Articles | Volume 13, issue 6
Geosci. Model Dev., 13, 2645–2662, 2020
Geosci. Model Dev., 13, 2645–2662, 2020
Model evaluation paper
16 Jun 2020
Model evaluation paper | 16 Jun 2020

Simulated wind farm wake sensitivity to configuration choices in the Weather Research and Forecasting model version 3.8.1

Jessica M. Tomaszewski and Julie K. Lundquist

Related authors

Observations and simulations of a wind farm modifying a thunderstorm outflow boundary
Jessica M. Tomaszewski and Julie K. Lundquist
Wind Energ. Sci., 6, 1–13,,, 2021
Short summary
Do wind turbines pose roll hazards to light aircraft?
Jessica M. Tomaszewski, Julie K. Lundquist, Matthew J. Churchfield, and Patrick J. Moriarty
Wind Energ. Sci., 3, 833–843,,, 2018
Short summary

Related subject area

Atmospheric sciences
MultilayerPy (v1.0): a Python-based framework for building, running and optimising kinetic multi-layer models of aerosols and films
Adam Milsom, Amy Lees, Adam M. Squires, and Christian Pfrang
Geosci. Model Dev., 15, 7139–7151,,, 2022
Short summary
Introduction of the DISAMAR radiative transfer model: determining instrument specifications and analysing methods for atmospheric retrieval (version 4.1.5)
Johan F. de Haan, Ping Wang, Maarten Sneep, J. Pepijn Veefkind, and Piet Stammes
Geosci. Model Dev., 15, 7031–7050,,, 2022
Short summary
Assessment of the data assimilation framework for the Rapid Refresh Forecast System v0.1 and impacts on forecasts of a convective storm case study
Ivette H. Banos, Will D. Mayfield, Guoqing Ge, Luiz F. Sapucci, Jacob R. Carley, and Louisa Nance
Geosci. Model Dev., 15, 6891–6917,,, 2022
Short summary
Downscaling atmospheric chemistry simulations with physically consistent deep learning
Andrew Geiss, Sam J. Silva, and Joseph C. Hardin
Geosci. Model Dev., 15, 6677–6694,,, 2022
Short summary
A machine learning methodology for the generation of a parameterization of the hydroxyl radical
Daniel C. Anderson, Melanie B. Follette-Cook, Sarah A. Strode, Julie M. Nicely, Junhua Liu, Peter D. Ivatt, and Bryan N. Duncan
Geosci. Model Dev., 15, 6341–6358,,, 2022
Short summary

Cited articles

Abkar, M. and Porté-Agel, F.: Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study, Phys. Fluids, 27, 035104,, 2015a. a, b
Abkar, M. and Porté-Agel, F.: A new wind-farm parameterization for large-scale atmospheric models, J. Renew. Sustain. Ener., 7, 013121,, 2015b. a, b
Aitken, M. L., Kosović, B., Mirocha, J. D., and Lundquist, J. K.: Large eddy simulation of wind turbine wake dynamics in the stable boundary layer using the Weather Research and Forecasting Model, J. Renew. Sustain. Ener., 6, 033137,, 2014. a
Archer, C. L., Mirzaeisefat, S., and Lee, S.: Quantifying the sensitivity of wind farm performance to array layout options using large-eddy simulation, Geophys. Res. Lett., 40, 4963–4970,, 2013. a
Astolfi, D., Castellani, F., and Terzi, L.: A Study of Wind Turbine Wakes in Complex Terrain Through RANS Simulation and SCADA Data, J. Sol. Energ.-T. ASME, 140, 031001,, 2018. a
Short summary
Wind farms can briefly impact the nearby environment by reducing wind speeds and mixing warmer air down to the surface. The wind farm parameterization (WFP) in the Weather Research and Forecasting (WRF) model is a tool that numerically simulates wind farms and these meteorological impacts. We highlight the importance of choice in model settings and find that sufficiently fine vertical and horizontal grids with turbine turbulence are needed to accurately simulate wind farm meteorological impacts.