Articles | Volume 13, issue 6
Geosci. Model Dev., 13, 2645–2662, 2020
https://doi.org/10.5194/gmd-13-2645-2020
Geosci. Model Dev., 13, 2645–2662, 2020
https://doi.org/10.5194/gmd-13-2645-2020

Model evaluation paper 16 Jun 2020

Model evaluation paper | 16 Jun 2020

Simulated wind farm wake sensitivity to configuration choices in the Weather Research and Forecasting model version 3.8.1

Jessica M. Tomaszewski and Julie K. Lundquist

Related authors

Observations and simulations of a wind farm modifying a thunderstorm outflow boundary
Jessica M. Tomaszewski and Julie K. Lundquist
Wind Energ. Sci., 6, 1–13, https://doi.org/10.5194/wes-6-1-2021,https://doi.org/10.5194/wes-6-1-2021, 2021
Short summary
Do wind turbines pose roll hazards to light aircraft?
Jessica M. Tomaszewski, Julie K. Lundquist, Matthew J. Churchfield, and Patrick J. Moriarty
Wind Energ. Sci., 3, 833–843, https://doi.org/10.5194/wes-3-833-2018,https://doi.org/10.5194/wes-3-833-2018, 2018
Short summary

Related subject area

Atmospheric sciences
Impact of Initialized Land Surface Temperature and Snowpack on Subseasonal to Seasonal Prediction Project, Phase I (LS4P-I): organization and experimental design
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021,https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Sensitivity analysis of the PALM model system 6.0 in the urban environment
Michal Belda, Jaroslav Resler, Jan Geletič, Pavel Krč, Björn Maronga, Matthias Sühring, Mona Kurppa, Farah Kanani-Sühring, Vladimír Fuka, Kryštof Eben, Nina Benešová, and Mikko Auvinen
Geosci. Model Dev., 14, 4443–4464, https://doi.org/10.5194/gmd-14-4443-2021,https://doi.org/10.5194/gmd-14-4443-2021, 2021
Short summary
Investigating the importance of sub-grid particle formation in point source plumes over eastern China using IAP-AACM v1.0 with a sub-grid parameterization
Ying Wei, Xueshun Chen, Huansheng Chen, Yele Sun, Wenyi Yang, Huiyun Du, Qizhong Wu, Dan Chen, Xiujuan Zhao, Jie Li, and Zifa Wang
Geosci. Model Dev., 14, 4411–4428, https://doi.org/10.5194/gmd-14-4411-2021,https://doi.org/10.5194/gmd-14-4411-2021, 2021
Short summary
SCARLET-1.0: SpheriCal Approximation for viRtuaL aggrEgaTes
Eduardo Rossi and Costanza Bonadonna
Geosci. Model Dev., 14, 4379–4400, https://doi.org/10.5194/gmd-14-4379-2021,https://doi.org/10.5194/gmd-14-4379-2021, 2021
Short summary
BARRA v1.0: kilometre-scale downscaling of an Australian regional atmospheric reanalysis over four midlatitude domains
Chun-Hsu Su, Nathan Eizenberg, Dörte Jakob, Paul Fox-Hughes, Peter Steinle, Christopher J. White, and Charmaine Franklin
Geosci. Model Dev., 14, 4357–4378, https://doi.org/10.5194/gmd-14-4357-2021,https://doi.org/10.5194/gmd-14-4357-2021, 2021
Short summary

Cited articles

Abkar, M. and Porté-Agel, F.: Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study, Phys. Fluids, 27, 035104, https://doi.org/10.1063/1.4913695, 2015a. a, b
Abkar, M. and Porté-Agel, F.: A new wind-farm parameterization for large-scale atmospheric models, J. Renew. Sustain. Ener., 7, 013121, https://doi.org/10.1063/1.4907600, 2015b. a, b
Aitken, M. L., Kosović, B., Mirocha, J. D., and Lundquist, J. K.: Large eddy simulation of wind turbine wake dynamics in the stable boundary layer using the Weather Research and Forecasting Model, J. Renew. Sustain. Ener., 6, 033137, https://doi.org/10.1063/1.4885111, 2014. a
Archer, C. L., Mirzaeisefat, S., and Lee, S.: Quantifying the sensitivity of wind farm performance to array layout options using large-eddy simulation, Geophys. Res. Lett., 40, 4963–4970, https://doi.org/10.1002/grl.50911, 2013. a
Astolfi, D., Castellani, F., and Terzi, L.: A Study of Wind Turbine Wakes in Complex Terrain Through RANS Simulation and SCADA Data, J. Sol. Energ.-T. ASME, 140, 031001, https://doi.org/10.1115/1.4039093, 2018. a
Download
Short summary
Wind farms can briefly impact the nearby environment by reducing wind speeds and mixing warmer air down to the surface. The wind farm parameterization (WFP) in the Weather Research and Forecasting (WRF) model is a tool that numerically simulates wind farms and these meteorological impacts. We highlight the importance of choice in model settings and find that sufficiently fine vertical and horizontal grids with turbine turbulence are needed to accurately simulate wind farm meteorological impacts.