Articles | Volume 13, issue 6
https://doi.org/10.5194/gmd-13-2631-2020
https://doi.org/10.5194/gmd-13-2631-2020
Model description paper
 | Highlight paper
 | 
11 Jun 2020
Model description paper | Highlight paper |  | 11 Jun 2020

RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting

Georgy Ayzel, Tobias Scheffer, and Maik Heistermann

Related authors

Transferability of data-driven models to predict urban pluvial flood water depth in Berlin, Germany
Omar Seleem, Georgy Ayzel, Axel Bronstert, and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 23, 809–822, https://doi.org/10.5194/nhess-23-809-2023,https://doi.org/10.5194/nhess-23-809-2023, 2023
Short summary
Meteorological, impact and climate perspectives of the 29 June 2017 heavy precipitation event in the Berlin metropolitan area
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022,https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
Optical flow models as an open benchmark for radar-based precipitation nowcasting (rainymotion v0.1)
Georgy Ayzel, Maik Heistermann, and Tanja Winterrath
Geosci. Model Dev., 12, 1387–1402, https://doi.org/10.5194/gmd-12-1387-2019,https://doi.org/10.5194/gmd-12-1387-2019, 2019
Short summary
Coupling physically based and data-driven models for assessing freshwater inflow into the Small Aral Sea
Georgy Ayzel and Alexander Izhitskiy
Proc. IAHS, 379, 151–158, https://doi.org/10.5194/piahs-379-151-2018,https://doi.org/10.5194/piahs-379-151-2018, 2018
Short summary
Impact of possible climate changes on river runoff under different natural conditions
Yeugeniy M. Gusev, Olga N. Nasonova, Evgeny E. Kovalev, and Georgy V. Ayzel
Proc. IAHS, 379, 293–300, https://doi.org/10.5194/piahs-379-293-2018,https://doi.org/10.5194/piahs-379-293-2018, 2018
Short summary

Related subject area

Atmospheric sciences
Improving trajectory calculations by FLEXPART 10.4+ using single-image super-resolution
Rüdiger Brecht, Lucie Bakels, Alex Bihlo, and Andreas Stohl
Geosci. Model Dev., 16, 2181–2192, https://doi.org/10.5194/gmd-16-2181-2023,https://doi.org/10.5194/gmd-16-2181-2023, 2023
Short summary
Data fusion uncertainty-enabled methods to map street-scale hourly NO2 in Barcelona: a case study with CALIOPE-Urban v1.0
Alvaro Criado, Jan Mateu Armengol, Hervé Petetin, Daniel Rodriguez-Rey, Jaime Benavides, Marc Guevara, Carlos Pérez García-Pando, Albert Soret, and Oriol Jorba
Geosci. Model Dev., 16, 2193–2213, https://doi.org/10.5194/gmd-16-2193-2023,https://doi.org/10.5194/gmd-16-2193-2023, 2023
Short summary
Forecasting tropical cyclone tracks in the northwestern Pacific based on a deep-learning model
Liang Wang, Bingcheng Wan, Shaohui Zhou, Haofei Sun, and Zhiqiu Gao
Geosci. Model Dev., 16, 2167–2179, https://doi.org/10.5194/gmd-16-2167-2023,https://doi.org/10.5194/gmd-16-2167-2023, 2023
Short summary
Accelerating models for multiphase chemical kinetics through machine learning with polynomial chaos expansion and neural networks
Thomas Berkemeier, Matteo Krüger, Aryeh Feinberg, Marcel Müller, Ulrich Pöschl, and Ulrich K. Krieger
Geosci. Model Dev., 16, 2037–2054, https://doi.org/10.5194/gmd-16-2037-2023,https://doi.org/10.5194/gmd-16-2037-2023, 2023
Short summary
A machine learning emulator for Lagrangian particle dispersion model footprints: a case study using NAME
Elena Fillola, Raul Santos-Rodriguez, Alistair Manning, Simon O'Doherty, and Matt Rigby
Geosci. Model Dev., 16, 1997–2009, https://doi.org/10.5194/gmd-16-1997-2023,https://doi.org/10.5194/gmd-16-1997-2023, 2023
Short summary

Cited articles

Agrawal, S., Barrington, L., Bromberg, C., Burge, J., Gazen, C., and Hickey, J.: Machine Learning for Precipitation Nowcasting from Radar Images, available at: https://arxiv.org/abs/1912.12132 (last access: 28 January 2020), 2019. a, b
Austin, G. L. and Bellon, A.: The use of digital weather radar records for short-term precipitation forecasting, Q. J. Roy. Meteor. Soc., 100, 658–664, https://doi.org/10.1002/qj.49710042612, 1974. a
Ayzel, G.: hydrogo/rainnet: RainNet v1.0-gmdd, Zenodo, https://doi.org/10.5281/zenodo.3631038, 2020a. a, b, c
Ayzel, G.: RainNet: pretrained model and weights, Zenodo, https://doi.org/10.5281/zenodo.3630429, 2020b. a, b, c
Ayzel, G.: RYDL: the sample data of the RY product for deep learning applications, Zenodo, https://doi.org/10.5281/zenodo.3629951, 2020c. a, b
Download
Short summary
In this study, we present RainNet, a deep convolutional neural network for radar-based precipitation nowcasting, which was trained to predict continuous precipitation intensities at a lead time of 5 min. RainNet significantly outperformed the benchmark models at all lead times up to 60 min. Yet, an undesirable property of RainNet predictions is the level of spatial smoothing. Obviously, RainNet learned an optimal level of smoothing to produce a nowcast at 5 min lead time.