Short summary
Short summary
Year-to-year variability of wind speeds limits the certainty of wind-plant preconstruction energy estimates ("resource assessments"). Using 62-year records from 60 stations across Canada we show that resource highs and lows persist for decades, which makes estimates 2–3 times less certain than if annual levels were uncorrelated. Comparing chronological data records with randomly permuted versions of the same data reveals this in an unambiguous and easy-to-understand way.
J. K. Lundquist, M. J. Churchfield, S. Lee, and A. Clifton
Atmos. Meas. Tech., 8, 907–920, https://doi.org/10.5194/amt-8-907-2015, https://doi.org/10.5194/amt-8-907-2015, 2015
Short summary
Short summary
Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications like wind energy, but their use often relies on assuming homogeneity in the wind. Using numerical simulations of stable flow past a wind turbine, we quantify the error expected because of the inhomogeneity of the flow. Large errors (30%) in winds are found near the wind turbine, but by three rotor diameters downwind, errors in the horizontal components have decreased to 15% of the inflow.
Related subject area
Atmospheric sciences
Emulating lateral gravity wave propagation in a global chemistry–climate model (EMAC v2.55.2) through horizontal flux redistribution
Evaluating WRF-GC v2.0 predictions of boundary layer height and vertical ozone profile during the 2021 TRACER-AQ campaign in Houston, Texas
An optimisation method to improve modelling of wet deposition in atmospheric transport models: applied to FLEXPART v10.4
Modelling concentration heterogeneities in streets using the street-network model MUNICH
Simulation model of Reactive Nitrogen Species in an Urban Atmosphere using a Deep Neural Network: RNDv1.0
J-GAIN v1.1: a flexible tool to incorporate aerosol formation rates obtained by molecular models into large-scale models
Metrics for evaluating the quality in linear atmospheric inverse problems: a case study of a trace gas inversion
Improved representation of volcanic sulfur dioxide depletion in Lagrangian transport simulations: a case study with MPTRAC v2.4
Use of threshold parameter variation for tropical cyclone tracking
Passive-tracer modelling at super-resolution with Weather Research and Forecasting – Advanced Research WRF (WRF-ARW) to assess mass-balance schemes
The High-resolution Intermediate Complexity Atmospheric Research (HICAR v1.1) model enables fast dynamic downscaling to the hectometer scale
A gridded air quality forecast through fusing site-available machine learning predictions from RFSML v1.0 and chemical transport model results from GEOS-Chem v13.1.0 using the ensemble Kalman filter
Plume detection and emission estimate for biomass burning plumes from TROPOMI carbon monoxide observations using APE v1.1
CHEEREIO 1.0: a versatile and user-friendly ensemble-based chemical data assimilation and emissions inversion platform for the GEOS-Chem chemical transport model
A method to derive Fourier–wavelet spectra for the characterization of global-scale waves in the mesosphere and lower thermosphere and its MATLAB and Python software (fourierwavelet v1.1)
Dynamic Meteorology-induced Emissions Coupler (MetEmis) development in the Community Multiscale Air Quality (CMAQ): CMAQ-MetEmis
Visual analysis of model parameter sensitivities along warm conveyor belt trajectories using Met.3D (1.6.0-multivar1)
Simulating heat and CO2 fluxes in Beijing using SUEWS V2020b: sensitivity to vegetation phenology and maximum conductance
A Python library for computing individual and merged non-CO2 algorithmic climate change functions: CLIMaCCF V1.0
The three-dimensional structure of fronts in mid-latitude weather systems in numerical weather prediction models
The development and validation of the Inhomogeneous Wind Scheme for Urban Street (IWSUS-v1)
GPU-HADVPPM V1.0: a high-efficiency parallel GPU design of the piecewise parabolic method (PPM) for horizontal advection in an air quality model (CAMx V6.10)
Variability and combination as an ensemble of mineral dust forecasts during the 2021 CADDIWA experiment using the WRF 3.7.1 and CHIMERE v2020r3 models
Breakups are complicated: an efficient representation of collisional breakup in the superdroplet method
An optimized semi-empirical physical approach for satellite-based PM2.5 retrieval: embedding machine learning to simulate complex physical parameters
Sensitivity of tropospheric ozone to halogen chemistry in the chemistry–climate model LMDZ-INCA vNMHC
Segmentation of XCO2 images with deep learning: application to synthetic plumes from cities and power plants
Evaluating precipitation distributions at regional scales: a benchmarking framework and application to CMIP5 and 6 models
The Fire Inventory from NCAR version 2.5: an updated global fire emissions model for climate and chemistry applications
An approach to refining the ground meteorological observation stations for improving PM2.5 forecasts in the Beijing–Tianjin–Hebei region
Assessment of WRF (v 4.2.1) dynamically downscaled precipitation on subdaily and daily timescales over CONUS
Rapid adaptive Optimization Model for Atmospheric Chemistry (ROMAC) v1.0
Convective-gust nowcasting based on radar reflectivity and a deep learning algorithm
Self-nested large-eddy simulations in PALM model system v21.10 for offshore wind prediction under different atmospheric stability conditions
How does cloud-radiative heating over the North Atlantic change with grid spacing, convective parameterization, and microphysics scheme in ICON version 2.1.00?
Simulations of idealised 3D atmospheric flows on terrestrial planets using LFRic-Atmosphere
Updated isoprene and terpene emission factors for the Interactive BVOC (iBVOC) emission scheme in the United Kingdom Earth System Model (UKESM1.0)
Technical descriptions of the experimental dynamical downscaling simulations over North America by the CAM–MPAS variable-resolution model
Intercomparison of the weather and climate physics suites of a unified forecast–climate model system (GRIST-A22.7.28) based on single-column modeling
A Mountain-Induced Moist Baroclinic Wave Test Case for the Dynamical Cores of Atmospheric General Circulation Models
A robust error correction method for numerical weather prediction wind speed based on Bayesian optimization, Variational Mode Decomposition, Principal Component Analysis, and Random Forest: VMD-PCA-RF (version 1.0.0)
Halogen chemistry in volcanic plumes: a 1D framework based on MOCAGE 1D (version R1.18.1) preparing 3D global chemistry modelling
PyFLEXTRKR: a flexible feature tracking Python software for convective cloud analysis
CLGAN: a generative adversarial network (GAN)-based video prediction model for precipitation nowcasting
Long-term evaluation of surface air pollution in CAMSRA and MERRA-2 global reanalyses over Europe (2003–2020)
A simplified non-linear chemistry-transport model for analyzing NO2 column observations
Evaluating Three Decades of Precipitation in the Upper Colorado River Basin from a High-Resolution Regional Climate Model
Emulating aerosol optics with randomly generated neural networks
Development of an ecophysiology module in the GEOS-Chem chemical transport model version 12.2.0 to represent biosphere–atmosphere fluxes relevant for ozone air quality
Application of the Multi-Scale Infrastructure for Chemistry and Aerosols version 0 (MUSICAv0) for air quality in Africa
Roland Eichinger, Sebastian Rhode, Hella Garny, Peter Preusse, Petr Pisoft, Aleš Kuchař, Patrick Jöckel, Astrid Kerkweg, and Bastian Kern
Geosci. Model Dev., 16, 5561–5583, https://doi.org/10.5194/gmd-16-5561-2023, https://doi.org/10.5194/gmd-16-5561-2023, 2023
Short summary
Short summary
The columnar approach of gravity wave (GW) schemes results in dynamical model biases, but parallel decomposition makes horizontal GW propagation computationally unfeasible. In the global model EMAC, we approximate it by GW redistribution at one altitude using tailor-made redistribution maps generated with a ray tracer. More spread-out GW drag helps reconcile the model with observations and close the 60°S GW gap. Polar vortex dynamics are improved, enhancing climate model credibility.
Xueying Liu, Yuxuan Wang, Shailaja Wasti, Wei Li, Ehsan Soleimanian, James Flynn, Travis Griggs, Sergio Alvarez, John T. Sullivan, Maurice Roots, Laurence Twigg, Guillaume Gronoff, Timothy Berkoff, Paul Walter, Mark Estes, Johnathan W. Hair, Taylor Shingler, Amy Jo Scarino, Marta Fenn, and Laura Judd
Geosci. Model Dev., 16, 5493–5514, https://doi.org/10.5194/gmd-16-5493-2023, https://doi.org/10.5194/gmd-16-5493-2023, 2023
Short summary
Short summary
With a comprehensive suite of ground-based and airborne remote sensing measurements during the 2021 TRacking Aerosol Convection ExpeRiment – Air Quality (TRACER-AQ) campaign in Houston, this study evaluates the simulation of the planetary boundary layer (PBL) height and the ozone vertical profile by a high-resolution (1.33 km) 3-D photochemical model Weather Research and Forecasting-driven GEOS-Chem (WRF-GC).
Stijn Van Leuven, Pieter De Meutter, Johan Camps, Piet Termonia, and Andy Delcloo
Geosci. Model Dev., 16, 5323–5338, https://doi.org/10.5194/gmd-16-5323-2023, https://doi.org/10.5194/gmd-16-5323-2023, 2023
Short summary
Short summary
Precipitation collects airborne particles and deposits these on the ground. This process is called wet deposition and greatly determines how airborne radioactive particles (released routinely or accidentally) contaminate the surface. In this work we present a new method to improve the calculation of wet deposition in computer models. We apply this method to the existing model FLEXPART by simulating the Fukushima nuclear accident (2011) and show that it improves the simulation of wet deposition.
Thibaud Sarica, Alice Maison, Yelva Roustan, Matthias Ketzel, Steen Solvang Jensen, Youngseob Kim, Christophe Chaillou, and Karine Sartelet
Geosci. Model Dev., 16, 5281–5303, https://doi.org/10.5194/gmd-16-5281-2023, https://doi.org/10.5194/gmd-16-5281-2023, 2023
Short summary
Short summary
A new version of the Model of Urban Network of Intersecting Canyons and Highways (MUNICH) is developed to represent heterogeneities of concentrations in streets. The street volume is discretized vertically and horizontally to limit the artificial dilution of emissions and concentrations. This new version is applied to street networks in Copenhagen and Paris. The comparisons to observations are improved, with higher concentrations of pollutants emitted by traffic at the bottom of the street.
Junsu Gil, Meehye Lee, Jeonghwan Kim, Gangwoong Lee, Joonyoung Ahn, and Cheol-Hee Kim
Geosci. Model Dev., 16, 5251–5263, https://doi.org/10.5194/gmd-16-5251-2023, https://doi.org/10.5194/gmd-16-5251-2023, 2023
Short summary
Short summary
In this study, the framework for calculating reactive nitrogen species using a deep neural network (RND) was developed. It works through simple Python codes and provides high-accuracy reactive nitrogen oxide data. In the first version (RNDv1.0), the model calculates the nitrous acid (HONO) in urban areas, which has an important role in producing O3 and fine aerosol.
Daniel Yazgi and Tinja Olenius
Geosci. Model Dev., 16, 5237–5249, https://doi.org/10.5194/gmd-16-5237-2023, https://doi.org/10.5194/gmd-16-5237-2023, 2023
Short summary
Short summary
We present flexible tools to implement aerosol formation rate predictions in climate and chemical transport models. New-particle formation is a significant but uncertain factor affecting aerosol numbers and an active field within molecular modeling which provides data for assessing formation rates for different chemical species. We introduce tools to generate and interpolate formation rate lookup tables for user-defined data, thus enabling the easy inclusion and testing of formation schemes.
Vineet Yadav, Subhomoy Ghosh, and Charles E. Miller
Geosci. Model Dev., 16, 5219–5236, https://doi.org/10.5194/gmd-16-5219-2023, https://doi.org/10.5194/gmd-16-5219-2023, 2023
Short summary
Short summary
Measuring the performance of inversions in linear Bayesian problems is crucial in real-life applications. In this work, we provide analytical forms of the local and global sensitivities of the estimated fluxes with respect to various inputs. We provide methods to uniquely map the observational signal to spatiotemporal domains. Utilizing this, we also show techniques to assess correlations between the Jacobians that naturally translate to nonstationary covariance matrix components.
Mingzhao Liu, Lars Hoffmann, Sabine Griessbach, Zhongyin Cai, Yi Heng, and Xue Wu
Geosci. Model Dev., 16, 5197–5217, https://doi.org/10.5194/gmd-16-5197-2023, https://doi.org/10.5194/gmd-16-5197-2023, 2023
Short summary
Short summary
We introduce new and revised chemistry and physics modules in the Massive-Parallel Trajectory Calculations (MPTRAC) Lagrangian transport model aiming to improve the representation of volcanic SO2 transport and depletion. We test these modules in a case study of the Ambae eruption in July 2018 in which the SO2 plume underwent wet removal and convection. The lifetime of SO2 shows highly variable and complex dependencies on the atmospheric conditions at different release heights.
Bernhard M. Enz, Jan P. Engelmann, and Ulrike Lohmann
Geosci. Model Dev., 16, 5093–5112, https://doi.org/10.5194/gmd-16-5093-2023, https://doi.org/10.5194/gmd-16-5093-2023, 2023
Short summary
Short summary
An algorithm to track tropical cyclones in model simulation data has been developed. The algorithm uses many combinations of varying parameter thresholds to detect weaker phases of tropical cyclones while still being resilient to false positives. It is shown that the algorithm performs well and adequately represents the tropical cyclone activity of the underlying simulation data. The impact of false positives on overall tropical cyclone activity is shown to be insignificant.
Sepehr Fathi, Mark Gordon, and Yongsheng Chen
Geosci. Model Dev., 16, 5069–5091, https://doi.org/10.5194/gmd-16-5069-2023, https://doi.org/10.5194/gmd-16-5069-2023, 2023
Short summary
Short summary
We have combined various capabilities within a WRF model to generate simulations of atmospheric pollutant dispersion at 50 m resolution. The study objective was to resolve transport processes at the scale of measurements to assess and optimize aircraft-based emission rate retrievals. Model performance evaluation resulted in agreement within 5 % of observed meteorological and within 1–2 standard deviations of observed wind fields. Mass was conserved in the model within 5 % of input emissions.
Dylan Reynolds, Ethan Gutmann, Bert Kruyt, Michael Haugeneder, Tobias Jonas, Franziska Gerber, Michael Lehning, and Rebecca Mott
Geosci. Model Dev., 16, 5049–5068, https://doi.org/10.5194/gmd-16-5049-2023, https://doi.org/10.5194/gmd-16-5049-2023, 2023
Short summary
Short summary
The challenge of running geophysical models is often compounded by the question of where to obtain appropriate data to give as input to a model. Here we present the HICAR model, a simplified atmospheric model capable of running at spatial resolutions of hectometers for long time series or over large domains. This makes physically consistent atmospheric data available at the spatial and temporal scales needed for some terrestrial modeling applications, for example seasonal snow forecasting.
Li Fang, Jianbing Jin, Arjo Segers, Hong Liao, Ke Li, Bufan Xu, Wei Han, Mijie Pang, and Hai Xiang Lin
Geosci. Model Dev., 16, 4867–4882, https://doi.org/10.5194/gmd-16-4867-2023, https://doi.org/10.5194/gmd-16-4867-2023, 2023
Short summary
Short summary
Machine learning models have gained great popularity in air quality prediction. However, they are only available at air quality monitoring stations. In contrast, chemical transport models (CTM) provide predictions that are continuous in the 3D field. Owing to complex error sources, they are typically biased. In this study, we proposed a gridded prediction with high accuracy by fusing predictions from our regional feature selection machine learning prediction (RFSML v1.0) and a CTM prediction.
Manu Goudar, Juliëtte C. S. Anema, Rajesh Kumar, Tobias Borsdorff, and Jochen Landgraf
Geosci. Model Dev., 16, 4835–4852, https://doi.org/10.5194/gmd-16-4835-2023, https://doi.org/10.5194/gmd-16-4835-2023, 2023
Short summary
Short summary
A framework was developed to automatically detect plumes and compute emission estimates with cross-sectional flux method (CFM) for biomass burning events in TROPOMI CO datasets using Visible Infrared Imaging Radiometer Suite active fire data. The emissions were more reliable when changing plume height in downwind direction was used instead of constant injection height. The CFM had uncertainty even when the meteorological conditions were accurate; thus there is a need for better inversion models.
Drew C. Pendergrass, Daniel J. Jacob, Hannah Nesser, Daniel J. Varon, Melissa Sulprizio, Kazuyuki Miyazaki, and Kevin W. Bowman
Geosci. Model Dev., 16, 4793–4810, https://doi.org/10.5194/gmd-16-4793-2023, https://doi.org/10.5194/gmd-16-4793-2023, 2023
Short summary
Short summary
We have built a tool called CHEEREIO that allows scientists to use observations of pollutants or gases in the atmosphere, such as from satellites or surface stations, to update supercomputer models that simulate the Earth. CHEEREIO uses the difference between the model simulations of the atmosphere and real-world observations to come up with a good guess for the actual composition of our atmosphere, the true emissions of various pollutants, and whatever else they may want to study.
Yosuke Yamazaki
Geosci. Model Dev., 16, 4749–4766, https://doi.org/10.5194/gmd-16-4749-2023, https://doi.org/10.5194/gmd-16-4749-2023, 2023
Short summary
Short summary
The Earth's atmosphere can support various types of global-scale waves. Some waves propagate eastward and others westward, and they can have different zonal wavenumbers. The Fourier–wavelet analysis is a useful technique for identifying different components of global-scale waves and their temporal variability. This paper introduces an easy-to-implement method to derive Fourier–wavelet spectra from 2-D space–time data. Application examples are presented using atmospheric models.
Bok H. Baek, Carlie Coats, Siqi Ma, Chi-Tsan Wang, Yunyao Li, Jia Xing, Daniel Tong, Soontae Kim, and Jung-Hun Woo
Geosci. Model Dev., 16, 4659–4676, https://doi.org/10.5194/gmd-16-4659-2023, https://doi.org/10.5194/gmd-16-4659-2023, 2023
Short summary
Short summary
To enable the direct feedback effects of aerosols and local meteorology in an air quality modeling system without any computational bottleneck, we have developed an inline meteorology-induced emissions coupler module within the U.S. Environmental Protection Agency’s Community Multiscale Air Quality modeling system to dynamically model the complex MOtor Vehicle Emission Simulator (MOVES) on-road mobile emissions inline without a separate dedicated emissions processing model like SMOKE.
Christoph Neuhauser, Maicon Hieronymus, Michael Kern, Marc Rautenhaus, Annika Oertel, and Rüdiger Westermann
Geosci. Model Dev., 16, 4617–4638, https://doi.org/10.5194/gmd-16-4617-2023, https://doi.org/10.5194/gmd-16-4617-2023, 2023
Short summary
Short summary
Numerical weather prediction models rely on parameterizations for sub-grid-scale processes, which are a source of uncertainty. We present novel visual analytics solutions to analyze interactively the sensitivities of a selected prognostic variable to multiple model parameters along trajectories regarding similarities in temporal development and spatiotemporal relationships. The proposed workflow is applied to cloud microphysical sensitivities along coherent strongly ascending trajectories.
Yingqi Zheng, Minttu Havu, Huizhi Liu, Xueling Cheng, Yifan Wen, Hei Shing Lee, Joyson Ahongshangbam, and Leena Järvi
Geosci. Model Dev., 16, 4551–4579, https://doi.org/10.5194/gmd-16-4551-2023, https://doi.org/10.5194/gmd-16-4551-2023, 2023
Short summary
Short summary
The performance of the Surface Urban Energy and Water Balance Scheme (SUEWS) is evaluated against the observed surface exchanges (fluxes) of heat and carbon dioxide in a densely built neighborhood in Beijing. The heat flux modeling is noticeably improved by using the observed maximum conductance and by optimizing the vegetation phenology modeling. SUEWS also performs well in simulating carbon dioxide flux.
Simone Dietmüller, Sigrun Matthes, Katrin Dahlmann, Hiroshi Yamashita, Abolfazl Simorgh, Manuel Soler, Florian Linke, Benjamin Lührs, Maximilian M. Meuser, Christian Weder, Volker Grewe, Feijia Yin, and Federica Castino
Geosci. Model Dev., 16, 4405–4425, https://doi.org/10.5194/gmd-16-4405-2023, https://doi.org/10.5194/gmd-16-4405-2023, 2023
Short summary
Short summary
Climate-optimized aircraft trajectories avoid atmospheric regions with a large climate impact due to aviation emissions. This requires spatially and temporally resolved information on aviation's climate impact. We propose using algorithmic climate change functions (aCCFs) for CO2 and non-CO2 effects (ozone, methane, water vapor, contrail cirrus). Merged aCCFs combine individual aCCFs by assuming aircraft-specific parameters and climate metrics. Technically this is done with a Python library.
Andreas A. Beckert, Lea Eisenstein, Annika Oertel, Tim Hewson, George C. Craig, and Marc Rautenhaus
Geosci. Model Dev., 16, 4427–4450, https://doi.org/10.5194/gmd-16-4427-2023, https://doi.org/10.5194/gmd-16-4427-2023, 2023
Short summary
Short summary
We investigate the benefit of objective 3-D front detection with modern interactive visual analysis techniques for case studies of extra-tropical cyclones and comparisons of frontal structures between different numerical weather prediction models. The 3-D frontal structures show agreement with 2-D fronts from surface analysis charts and augment them in the vertical dimension. We see great potential for more complex studies of atmospheric dynamics and for operational weather forecasting.
Zhenxin Liu, Yuanhao Chen, Yuhang Wang, Cheng Liu, Shuhua Liu, and Hong Liao
Geosci. Model Dev., 16, 4385–4403, https://doi.org/10.5194/gmd-16-4385-2023, https://doi.org/10.5194/gmd-16-4385-2023, 2023
Short summary
Short summary
The heterogeneous layout of urban buildings leads to the complex wind field in and over the urban canopy. Large discrepancies between the observations and the current simulations result from misunderstanding the character of the wind field. The Inhomogeneous Wind Scheme in Urban Street (IWSUS) was developed to simulate the heterogeneity of the wind speed in a typical street and then improve the simulated energy budget in the lower atmospheric layer over the urban canopy.
Kai Cao, Qizhong Wu, Lingling Wang, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongqing Li, and Lanning Wang
Geosci. Model Dev., 16, 4367–4383, https://doi.org/10.5194/gmd-16-4367-2023, https://doi.org/10.5194/gmd-16-4367-2023, 2023
Short summary
Short summary
Offline performance experiment results show that the GPU-HADVPPM on a V100 GPU can achieve up to 1113.6 × speedups to its original version on an E5-2682 v4 CPU. A series of optimization measures are taken, and the CAMx-CUDA model improves the computing efficiency by 128.4 × on a single V100 GPU card. A parallel architecture with an MPI plus CUDA hybrid paradigm is presented, and it can achieve up to 4.5 × speedup when launching eight CPU cores and eight GPU cards.
Laurent Menut
Geosci. Model Dev., 16, 4265–4281, https://doi.org/10.5194/gmd-16-4265-2023, https://doi.org/10.5194/gmd-16-4265-2023, 2023
Short summary
Short summary
This study analyzes forecasts that were made in 2021 to help trigger measurements during the CADDIWA experiment. The WRF and CHIMERE models were run each day, and the first goal is to quantify the variability of the forecast as a function of forecast leads and forecast location. The possibility of using the different leads as an ensemble is also tested. For some locations, the correlation scores are better with this approach. This could be tested on operational forecast chains in the future.
Emily de Jong, John Ben Mackay, Oleksii Bulenok, Anna Jaruga, and Sylwester Arabas
Geosci. Model Dev., 16, 4193–4211, https://doi.org/10.5194/gmd-16-4193-2023, https://doi.org/10.5194/gmd-16-4193-2023, 2023
Short summary
Short summary
In clouds, collisional breakup occurs when two colliding droplets splinter into new, smaller fragments. Particle-based modeling approaches often do not represent breakup because of the computational demands of creating new droplets. We present a particle-based breakup method that preserves the computational efficiency of these methods. In a series of simple demonstrations, we show that this representation alters cloud processes in reasonable and expected ways.
Caiyi Jin, Qiangqiang Yuan, Tongwen Li, Yuan Wang, and Liangpei Zhang
Geosci. Model Dev., 16, 4137–4154, https://doi.org/10.5194/gmd-16-4137-2023, https://doi.org/10.5194/gmd-16-4137-2023, 2023
Short summary
Short summary
The semi-empirical physical approach derives PM2.5 with strong physical significance. However, due to the complex optical characteristic, the physical parameters are difficult to express accurately. Thus, combining the atmospheric physical mechanism and machine learning, we propose an optimized model. It creatively embeds the random forest model into the physical PM2.5 remote sensing approach to simulate a physical parameter. Our method shows great optimized performance in the validations.
Cyril Caram, Sophie Szopa, Anne Cozic, Slimane Bekki, Carlos A. Cuevas, and Alfonso Saiz-Lopez
Geosci. Model Dev., 16, 4041–4062, https://doi.org/10.5194/gmd-16-4041-2023, https://doi.org/10.5194/gmd-16-4041-2023, 2023
Short summary
Short summary
We studied the role of halogenated compounds (containing chlorine, bromine and iodine), emitted by natural processes (mainly above the oceans), in the chemistry of the lower layers of the atmosphere. We introduced this relatively new chemistry in a three-dimensional climate–chemistry model and looked at how this chemistry will disrupt the ozone. We showed that the concentration of ozone decreases by 22 % worldwide and that of the atmospheric detergent, OH, by 8 %.
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Marc Bocquet, Jinghui Lian, Grégoire Broquet, Gerrit Kuhlmann, Alexandre Danjou, and Thomas Lauvaux
Geosci. Model Dev., 16, 3997–4016, https://doi.org/10.5194/gmd-16-3997-2023, https://doi.org/10.5194/gmd-16-3997-2023, 2023
Short summary
Short summary
Monitoring of CO2 emissions is key to the development of reduction policies. Local emissions, from cities or power plants, may be estimated from CO2 plumes detected in satellite images. CO2 plumes generally have a weak signal and are partially concealed by highly variable background concentrations and instrument errors, which hampers their detection. To address this problem, we propose and apply deep learning methods to detect the contour of a plume in simulated CO2 satellite images.
Min-Seop Ahn, Paul A. Ullrich, Peter J. Gleckler, Jiwoo Lee, Ana C. Ordonez, and Angeline G. Pendergrass
Geosci. Model Dev., 16, 3927–3951, https://doi.org/10.5194/gmd-16-3927-2023, https://doi.org/10.5194/gmd-16-3927-2023, 2023
Short summary
Short summary
We introduce a framework for regional-scale evaluation of simulated precipitation distributions with 62 climate reference regions and 10 metrics and apply it to evaluate CMIP5 and CMIP6 models against multiple satellite-based precipitation products. The common model biases identified in this study are mainly associated with the overestimated light precipitation and underestimated heavy precipitation. These biases persist from earlier-generation models and have been slightly improved in CMIP6.
Christine Wiedinmyer, Yosuke Kimura, Elena C. McDonald-Buller, Louisa K. Emmons, Rebecca R. Buchholz, Wenfu Tang, Keenan Seto, Maxwell B. Joseph, Kelley C. Barsanti, Annmarie G. Carlton, and Robert Yokelson
Geosci. Model Dev., 16, 3873–3891, https://doi.org/10.5194/gmd-16-3873-2023, https://doi.org/10.5194/gmd-16-3873-2023, 2023
Short summary
Short summary
The Fire INventory from NCAR (FINN) provides daily global estimates of emissions from open fires based on satellite detections of hot spots. This version has been updated to apply MODIS and VIIRS satellite fire detection and better represents both large and small fires. FINNv2.5 generates more emissions than FINNv1 and is in general agreement with other fire emissions inventories. The new estimates are consistent with satellite observations, but uncertainties remain regionally and by pollutant.
Lichao Yang, Wansuo Duan, and Zifa Wang
Geosci. Model Dev., 16, 3827–3848, https://doi.org/10.5194/gmd-16-3827-2023, https://doi.org/10.5194/gmd-16-3827-2023, 2023
Short summary
Short summary
An approach is proposed to refine a ground meteorological observation network to improve the PM2.5 forecasts in the Beijing–Tianjin–Hebei region. A cost-effective observation network is obtained and makes the relevant PM2.5 forecasts assimilate fewer observations but achieve the forecasting skill comparable to or higher than that obtained by assimilating all ground station observations, suggesting that many of the current ground stations can be greatly scattered to avoid much unnecessary work.
Abhishekh Kumar Srivastava, Paul Aaron Ullrich, Deeksha Rastogi, Pouya Vahmani, Andrew Jones, and Richard Grotjahn
Geosci. Model Dev., 16, 3699–3722, https://doi.org/10.5194/gmd-16-3699-2023, https://doi.org/10.5194/gmd-16-3699-2023, 2023
Short summary
Short summary
Stakeholders need high-resolution regional climate data for applications such as assessing water availability and mountain snowpack. This study examines 3 h and 24 h historical precipitation over the contiguous United States in the 12 km WRF version 4.2.1-based dynamical downscaling of the ERA5 reanalysis. WRF improves precipitation characteristics such as the annual cycle and distribution of the precipitation maxima, but it also displays regionally and seasonally varying precipitation biases.
Jiangyong Li, Chunlin Zhang, Wenlong Zhao, Shijie Han, Yu Wang, Hao Wang, and Boguang Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-90, https://doi.org/10.5194/gmd-2023-90, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
Photochemical box model is a critical tool to understand the chemistry in troposphere, but its application is hampered by the slow computation efficiency in solving the massive chemical equations. The ROMAC model developed in this study integrated a more efficient atmospheric chemistry solver and an adaptive optimization algorithm, which can improve the computational efficiency up to 96 % and also overcome the shortcomings of physical modules being oversimplified in the traditional box models.
Haixia Xiao, Yaqiang Wang, Yu Zheng, Yuanyuan Zheng, Xiaoran Zhuang, Hongyan Wang, and Mei Gao
Geosci. Model Dev., 16, 3611–3628, https://doi.org/10.5194/gmd-16-3611-2023, https://doi.org/10.5194/gmd-16-3611-2023, 2023
Short summary
Short summary
Due to the small-scale and nonstationary nature of convective wind gusts (CGs), reliable CG nowcasting has remained unattainable. Here, we developed a deep learning model — namely CGsNet — for 0—2 h of quantitative CG nowcasting, first achieving minute—kilometer-level forecasts. Based on the CGsNet model, the average surface wind speed (ASWS) and peak wind gust speed (PWGS) predictions are obtained. Experiments indicate that CGsNet exhibits higher accuracy than the traditional method.
Maria Krutova, Mostafa Bakhoday-Paskyabi, Joachim Reuder, and Finn Gunnar Nielsen
Geosci. Model Dev., 16, 3553–3564, https://doi.org/10.5194/gmd-16-3553-2023, https://doi.org/10.5194/gmd-16-3553-2023, 2023
Short summary
Short summary
Local refinement of the grid is a powerful method allowing us to reduce the computational time while preserving the accuracy in the area of interest. Depending on the implementation, the local refinement may introduce unwanted numerical effects into the results. We study the wind speed common to the wind turbine operational speeds and confirm strong alteration of the result when the heat fluxes are present, except for the specific refinement scheme used.
Sylvia Sullivan, Behrooz Keshtgar, Nicole Albern, Elzina Bala, Christoph Braun, Anubhav Choudhary, Johannes Hörner, Hilke Lentink, Georgios Papavasileiou, and Aiko Voigt
Geosci. Model Dev., 16, 3535–3551, https://doi.org/10.5194/gmd-16-3535-2023, https://doi.org/10.5194/gmd-16-3535-2023, 2023
Short summary
Short summary
Clouds absorb and re-emit infrared radiation from Earth's surface and absorb and reflect incoming solar radiation. As a result, they change atmospheric temperature gradients that drive large-scale circulation. To better simulate this circulation, we study how the radiative heating and cooling from clouds depends on model settings like grid spacing; whether we describe convection approximately or exactly; and the level of detail used to describe small-scale processes, or microphysics, in clouds.
Denis E. Sergeev, Nathan J. Mayne, Thomas Bendall, Ian A. Boutle, Alex Brown, Iva Kavcic, James Kent, Krisztian Kohary, James Manners, Thomas Melvin, Enrico Olivier, Lokesh K. Ragta, Ben J. Shipway, Jon Wakelin, Nigel Wood, and Mohamed Zerroukat
EGUsphere, https://doi.org/10.5194/egusphere-2023-647, https://doi.org/10.5194/egusphere-2023-647, 2023
Short summary
Short summary
3D climate models are one of the best tools we have to study planetary atmospheres. Here, we apply LFRic-Atmosphere, a new model developed by the Met Office, to seven different scenarios for terrestrial planetary climates, including four for the exoplanet TRAPPIST-1e, a primary target for future observations. LFRic-Atmosphere reproduces these scenarios within the spread of the existing models across a range of key climatic variables, justifying its use in future exoplanet studies.
James Weber, James A. King, Katerina Sindelarova, and Maria Val Martin
Geosci. Model Dev., 16, 3083–3101, https://doi.org/10.5194/gmd-16-3083-2023, https://doi.org/10.5194/gmd-16-3083-2023, 2023
Short summary
Short summary
The emissions of volatile organic compounds from vegetation (BVOCs) influence atmospheric composition and contribute to certain gases and aerosols (tiny airborne particles) which play a role in climate change. BVOC emissions are likely to change in the future due to changes in climate and land use. Therefore, accurate simulation of BVOC emission is important, and this study describes an update to the simulation of BVOC emissions in the United Kingdom Earth System Model (UKESM).
Koichi Sakaguchi, L. Ruby Leung, Colin M. Zarzycki, Jihyeon Jang, Seth McGinnis, Bryce E. Harrop, William C. Skamarock, Andrew Gettelman, Chun Zhao, William J. Gutowski, Stephen Leak, and Linda Mearns
Geosci. Model Dev., 16, 3029–3081, https://doi.org/10.5194/gmd-16-3029-2023, https://doi.org/10.5194/gmd-16-3029-2023, 2023
Short summary
Short summary
We document details of the regional climate downscaling dataset produced by a global variable-resolution model. The experiment is unique in that it follows a standard protocol designed for coordinated experiments of regional models. We found negligible influence of post-processing on statistical analysis, importance of simulation quality outside of the target region, and computational challenges that our model code faced due to rapidly changing super computer systems.
Xiaohan Li, Yi Zhang, Xindong Peng, Baiquan Zhou, Jian Li, and Yiming Wang
Geosci. Model Dev., 16, 2975–2993, https://doi.org/10.5194/gmd-16-2975-2023, https://doi.org/10.5194/gmd-16-2975-2023, 2023
Short summary
Short summary
The weather and climate physics suites used in GRIST-A22.7.28 are compared using single-column modeling. The source of their discrepancies in terms of modeling cloud and precipitation is explored. Convective parameterization is found to be a key factor responsible for the differences. The two suites also have intrinsic differences in the interaction between microphysics and other processes, resulting in different cloud features and time step sensitivities.
Owen Kenneth Hughes and Christiane Jablonowski
EGUsphere, https://doi.org/10.5194/egusphere-2023-376, https://doi.org/10.5194/egusphere-2023-376, 2023
Short summary
Short summary
Atmospheric models benefit from idealized tests that assess their accuracy in a simpler simulation. A new test with artificial mountains is developed for models on a spherical earth. The mountains trigger the development of both planetary-scale and small-scale waves. These can be analyzed in dry or moist environments with a simple rainfall mechanism. Four atmospheric models are intercompared. This sheds light on the pros and cons of the model designs and the impact of mountains on the flow.
Shaohui Zhou, Yuchao Gao, Zexia Duan, Xingya Xi, and Yubin Li
EGUsphere, https://doi.org/10.5194/egusphere-2023-945, https://doi.org/10.5194/egusphere-2023-945, 2023
Short summary
Short summary
The proposed wind speed correction model (VMD-PCA-RF) demonstrates the highest prediction accuracy and stability in the five southern provinces in nearly a year and at different heights. VMD-PCA-RF evaluation indexes for 10 months remain relatively stable: accuracy rate FA is above 85 %. In future research, the proposed VMD-PCA-RF algorithm can be extrapolated to the 3 km grid points of the five southern provinces to generate a 3 km grid-corrected wind speed product.
Virginie Marécal, Ronan Voisin-Plessis, Tjarda Jane Roberts, Alessandro Aiuppa, Herizo Narivelo, Paul David Hamer, Béatrice Josse, Jonathan Guth, Luke Surl, and Lisa Grellier
Geosci. Model Dev., 16, 2873–2898, https://doi.org/10.5194/gmd-16-2873-2023, https://doi.org/10.5194/gmd-16-2873-2023, 2023
Short summary
Short summary
We implemented a halogen volcanic chemistry scheme in a one-dimensional modelling framework preparing for further use in a three-dimensional global chemistry-transport model. The results of the simulations for an eruption of Mt Etna in 2008, including various sensitivity tests, show a good consistency with previous modelling studies.
Zhe Feng, Joseph Hardin, Hannah C. Barnes, Jianfeng Li, L. Ruby Leung, Adam Varble, and Zhixiao Zhang
Geosci. Model Dev., 16, 2753–2776, https://doi.org/10.5194/gmd-16-2753-2023, https://doi.org/10.5194/gmd-16-2753-2023, 2023
Short summary
Short summary
PyFLEXTRKR is a flexible atmospheric feature tracking framework with specific capabilities to track convective clouds from a variety of observations and model simulations. The package has a collection of multi-object identification algorithms and has been optimized for large datasets. This paper describes the algorithms and demonstrates applications for tracking deep convective cells and mesoscale convective systems from observations and model simulations at a wide range of scales.
Yan Ji, Bing Gong, Michael Langguth, Amirpasha Mozaffari, and Xiefei Zhi
Geosci. Model Dev., 16, 2737–2752, https://doi.org/10.5194/gmd-16-2737-2023, https://doi.org/10.5194/gmd-16-2737-2023, 2023
Short summary
Short summary
Formulating short-term precipitation forecasting as a video prediction task, a novel deep learning architecture (convolutional long short-term memory generative adversarial network, CLGAN) is proposed. A benchmark dataset is built on minute-level precipitation measurements. Results show that with the GAN component the model generates predictions sharing statistical properties with observations, resulting in it outperforming the baseline in dichotomous and spatial scores for heavy precipitation.
Aleksander Lacima, Hervé Petetin, Albert Soret, Dene Bowdalo, Oriol Jorba, Zhaoyue Chen, Raúl F. Méndez Turrubiates, Hicham Achebak, Joan Ballester, and Carlos Pérez García-Pando
Geosci. Model Dev., 16, 2689–2718, https://doi.org/10.5194/gmd-16-2689-2023, https://doi.org/10.5194/gmd-16-2689-2023, 2023
Short summary
Short summary
Understanding how air pollution varies across space and time is of key importance for the safeguarding of human health. This work arose in the context of the project EARLY-ADAPT, for which the Barcelona Supercomputing Center developed an air pollution database covering all of Europe. Through different statistical methods, we compared two global pollution models against measurements from ground stations and found significant discrepancies between the observed and the modeled surface pollution.
Dien Wu, Joshua L. Laughner, Junjie Liu, Paul I. Palmer, John C. Lin, and Paul O. Wennberg
EGUsphere, https://doi.org/10.5194/egusphere-2023-876, https://doi.org/10.5194/egusphere-2023-876, 2023
Short summary
Short summary
To balance computational expenses and chemical complexity in extracting emission signals from tropospheric NO2 columns, we propose a simplified non-linear Lagrangian chemistry transport model and evaluate modeled results against TROPOMI v2 over multiple power plants and cities. Using this model, we then discuss how NOx chemistry affects the relationship between NOx and CO2 emissions and how studying NO2 columns helps quantify modeled biases in wind direction and prior emissions.
William Rudisill, Alejandro Flores, and Rosemary Carroll
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-69, https://doi.org/10.5194/gmd-2023-69, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
It's important to know how well atmospheric models do in the mountains, but there aren't very many weather stations. We evaluate rain and snow from a model from 1987–2020 in the Upper Colorado river basin against the data that's available. The model works pretty well but, there are still some uncertainties in remote locations. We then use snow maps collected by aircraft, streamflow measurements, and some advanced statistics to help identify how well the model works in ways we couldn't before.
Andrew Geiss, Po-Lun Ma, Balwinder Singh, and Joseph C. Hardin
Geosci. Model Dev., 16, 2355–2370, https://doi.org/10.5194/gmd-16-2355-2023, https://doi.org/10.5194/gmd-16-2355-2023, 2023
Short summary
Short summary
Atmospheric aerosols play a critical role in Earth's climate, but it is too computationally expensive to directly model their interaction with radiation in climate simulations. This work develops a new neural-network-based parameterization of aerosol optical properties for use in the Energy Exascale Earth System Model that is much more accurate than the current one; it also introduces a unique model optimization method that involves randomly generating neural network architectures.
Joey C. Y. Lam, Amos P. K. Tai, Jason A. Ducker, and Christopher D. Holmes
Geosci. Model Dev., 16, 2323–2342, https://doi.org/10.5194/gmd-16-2323-2023, https://doi.org/10.5194/gmd-16-2323-2023, 2023
Short summary
Short summary
We developed a new component within an atmospheric chemistry model to better simulate plant ecophysiological processes relevant for ozone air quality. We showed that it reduces simulated biases in plant uptake of ozone in prior models. The new model enables us to explore how future climatic changes affect air quality via affecting plants, examine ozone–vegetation interactions and feedbacks, and evaluate the impacts of changing atmospheric chemistry and climate on vegetation productivity.
Wenfu Tang, Louisa K. Emmons, Helen M. Worden, Rajesh Kumar, Cenlin He, Benjamin Gaubert, Zhonghua Zheng, Simone Tilmes, Rebecca R. Buchholz, Sara-Eva Martinez-Alonso, Claire Granier, Antonin Soulie, Kathryn McKain, Bruce Daube, Jeff Peischl, Chelsea Thompson, and Pieternel Levelt
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-50, https://doi.org/10.5194/gmd-2023-50, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
The new MUSICAv0 model enables the study of atmospheric chemistry across all relevant scales. We develop a MUSICAv0 grid for Africa. We evaluate MUSICAv0 with observations, and compare it with a previously used model – WRF-Chem. Overall, the performance of MUSICAv0 is comparable to WRF-Chem. Based on model-satellite discrepancies, we find that future field campaigns in an East African region (30° E – 45° E, 5° S – 5° N) could substantially improve the predictive skill of air quality models.
Cited articles
Abkar, M. and Porté-Agel, F.: Influence of atmospheric stability on
wind-turbine wakes: A large-eddy simulation study, Phys. Fluids, 27,
035104, https://doi.org/10.1063/1.4913695, 2015a. a, b
Abkar, M. and Porté-Agel, F.: A new wind-farm parameterization for
large-scale atmospheric models, J. Renew. Sustain. Ener.,
7, 013121, https://doi.org/10.1063/1.4907600, 2015b. a, b
Aitken, M. L., Kosović, B., Mirocha, J. D., and Lundquist, J. K.: Large
eddy simulation of wind turbine wake dynamics in the stable boundary layer
using the Weather Research and Forecasting Model, J.
Renew. Sustain. Ener., 6, 033137, https://doi.org/10.1063/1.4885111, 2014. a
Archer, C. L., Mirzaeisefat, S., and Lee, S.: Quantifying the sensitivity of
wind farm performance to array layout options using large-eddy simulation,
Geophys. Res. Lett., 40, 4963–4970, https://doi.org/10.1002/grl.50911, 2013. a
Astolfi, D., Castellani, F., and Terzi, L.: A Study of Wind Turbine
Wakes in Complex Terrain Through RANS Simulation and SCADA
Data, J. Sol. Energ.-T. ASME, 140, 031001, https://doi.org/10.1115/1.4039093,
2018. a
Baidya Roy, S. and Traiteur, J. J.: Impacts of wind farms on surface air
temperatures, P. Natl. Acad. Sci. USA, 107,
17899–17904, https://doi.org/10.1073/pnas.1000493107, 2010. a, b
Barrie, D. B. and Kirk-Davidoff, D. B.: Weather response to a large wind turbine array, Atmos. Chem. Phys., 10, 769–775, https://doi.org/10.5194/acp-10-769-2010, 2010. a
Beaucage, P., Brower, M., Robinson, N., and Alonge, C.: Overview of six
commercial and research wake models for large offshore wind farms, Proceedings of the European Wind Energy Association Conference, Copenhagen, 95 pp., 2012. a
Bodini, N., Zardi, D., and Lundquist, J. K.: Three-dimensional structure of wind turbine wakes as measured by scanning lidar, Atmos. Meas. Tech., 10, 2881–2896, https://doi.org/10.5194/amt-10-2881-2017, 2017. a
Boersma, S., Gebraad, P., Vali, M., Doekemeijer, B., and van Wingerden, J.: A
control-oriented dynamic wind farm flow model: “WFSim”, J.
Phys. Conf. Ser., 753, 032005,
https://doi.org/10.1088/1742-6596/753/3/032005, 2016. a
Cabezón, D., Migoya, E., and Crespo, A.: Comparison of turbulence models for
the computational fluid dynamics simulation of wind turbine wakes in the
atmospheric boundary layer, Wind Energy, 14, 909–921, https://doi.org/10.1002/we.516,
2011. a
Calaf, M., Meneveau, C., and Meyers, J.: Large eddy simulation study of fully
developed wind-turbine array boundary layers, Phys. Fluids, 22,
015110, https://doi.org/10.1063/1.3291077, 2010. a
Ching, J., Rotunno, R., LeMone, M., Martilli, A., Kosoviĉ, B., Jimenez,
P. A., and Dudhia, J.: Convectively Induced Secondary Circulations in
Fine-Grid Mesoscale Numerical Weather Prediction Models,
Mon. Weather Rev., 142, 3284–3302, https://doi.org/10.1175/MWR-D-13-00318.1,
2014. a
Christiansen, M. B. and Hasager, C. B.: Wake effects of large offshore wind
farms identified from satellite SAR, Remote Sens. Environ., 98,
251–268, https://doi.org/10.1016/j.rse.2005.07.009, 2005. a
Churchfield, M. J., Lee, S., Michalakes, J., and Moriarty, P. J.: A numerical
study of the effects of atmospheric and wake turbulence on wind turbine
dynamics, J. Turbul., 13, N14, https://doi.org/10.1080/14685248.2012.668191,
2012. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart,
F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011. a, b
Doubrawa, P. and Muñoz Esparza, D.: Simulating Real Atmospheric
Boundary Layers at Gray-Zone Resolutions: How Do Currently
Available Turbulence Parameterizations Perform?, Atmosphere, 11, 345,
https://doi.org/10.3390/atmos11040345, 2020. a
Dudhia, J.: Numerical Study of Convection Observed during the Winter Monsoon
Experiment Using a Mesoscale Two-Dimensional Model, J.
Atmos. Sci., 46, 3077–3107,
https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2, 1989. a
ECMWF: ERA-Interim Project, Research Data Archive at the National Center
for Atmospheric Research, Computational and Information Systems Laboratory,
Boulder CO, https://doi.org/10.5065/D6CR5RD9, 2009. a
Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V.,
Gayno, G., and Tarpley, J. D.: Implementation of Noah land surface model
advances in the National Centers for Environmental Prediction
operational mesoscale Eta model, J. Geophys. Res.-Atmos., 108, 2002JD003296, https://doi.org/10.1029/2002JD003296, 2003. a
Emeis, S.: A simple analytical wind park model considering atmospheric
stability, Wind Energy, 13, 459–469, https://doi.org/10.1002/we.367, 2009. a
Emeis, S. and Frandsen, S.: Reduction of horizontal wind speed in a boundary
layer with obstacles, Bound.-Lay. Meteorol., 64, 297–305,
https://doi.org/10.1007/BF00708968, 1993. a
Eriksson, O., Lindvall, J., Breton, S.-P., and Ivanell, S.: Wake downstream of
the Lillgrund wind farm - A Comparison between LES using the actuator
disc method and a Wind farm Parametrization in WRF, J. Phys.
Conf. Ser., 625, 012028, https://doi.org/10.1088/1742-6596/625/1/012028, 2015. a
Fitch, A. C.: Climate Impacts of Large-Scale Wind Farms as Parameterized in a
Global Climate Model, J. Climate, 28, 6160–6180,
https://doi.org/10.1175/JCLI-D-14-00245.1, 2015. a
Fitch, A. C.: Notes on using the mesoscale wind farm parameterization of
Fitch et al. (2012) in WRF: Notes on using the mesoscale wind
farm parameterization of Fitch et al. (2012) in WRF, Wind
Energy, 19, 1757–1758, https://doi.org/10.1002/we.1945, 2016. a, b
Fitch, A. C., Olson, J. B., Lundquist, J. K., Dudhia, J., Gupta, A. K.,
Michalakes, J., and Barstad, I.: Local and Mesoscale Impacts of Wind
Farms as Parameterized in a Mesoscale NWP Model, Mon. Weather
Rev., 140, 3017–3038, https://doi.org/10.1175/MWR-D-11-00352.1, 2012. a, b, c, d
Fitch, A. C., Lundquist, J. K., and Olson, J. B.: Mesoscale Influences of
Wind Farms throughout a Diurnal Cycle, Mon. Weather Rev., 141,
2173–2198, https://doi.org/10.1175/MWR-D-12-00185.1, 2013. a, b, c
Frandsen, S. T., Jørgensen, H. E., Barthelmie, R., Rathmann, O., Badger, J.,
Hansen, K., Ott, S., Rethore, P.-E., Larsen, S. E., and Jensen, L. E.: The
making of a second-generation wind farm efficiency model complex, Wind
Energy, 12, 445–458, https://doi.org/10.1002/we.351, 2009. a
Göçmen, T., van der Laan, P., Réthoré, P.-E., Peña Diaz, A., Larsen,
G. C., and Ott, S.: Wind turbine wake models developed at the technical
university of Denmark: A review, Renew. Sustain. Energ.
Rev., 60, 752–769, https://doi.org/10.1016/j.rser.2016.01.113, 2016. a
Hahmann, A. N., Sile, T., Witha, B., Davis, N. N., Dörenkämper, M., Ezber, Y., García-Bustamante, E., González Rouco, J. F., Navarro, J., Olsen, B. T., and Söderberg, S.: The Making of the New European Wind Atlas, Part 1: Model Sensitivity, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-349, in review, 2020. a, b
Hong, S.-Y., Dudhia, J., and Chen, S.-H.: A Revised Approach to Ice
Microphysical Processes for the Bulk Parameterization of Clouds and
Precipitation, Monthly Weather Review, 132, 103–120,
https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2, 2004. a
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci.
Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
Iungo, G. V., Santhanagopalan, V., Ciri, U., Viola, F., Zhan, L., Rotea, M. A.,
and Leonardi, S.: Parabolic RANS solver for low-computational-cost
simulations of wind turbine wakes, Wind Energy, 21, 184–197,
https://doi.org/10.1002/we.2154, 2018. a
Jimenez, P. A., Dudhia, J., González-Rouco, J. F., Navarro, J., Montávez,
J. P., and García-Bustamante, E.: A Revised Scheme for the WRF
Surface Layer Formulation, Mon. Weather Rev., 140, 898–918,
https://doi.org/10.1175/MWR-D-11-00056.1, 2012. a
Jimenez, P. A., Navarro, J., Palomares, A. M., and Dudhia, J.: Mesoscale
modeling of offshore wind turbine wakes at the wind farm resolving scale: a
composite-based analysis with the Weather Research and Forecasting
model over Horns Rev: Mesoscale modeling at the wind farm resolving
scale, Wind Energy, 18, 559–566, https://doi.org/10.1002/we.1708, 2015. a
Kain, J. S.: The Kain–Fritsch Convective Parameterization: An Update, J.
Appl. Meteoro., 43, 170–181,
https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2, 2004. a
Keith, D. W., DeCarolis, J. F., Denkenberger, D. C., Lenschow, D. H., Malyshev,
S. L., Pacala, S., and Rasch, P. J.: The influence of large-scale wind power
on global climate, P. Natl. Acad. Sci. USA, 101,
16115–16120, https://doi.org/10.1073/pnas.0406930101, 2004. a
Lee, J. C. Y. and Lundquist, J. K.: Observing and Simulating Wind-Turbine
Wakes During the Evening Transition, Bound.-Lay. Meteorol., 164,
449–474, https://doi.org/10.1007/s10546-017-0257-y, 2017b. a
Lissaman, P. B. S.: Energy Effectiveness of Arbitrary Arrays of Wind
Turbines, J. Energy, 3, 323–328, https://doi.org/10.2514/3.62441, 1979. a
Lundquist, J. K., DuVivier, K. K., Kaffine, D., and Tomaszewski, J. M.: Costs
and consequences of wind turbine wake effects arising from uncoordinated wind
energy development, Nature Energy, 4, 26–34, https://doi.org/10.1038/s41560-018-0281-2, 2018. a, b
Mangara, R. J., Guo, Z., and Li, S.: Performance of the Wind Farm
Parameterization Scheme Coupled with the Weather Research and
Forecasting Model under Multiple Resolution Regimes for
Simulating an Onshore Wind Farm, Adv. Atmos. Sci.,
36, 119–132, https://doi.org/10.1007/s00376-018-8028-3, 2019. a, b
Marjanovic, N., Mirocha, J. D., Kosović, B., Lundquist, J. K., and Chow,
F. K.: Implementation of a generalized actuator line model for wind turbine
parameterization in the Weather Research and Forecasting model, J. Renew. Sustain. Ener., 9, 063308, https://doi.org/10.1063/1.4989443,
2017. a
Miller, L. M. and Keith, D. W.: Climatic Impacts of Wind Power, Joule,
2, 2618–2632, https://doi.org/10.1016/j.joule.2018.09.009, 2018. a, b, c
Miller, L. M., Brunsell, N. A., Mechem, D. B., Gans, F., Monaghan, A. J.,
Vautard, R., Keith, D. W., and Kleidon, A.: Two methods for estimating limits
to large-scale wind power generation, P. Natl. Acad.
Sci. USA, 112, 11169–11174, https://doi.org/10.1073/pnas.1408251112, 2015. a
Mirocha, J. D., Kosović, B., Aitken, M. L., and Lundquist, J. K.:
Implementation of a generalized actuator disk wind turbine model into the
weather research and forecasting model for large-eddy simulation
applications, J. Renew. Sustain. Ener., 6, 013104,
https://doi.org/10.1063/1.4861061, 2014. a
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.:
Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res.-Atmos., 102, 16663–16682, https://doi.org/10.1029/97JD00237, 1997. a
Nakanishi, M. and Niino, H.: An Improved Mellor–Yamada Level-3
Model: Its Numerical Stability and Application to a Regional
Prediction of Advection Fog, Bound.-Lay. Meteorol., 119, 397–407,
https://doi.org/10.1007/s10546-005-9030-8, 2006. a
NREL: FLORIS, Version 1.0.0, available at: https://github.com/NREL/floris (last access: 11 June 2020),
2019. a
Nygaard, N. G.: Wakes in very large wind farms and the effect of neighbouring
wind farms, J. Phys. Conf. Ser., 524, 012162,
https://doi.org/10.1088/1742-6596/524/1/012162, 2014. a
Nygaard, N. G. and Hansen, S. D.: Wake effects between two neighbouring wind
farms, J. Phys. Conf. Ser., 753, 032020,
https://doi.org/10.1088/1742-6596/753/3/032020, 2016. a
Nygaard, N. G. and Newcombe, A. C.: Wake behind an offshore wind farm observed
with dual-Doppler radars, J. Phys. Conf. Ser., 1037,
072008, https://doi.org/10.1088/1742-6596/1037/7/072008, 2018. a
Olson, J., Kenyon, J., Brown, J., Angevine, W., and Suselj, K.: Updates to the
MYNN PBL and surface layer scheme for RAP/HRRR,
available at: http://www2.mmm.ucar.edu/wrf/users/workshops/WS2016/oral_presentations/6.6.pdf (last access: 11 June 2020),
2016. a
Pan, Y. and Archer, C. L.: A Hybrid Wind-Farm Parametrization for
Mesoscale and Climate Models, Bound.-Lay. Meteorol., 168,
469–495, https://doi.org/10.1007/s10546-018-0351-9, 2018. a
Platis, A., Siedersleben, S. K., Bange, J., Lampert, A., Bärfuss, K.,
Hankers, R., Cañadillas, B., Foreman, R., Schulz-Stellenfleth, J., Djath,
B., Neumann, T., and Emeis, S.: First in situ evidence of wakes in the far
field behind offshore wind farms, Sci. Rep., 8, 2163,
https://doi.org/10.1038/s41598-018-20389-y, 2018. a, b
Pryor, S. C., Barthelmie, R. J., and Shepherd, T. J.: The Influence of
Real-World Wind Turbine Deployments on Local to Mesoscale
Climate, J. Geophys. Res.-Atmos., 123, 5804–5826,
https://doi.org/10.1029/2017JD028114, 2018. a, b
Rajewski, D. A., Takle, E. S., Lundquist, J. K., Oncley, S., Prueger, J. H.,
Horst, T. W., Rhodes, M. E., Pfeiffer, R., Hatfield, J. L., Spoth, K. K., and
Doorenbos, R. K.: Crop Wind Energy Experiment (CWEX): Observations
of Surface-Layer, Boundary Layer, and Mesoscale Interactions with
a Wind Farm, B. Am. Meteorol. Soc., 94,
655–672, https://doi.org/10.1175/BAMS-D-11-00240.1, 2013. a, b, c, d, e, f, g
Rajewski, D. A., Takle, E. S., Prueger, J. H., and Doorenbos, R. K.: Toward
understanding the physical link between turbines and microclimate impacts
from in situ measurements in a large wind farm: Microclimate With
Turbines ON Versus OFF, J. Geophys. Res.-Atmos., 121, 13392–13414,
https://doi.org/10.1002/2016JD025297, 2016. a, b
Redfern, S., Olson, J. B., Lundquist, J. K., and Clack, C. T. M.: Incorporation
of the Rotor-Equivalent Wind Speed into the Weather Research and
Forecasting Model’s Wind Farm Parameterization, Mon. Weather
Rev., 147, 1029–1046, https://doi.org/10.1175/MWR-D-18-0194.1, 2019. a
Sanchez Gomez, M. and Lundquist, J. K.: The effect of wind direction shear on turbine performance in a wind farm in central Iowa, Wind Energ. Sci., 5, 125–139, https://doi.org/10.5194/wes-5-125-2020, 2020. a
Sanderse, B., van der Pijl, S. P., and Koren, B.: Review of computational fluid
dynamics for wind turbine wake aerodynamics, Wind Energy, 14, 799–819,
https://doi.org/10.1002/we.458, 2011. a
Siedersleben, S. K., Lundquist, J. K., Platis, A., Bange, J., Bärfuss, K.,
Lampert, A., Cañadillas, B., Neumann, T., and Emeis, S.:
Micrometeorological impacts of offshore wind farms as seen in observations
and simulations, Environ. Res. Lett., 13, 12012,
https://doi.org/10.1088/1748-9326/aaea0b, 2018a. a, b, c, d, e, f, g, h
Siedersleben, S. K., Platis, A., Lundquist, J. K., Lampert, A., Bärfuss, K.,
Cañadillas, B., Djath, B., Schulz-Stellenfleth, J., Bange, J., Neumann, T.,
and Emeis, S.: Evaluation of a Wind Farm Parametrization for
Mesoscale Atmospheric Flow Models with Aircraft Measurements,
Meteorol. Z., 27, 401–415, https://doi.org/10.1127/metz/2018/0900,
2018b. a
Siedersleben, S. K., Platis, A., Lundquist, J. K., Djath, B., Lampert, A., Bärfuss, K., Cañadillas, B., Schulz-Stellenfleth, J., Bange, J., Neumann, T., and Emeis, S.: Turbulent kinetic energy over large offshore wind farms observed and simulated by the mesoscale model WRF (3.8.1), Geosci. Model Dev., 13, 249–268, https://doi.org/10.5194/gmd-13-249-2020, 2020. a, b
Skamarock, W. C. and Klemp, J. B.: A time-split nonhydrostatic atmospheric
model for weather research and forecasting applications, J.
Comput. Phys., 227, 3465–3485, https://doi.org/10.1016/j.jcp.2007.01.037,
2008. a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X.-Y., Wang, W., and Powers, J. G.: A Description of the Advanced Research WRF Version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.,
https://doi.org/10.5065/D68S4MVH, 2008. a, b
Smith, C. M., Barthelmie, R. J., and Pryor, S. C.: In situ observations of the
influence of a large onshore wind farm on near-surface temperature,
turbulence intensity and wind speed profiles, Environ. Res. Lett.,
8, 034006, https://doi.org/10.1088/1748-9326/8/3/034006, 2013. a, b
Smith, E. N., Gebauer, J. G., Klein, P. M., Fedorovich, E., Gibbs, J. A.,
Smith, E. N., Gebauer, J. G., Klein, P. M., Fedorovich, E., and Gibbs, J. A.:
The Great Plains Low-Level Jet during PECAN: Observed and
Simulated Characteristics, Mon. Weather Rev., 147, 1845–1869,
https://doi.org/10.1175/MWR-D-18-0293.1, 2019. a
Sørensen, J. N. and Shen, W. Z.: Numerical Modeling of Wind Turbine
Wakes, J. Fluids Eng., 124, 393–399, https://doi.org/10.1115/1.1471361, 2002. a
Tian, L. L., Zhu, W. J., Shen, W. Z., Sørensen, J. N., and Zhao, N.:
Investigation of modified AD/RANS models for wind turbine wake
predictions in large wind farm, J. Phys. Conf. Ser., 524,
012151, https://doi.org/10.1088/1742-6596/524/1/012151, 2014. a
Tomaszewski, J. M.: WRF WFP sensitivity input data and parsed data, Zenodo, 10.5281/zenodo.3755282, 2019. a
Tomaszewski, J. M., Lundquist, J. K., Churchfield, M. J., and Moriarty, P. J.: Do wind turbines pose roll hazards to light aircraft?, Wind Energ. Sci., 3, 833–843, https://doi.org/10.5194/wes-3-833-2018, 2018. a
Troldborg, N., Sørensen, J. N., and Mikkelsen, R. F.: Numerical simulations
of wake characteristics of a wind turbine in uniform inflow, Wind Energy, 13,
86–99, https://doi.org/10.1002/we.345, 2010. a
Vanderwende, B. and Lundquist, J. K.: Could Crop Height Affect the Wind
Resource at Agriculturally Productive Wind Farm Sites?,
Bound.-Lay. Meteorol., 158, 409–428, https://doi.org/10.1007/s10546-015-0102-0,
2016. a
Vanderwende, B. J., Lundquist, J. K., Rhodes, M. E., Takle, E. S., and Irvin,
S. L.: Observing and Simulating the Summertime Low-Level Jet in
Central Iowa, Mon. Weather Rev., 143, 2319–2336,
https://doi.org/10.1175/MWR-D-14-00325.1, 2015. a, b, c
Vanderwende, B. J., Kosović, B., Lundquist, J. K., and Mirocha, J. D.:
Simulating effects of a wind-turbine array using LES and RANS:
Simulating turbines using LES and RANS, J. Adv. Model.
Earth Sy., 8, 1376–1390, https://doi.org/10.1002/2016MS000652, 2016. a, b
Vautard, R., Thais, F., Tobin, I., Bréon, F.-M., de Lavergne, J.-G. D.,
Colette, A., Yiou, P., and Ruti, P. M.: Regional climate model simulations
indicate limited climatic impacts by operational and planned European wind
farms, Nat. Commun., 5, 3196, https://doi.org/10.1038/ncomms4196, 2014.
a, b, c, d
Vermeer, L., Sørensen, J., and Crespo, A.: Wind turbine wake aerodynamics,
Prog. Aerosp. Sci., 39, 467–510,
https://doi.org/10.1016/S0376-0421(03)00078-2, 2003. a
Volker, P. J. H., Badger, J., Hahmann, A. N., and Ott, S.: The Explicit Wake Parametrisation V1.0: a wind farm parametrisation in the mesoscale model WRF, Geosci. Model Dev., 8, 3715–3731, https://doi.org/10.5194/gmd-8-3715-2015, 2015. a
Wang, Q., Luo, K., Wu, C., and Fan, J.: Impact of substantial wind farms on the
local and regional atmospheric boundary layer: Case study of Zhangbei
wind power base in China, Energy, 183, 1136–1149,
https://doi.org/10.1016/j.energy.2019.07.026, 2019. a, b
Witha, B., Hahmann, A., Sile, T., Dörenkämper, M., Ezber, Y.,
García-Bustamante, E., González-Rouco, J. F., Leroy, G., and Navarro, J.:
WRF model sensitivity studies and specifications for the NEWA mesoscale
wind atlas production runs, Zenodo, https://doi.org/10.5281/zenodo.2682604, 2019. a
Wyngaard, J. C.: Toward Numerical Modeling in the “Terra
Incognita”, J. Atmos. Sci., 61, 1816–1826,
https://doi.org/10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2, 2004. a
Zhou, B., Simon, J. S., and Chow, F. K.: The Convective Boundary Layer in
the Terra Incognita, J. Atmos. Sci., 71, 2545–2563,
https://doi.org/10.1175/JAS-D-13-0356.1, 2014. a
Short summary
Wind farms can briefly impact the nearby environment by reducing wind speeds and mixing warmer air down to the surface. The wind farm parameterization (WFP) in the Weather Research and Forecasting (WRF) model is a tool that numerically simulates wind farms and these meteorological impacts. We highlight the importance of choice in model settings and find that sufficiently fine vertical and horizontal grids with turbine turbulence are needed to accurately simulate wind farm meteorological impacts.
Wind farms can briefly impact the nearby environment by reducing wind speeds and mixing warmer...