
Geosci. Model Dev., 13, 2631–2644, 2020
https://doi.org/10.5194/gmd-13-2631-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

RainNet v1.0: a convolutional neural network for
radar-based precipitation nowcasting
Georgy Ayzel1, Tobias Scheffer2, and Maik Heistermann1

1Institute for Environmental Sciences and Geography, University of Potsdam, Potsdam, Germany
2Department of Computer Science, University of Potsdam, Potsdam, Germany

Correspondence: Georgy Ayzel (ayzel@uni-potsdam.de)

Received: 30 January 2020 – Discussion started: 4 March 2020
Revised: 7 May 2020 – Accepted: 13 May 2020 – Published: 11 June 2020

Abstract. In this study, we present RainNet, a deep convo-
lutional neural network for radar-based precipitation now-
casting. Its design was inspired by the U-Net and SegNet
families of deep learning models, which were originally de-
signed for binary segmentation tasks. RainNet was trained
to predict continuous precipitation intensities at a lead time
of 5 min, using several years of quality-controlled weather
radar composites provided by the German Weather Service
(DWD). That data set covers Germany with a spatial do-
main of 900km× 900 km and has a resolution of 1 km in
space and 5 min in time. Independent verification experi-
ments were carried out on 11 summer precipitation events
from 2016 to 2017. In order to achieve a lead time of 1 h,
a recursive approach was implemented by using RainNet pre-
dictions at 5 min lead times as model inputs for longer lead
times. In the verification experiments, trivial Eulerian persis-
tence and a conventional model based on optical flow served
as benchmarks. The latter is available in the rainymotion li-
brary and had previously been shown to outperform DWD’s
operational nowcasting model for the same set of verification
events.

RainNet significantly outperforms the benchmark models
at all lead times up to 60 min for the routine verification met-
rics mean absolute error (MAE) and the critical success in-
dex (CSI) at intensity thresholds of 0.125, 1, and 5 mmh−1.
However, rainymotion turned out to be superior in predicting
the exceedance of higher intensity thresholds (here 10 and
15 mmh−1). The limited ability of RainNet to predict heavy
rainfall intensities is an undesirable property which we at-
tribute to a high level of spatial smoothing introduced by the
model. At a lead time of 5 min, an analysis of power spec-
tral density confirmed a significant loss of spectral power at

length scales of 16 km and below. Obviously, RainNet had
learned an optimal level of smoothing to produce a nowcast
at 5 min lead time. In that sense, the loss of spectral power
at small scales is informative, too, as it reflects the limits of
predictability as a function of spatial scale. Beyond the lead
time of 5 min, however, the increasing level of smoothing is
a mere artifact – an analogue to numerical diffusion – that
is not a property of RainNet itself but of its recursive ap-
plication. In the context of early warning, the smoothing is
particularly unfavorable since pronounced features of intense
precipitation tend to get lost over longer lead times. Hence,
we propose several options to address this issue in prospec-
tive research, including an adjustment of the loss function
for model training, model training for longer lead times, and
the prediction of threshold exceedance in terms of a binary
segmentation task. Furthermore, we suggest additional in-
put data that could help to better identify situations with im-
minent precipitation dynamics. The model code, pretrained
weights, and training data are provided in open repositories
as an input for such future studies.

1 Introduction

The term “nowcasting” refers to forecasts of precipitation
field movement and evolution at high spatiotemporal reso-
lutions (1–10 min, 100–1000 m) and short lead times (min-
utes to a few hours). Nowcasts have become popular not
only with a broad civil community for planning everyday ac-
tivities; they are particularly relevant as part of early warn-
ing systems for heavy rainfall and related impacts such as
flash floods or landslides. While the recent advances in high-
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performance computing and data assimilation significantly
improved numerical weather prediction (NWP) (Bauer et al.,
2015), the computational resources required to forecast pre-
cipitation field dynamics at very high spatial and temporal
resolutions are typically prohibitive for the frequent update
cycles (5–10 min) that are required for operational nowcast-
ing systems. Furthermore, the heuristic extrapolation of pre-
cipitation dynamics that are observed by weather radars still
outperforms NWP forecasts at short lead times (Lin et al.,
2005; Sun et al., 2014). Thus, the development of new now-
casting systems based on parsimonious but reliable and fast
techniques remains an essential trait in both atmospheric and
natural hazard research.

There are many nowcasting systems which work opera-
tionally all around the world to provide precipitation now-
casts (Reyniers, 2008; Wilson et al., 1998). These systems,
at their core, utilize a two-step procedure that was originally
suggested by Austin and Bellon (1974), consisting of track-
ing and extrapolation. In the tracking step, a velocity is ob-
tained from a series of consecutive radar images. In the ex-
trapolation step, that velocity is used to propagate the most
recent precipitation observation into the future. Various fla-
vors and variations of this fundamental idea have been de-
veloped and operationalized over the past decades, which
provide value to users of corresponding products. Still, the
fundamental approach to nowcasting has not changed much
over recent years – a situation that might change with the
increasing popularity of deep learning in various scientific
disciplines.

“Deep learning” refers to machine-learning methods for
artificial neural networks with “deep” architectures. Rather
than relying on engineered features, deep learning derives
low-level image features on the lowest layers of a hierarchi-
cal network and increasingly abstract features on the high-
level network layers as part of the solution of an optimization
problem based on training data (LeCun et al., 2015). Deep
learning began its rise from the field of computer science
when it started to dramatically outperform reference methods
in image classification (Krizhevsky et al., 2012) and machine
translation (Sutskever et al., 2014), which was followed by
speech recognition (LeCun et al., 2015). Three main reasons
caused this substantial breakthrough in predictive efficacy:
the availability of “big data” for model training, the develop-
ment of activation functions and network architectures that
result in numerically stable gradients across many network
layers (Dahl et al., 2013), and the ability to scale the learning
process massively through parallelization on graphics pro-
cessing units (GPUs). Today, deep learning is rapidly spread-
ing into many data-rich scientific disciplines, and it comple-
ments researchers’ toolboxes with efficient predictive mod-
els, including in the field of geosciences (Reichstein et al.,
2019).

While expectations in the atmospheric sciences are high
(see, e.g., Dueben and Bauer, 2018; Gentine et al., 2018),
the investigation of deep learning in radar-based precipita-

tion nowcasting is still in its infancy, and universal solutions
are not yet available. Shi et al. (2015) were the first to in-
troduce deep learning models in the field of radar-based pre-
cipitation nowcasting: they presented a convolutional long
short-term memory (ConvLSTM) architecture, which out-
performed the optical-flow-based ROVER (Real-time Opti-
cal flow by Variational methods for Echoes of Radar) now-
casting system in the Hong Kong area. A follow-up study
(Shi et al., 2017) introduced new deep learning architectures,
namely the trajectory gated recurrent unit (TrajGRU) and the
convolutional gated recurrent unit (ConvGRU), and demon-
strated that these models outperform the ROVER nowcasting
system, too. Further studies by Singh et al. (2017) and Shi
et al. (2018) confirmed the potential of deep learning models
for radar-based precipitation nowcasting for different sites in
the US and China. Most recently, Agrawal et al. (2019) in-
troduced a U-Net-based deep learning model for the predic-
tion of the exceedance of specific rainfall intensity thresholds
compared to optical flow and numerical weather prediction
models. Hence, the exploration of deep learning techniques
in radar-based nowcasting has begun, and the potential to
overcome the limitations of standard tracking and extrapola-
tion techniques has become apparent. There is a strong need,
though, to further investigate different architectures, to set up
new benchmark experiments, and to understand under which
conditions deep learning models can be a viable option for
operational services.

In this paper, we introduce RainNet – a deep neural net-
work which aims at learning representations of spatiotempo-
ral precipitation field movement and evolution from a mas-
sive, open radar data archive to provide skillful precipitation
nowcasts. The present study outlines RainNet’s architecture
and its training and reports on a set of benchmark exper-
iments in which RainNet competes against a conventional
nowcasting model based on optical flow. Based on these ex-
periments, we evaluate the potential of RainNet for now-
casting but also its limitations in comparison to conventional
radar-based nowcasting techniques. Based on this evaluation,
we attempt to highlight options for future research towards
the application of deep learning in the field of precipitation
nowcasting.

2 Model description

2.1 Network architecture

To investigate the potential of deep neural networks for radar-
based precipitation nowcasting, we developed RainNet –
a convolutional deep neural network (Fig. 1). Its architec-
ture was inspired by the U-Net and SegNet families of deep
learning models for binary segmentation (Badrinarayanan
et al., 2017; Ronneberger et al., 2015; Iglovikov and Shvets,
2018). These models follow an encoder–decoder architecture
in which the encoder progressively downscales the spatial
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Figure 1. Illustration of the RainNet architecture. RainNet is a convolutional deep neural network which follows a standard encoder–decoder
structure with skip connections between its branches. See main text for further explanation.

resolution using pooling, followed by convolutional layers,
and the decoder progressively upscales the learned patterns
to a higher spatial resolution using upsampling, followed by
convolutional layers. There are skip connections (Srivastava
et al., 2015) from the encoder to the decoder in order to en-
sure semantic connectivity between features on different lay-
ers.

As elementary building blocks, RainNet has 20 convolu-
tional, 4 max pooling, 4 upsampling, and 2 dropout layers
and 4 skip connections. Convolutional layers aim to gener-
ate data-driven spatial features from the corresponding in-
put volume using several convolutional filters. Each filter is
a three-dimensional tensor of learnable weights with a small
spatial kernel size (e.g., 3× 3, and the third dimension equal
to that of the input volume). A filter convolves through the in-

put volume with a step-size parameter (or stride; stride= 1 in
this study) and produces a dot product between filter weights
and corresponding input volume values. A bias parameter is
added to this dot product, and the results are transformed us-
ing an adequate activation function. The purpose of the ac-
tivation function is to add nonlinearities to the convolutional
layer output – to enrich it to learn nonlinear features. To in-
crease the efficiency of convolutional layers, it is necessary
to optimize their hyperparameters (such as number of filters,
kernel size, and type of activation function). This has been
done in a heuristic tuning procedure (not shown). As a result,
we use convolutional layers with up to 1024 filters, kernel
sizes of 1× 1 and 3× 3, and linear or rectified linear unit
(ReLU; Nair and Hinton, 2010) activation functions.
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Using a max pooling layer has two primary reasons: it
achieves an invariance to scale transformations of detected
features and increases the network’s robustness to noise and
clutter (Boureau et al., 2010). The filter of a max pooling
layer slides over the input volume independently for every
feature map with some step parameter (or stride) and resizes
it spatially using the maximum (max) operator. In our study,
each max pooling layer filter is 2× 2 in size, applied with
a stride of 2. Thus, we take the maximum of four numbers in
the filter region (2× 2), which downsamples our input vol-
ume by a factor of 2. In contrast to a max pooling layer, an
upsampling layer is designed for the spatial upsampling of
the input volume (Long et al., 2015). An upsampling layer
operator slides over the input volume and fills (copies) each
input value to a region that is defined by the upsampling ker-
nel size (2× 2 in this study).

Skip connections were proposed by Srivastava et al. (2015)
in order to avoid the problem of vanishing gradients for the
training of very deep neural networks. Today, skip connec-
tions are a standard group of methods for any form of infor-
mation transfer between different layers in a neural network
(Gu et al., 2018). They allow for the most common patterns
learned on the bottom layers to be reused by the top layers in
order to maintain a connection between different data repre-
sentations along the whole network. Skip connections turned
out to be crucial for deep neural network efficiency in recent
studies (Iglovikov and Shvets, 2018). For RainNet, we use
skip connections for the transition of learned patterns from
the encoder to the decoder branch at the different resolution
levels.

One of the prerequisites for U-Net-based architectures is
that the spatial extent of input data has to be a multiple of
2n+1, where n is the number of max pooling layers. As a con-
sequence, the spatial extent on different resolution levels be-
comes identical for the decoder and encoder branches. Corre-
spondingly, the radar composite grids were transformed from
the native spatial extent of 900 cells×900 cells to the extent
of 928 cells×928 cells using mirror padding.

RainNet takes four consecutive radar composite grids as
separate input channels (t − 15, t − 10, and t − 5 min and t ,
where t is the time of the nowcast) to produce a nowcast at
time t + 5 min. Each grid contains 928 cells×928 cells with
an edge length of 1 km; for each cell, the input value is the
logarithmic precipitation depth as retrieved from the radar-
based precipitation product. There are five almost symmet-
rical resolution levels for both decoder and encoder which
utilize precipitation patterns at the full spatial input resolu-
tion of (x,y), at half resolution (x/2,y/2), at (x/4,y/4), at
(x/8,y/8), and at (x/16,y/16). To increase the robustness
and to prevent the overfitting of pattern representations at
coarse resolutions, we implemented a dropout regularization
technique (Srivastava et al., 2014). Finally, the output layer of
resolution (x,y) with a linear activation function provides the
predicted logarithmic precipitation (in millimeters) in each
grid cell for t + 5 min.

RainNet differs fundamentally from ConvLSTM (Shi
et al., 2015), a prior neural-network approach, which ac-
counts for both spatial and temporal structures in radar data
by using stacked convolutional and long short-term memory
(LSTM) layers that preserve the spatial resolution of the in-
put data alongside all the computational layers. LSTM net-
works have been observed to be brittle; in several application
domains, convolutional neural networks have turned out to be
numerically more stable during training and make more ac-
curate predictions than these recurrent neural networks (e.g.,
Bai et al., 2018; Gehring et al., 2017).

Therefore, RainNet uses a fully convolutional architec-
ture and does not use LSTM layers to propagate information
through time. In order to make predictions with a larger lead
time, we apply RainNet recursively. After predicting the es-
timated log precipitation for t + 5 min, the measured values
for t−10, t−5, and t , as well as the estimated value for t+5,
serve as the next input volume which yields the estimated log
precipitation for t+10 min. The input window is then moved
on incrementally.

2.2 Optimization procedure

In total, RainNet has almost 31.4 million parameters. We
optimized these parameters using a procedure of which we
show one iteration in Fig. 2: first, we read a sample of in-
put data that consists of radar composite grids at time t−15,
t−10, and t−5 min and t , as well as a sample of the observed
precipitation at time t+5. For both input and observation, we
increase the spatial extent to 928×928 using mirror padding
and transform precipitation depth x (mm5min−1) as follows
(Eq. 1):

xtransformed = ln(xraw+ 0.01). (1)

Second, RainNet carries out a prediction based on the input
data. Third, we calculate a loss function that represents the
deviation between prediction and observation. Previously,
Chen et al. (2018) showed that using the logcosh loss func-
tion is beneficial for the optimization of variational autoen-
coders (VAEs) in comparison to mean squared error. Ac-
cordingly, we employed the logcosh loss function as follows
(Eq. 2):

Loss=
∑n

i=1 ln(cosh(nowi − obsi))

n
, (2)

cosh(x)=
1
2
(ex
+ e−x), (3)

where nowi and obsi are nowcast and observation at the ith
location, respectively, cosh is the hyperbolic cosine function
(Eq. 3), and n is the number of cells in the radar composite
grid.

Fourth, we update RainNet’s model parameters to min-
imize the loss function using a backpropagation algorithm
where the Adam optimizer is utilized to compute the gradi-
ents (Kingma and Ba, 2015).
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Figure 2. Illustration of one iteration step of the RainNet parameters optimization procedure.

We optimized RainNet’s parameters using 10 epochs (one
epoch ends when the neural network has seen every input
data sample once; then the next epoch begins) with a mini
batch of size 2 (one mini batch holds a few input data sam-
ples). The optimization procedure converged on the eighth
epoch, showing the saturation of RainNet’s performance on
the validation data. The learning rate of the Adam optimizer
had a value of 1× 10−4, while other parameters had default
values from the original paper of Kingma and Ba (2015).

The entire setup was empirically identified as the most
successful in terms of RainNet’s performance on validation
data, while other configurations with different loss functions
(e.g., mean absolute error, mean squared error) and optimiza-
tion algorithms (e.g., stochastic gradient descent) also con-
verged. The average training time on a single GPU (NVIDIA
GeForce GTX 1080Ti, NVIDIA GTX TITAN X, or NVIDIA
Tesla P100) varies from 72 to 76 h.

We support this paper by a corresponding repository on
GitHub (https://github.com/hydrogo/rainnet; last access: 10
June 2020; Ayzel, 2020a), which holds the RainNet model
architecture written in the Python 3 programming language
(https://python.org, last access: 28 January 2020) using the
Keras deep learning library (Chollet et al., 2015) alongside
its parameters (Ayzel, 2020b), which had been optimized on
the radar data set described in the following section.

3 Data and experimental setup

3.1 Radar data

We use the RY product of the German Weather Service
(DWD) as input data for training and validating the Rain-
Net model. The RY product represents a quality-controlled
rainfall-depth composite of 17 operational DWD Doppler
radars. It has a spatial extent of 900km× 900 km, covers the
whole area of Germany, and has been available since 2006.
The spatial and temporal resolution of the RY product is
1km× 1 km and 5 min, respectively.

In this study, we use RY data that cover the period from
2006 to 2017. We split the available RY data as follows:
while we use data from 2006 to 2013 to optimize RainNet’s
model parameters and data from 2014 to 2015 to validate
RainNet’s performance, data from 2016 to 2017 are used for
model verification (Sect. 3.3). For both optimization and val-
idation periods, we keep only data from May to September
and ignore time steps for which the precipitation field (with
rainfall intensity more than 0.125 mmh−1) covers less than
10 % of the RY domain. For each subset of the data – for
optimization, validation, and verification – every time step
(or frame) is used once as t0 (forecast time) so that the re-
sulting sequences that are used as input to a single forecast
(t0− 15min, . . ., t0) overlap in time. The number of result-
ing sequences amounts to 41 988 for the optimization, 5722
for the validation, and 9626 for the verification (see also
Sect. 3.3).
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3.2 Reference models

We use nowcasting models from the rainymotion Python li-
brary (Ayzel et al., 2019) as benchmarks with which we eval-
uate RainNet. As the first baseline model, we use Eulerian
persistence (hereafter referred to as Persistence), which as-
sumes that for any lead time n (min) precipitation at t + n

is the same as at forecast time t . Despite its simplicity, it
is quite a powerful model for very short lead times, which
also establishes a solid verification efficiency baseline which
can be achieved with a trivial model without any explicit as-
sumptions. As the second baseline model, we use the Dense
model from the rainymotion library (hereafter referred to
as Rainymotion), which is based on optical flow techniques
for precipitation field tracking and the constant-vector ad-
vection scheme for precipitation field extrapolation. Ayzel
et al. (2019) showed that this model has an equivalent or
even superior performance in comparison to the operational
RADVOR (radar real-time forecasting) model from DWD
for a wide range of rainfall events.

3.3 Verification experiments and performance
evaluation

For benchmarking RainNet’s predictive skill in comparison
to the baseline models, Rainymotion and Persistence, we se-
lected 11 events during the summer months of the verifica-
tion period (2016–2017). These events were selected for cov-
ering a range of event characteristics with different rainfall
intensity, spatial coverage, and duration. A detailed account
of the events’ properties is given by Ayzel et al. (2019).

We use three metrics for model verification: mean abso-
lute error (MAE), critical success index (CSI), and fractions
skill score (FSS). Each metric represents a different category
of scores. MAE (Eq. 4) corresponds to the continuous cate-
gory and maps the differences between nowcast and observed
rainfall intensities. CSI (Eq. 5) is a categorical score based
on a standard contingency table for calculating matches be-
tween Boolean variables which indicate the exceedance of
specific rainfall intensity thresholds. FSS (Eq. 6) represents
neighborhood verification scores and is based on comparing
nowcast and observed fractional coverages of rainfall inten-
sities exceeding specific thresholds in spatial neighborhoods
(windows) of certain sizes.

MAE=
∑n

i=1|nowi − obsi |

n
, (4)

CSI=
hits

hits+ false alarms+misses
, (5)

FSS= 1−
∑n

i=1(Pn−Po)
2∑n

i=1P
2
n +

∑n
i=1P

2
o

, (6)

where quantities nowi and obsi are nowcast and observed
rainfall rate in the ith pixel of the corresponding radar image,
and n is the number of pixels. Hits, false alarms, and misses
are defined by the contingency table and the corresponding

threshold value. Quantities Pn and Po represent the nowcast
and observed fractions, respectively, of rainfall intensities ex-
ceeding a specific threshold for a defined neighborhood size.
MAE is positive and unbounded with a perfect score of 0;
both CSI and FSS can vary from 0 to 1 with a perfect score
of 1. We have applied threshold rain rates of 0.125, 1, 5, 10,
and 15 mmh−1 for calculating the CSI and the FSS. For cal-
culating the FSS, we use neighborhood (window) sizes of 1,
5, 10, and 20 km.

The verification metrics we use in this study quantify the
models’ performance from different perspectives. The MAE
captures errors in rainfall rate prediction (the fewer the bet-
ter), and CSI (the higher the better) captures model accuracy
– the fraction of the forecast event that was correctly pre-
dicted – but does not distinguish between the sources of er-
rors. The FSS determines how the nowcast skill depends on
both the threshold of rainfall exceedance and the spatial scale
(Mittermaier and Roberts, 2010).

In addition to standard verification metrics described
above, we calculate the power spectral density (PSD) of now-
casts and corresponding observations using Welch’s method
(Welch, 1967) to investigate the effects of smoothing demon-
strated by different models.

4 Results and discussion

For each event, RainNet was used to compute nowcasts at
lead times from 5 to 60 min (in 5 min steps). To predict the
precipitation at time t+5 min (t being the forecast time), we
used the four latest radar images (at time t − 15, t − 10, and
t − 5 min and t) as input. Since RainNet was only trained to
predict precipitation at 5 min lead times, predictions beyond
t + 5 were made recursively: in order to predict precipita-
tion at t + 10, we considered the prediction at t + 5 as the
latest observation. That recursive procedure was repeated up
to a maximum lead time of 60 min. Rainymotion uses the
two latest radar composite grids (t − 5, t) in order to retrieve
a velocity field and then to advect the latest radar-based pre-
cipitation observation at forecast time t to t + 5, t + 10, . . . ,
and t + 60.

Figure 3 shows the routine verification metrics MAE and
CSI for RainNet, Rainymotion, and Persistence as a function
of lead time. The preliminary analysis had shown the same
general pattern of model efficiency for each of the 11 events
(Sect. S1 in the Supplement), which is why we only show the
average metrics over all events. The results basically fall into
two groups.

The first group includes the MAE and the CSI metrics
up to a threshold of 5 mmh−1. For these, RainNet clearly
outperforms the benchmarks at any lead time (differences
between models were tested to be significant with the two-
tailed t test at a significance level of 5 %; results not shown).
Persistence is the least skillful, as could be expected for
a trivial baseline. The relative differences between RainNet
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and Rainymotion are more pronounced for the MAE than for
the CSI. For the MAE, the advance of RainNet over Rainy-
motion increases with lead time. For the CSI, the superiority
of RainNet over Rainymotion appears to be highest for inter-
mediate lead times between 20 and 40 min. The performance
of all models, in terms of CSI, decreases with increasing in-
tensity thresholds.

That trend – a decreasing CSI with increasing intensity
– continues with the second group of metrics: the CSI for
thresholds of 10 and 15 mmh−1. For both metrics and any
of the competing methods at any lead time, the CSI does not
exceed a value of 0.31 (obtained by RainNet at 5 min lead
time and a threshold of 10 mmh−1). That is below a value
of 1/e ≈ 0.37 which had been suggested by Germann and
Zawadzki (2002) as a “limit of predictability” (under the as-
sumption that the optimal value of the metric is 1 and that
it follows an exponential-like decay over lead time). Irre-
spective of such an – admittedly arbitrary – predictability
threshold, the loss of skill from an intensity threshold of 5
to 10 mmh−1 is remarkable for all competing models. Visu-
ally more apparent, however, is another property of the sec-
ond group of metrics, which is that Rainymotion outperforms
RainNet (except for a threshold of 10 mmh−1 at lead times of
5 and 60 min). That becomes most pronounced for the CSI at
15 mmh−1, while RainNet has a similar CSI value as Rainy-
motion at a lead time of 5 min, it entirely fails at predicting
the exceedance of 15 mmh−1 for longer lead times.

In summary, Fig. 3 suggests that RainNet outperforms
Rainymotion (as a representative of standard tracking and
extrapolation techniques based on optical flow) for low and
intermediate rain rates (up to 5 mmh−1). Neither RainNet
nor Rainymotion appears to have much skill at predicting the
exceedance of 10 mmh−1, but the loss of skill for high in-
tensities is particularly remarkable for RainNet, which obvi-
ously has difficulties in predicting pronounced precipitation
features with high intensities.

In order to better understand the fundamental properties of
RainNet predictions in contrast to Rainymotion, we continue
by inspecting a nowcast at three different lead times (5, 30,
and 60 min) for a verification event at an arbitrarily selected
forecast time (29 May 2016, 19:15:00 UTC). The top row
of Fig. 4 shows the observed precipitation, and the second
and third rows show Rainymotion and RainNet predictions.
Since it is visually challenging to track the motion pattern
at the scale of 900 km× 900 km by eye, we illustrate the ve-
locity field as obtained from optical flow, which forms the
basis for Rainymotion’s prediction. While it is certainly dif-
ficult to infer the predictive performance of the two models
from this figure, another feature becomes immediately strik-
ing: RainNet introduces a spatial smoothing which appears
to substantially increase with lead time. In order to quan-
tify that visual impression, we calculated, for the same ex-
ample, the power spectral density (PSD) of the nowcasts and
the corresponding observations (bottom row in Fig. 4), us-
ing Welch’s method (Welch, 1967). In simple terms, the PSD

represents the prominence of precipitation features at differ-
ent spatial scales, expressed as the spectral power at different
wavelengths after a two-dimensional fast Fourier transform.
The power spectrum itself is not of specific interest here; it
is the loss of power at different length scales, relative to the
observation, that is relevant in this context. The loss of power
of Rainymotion nowcasts appears to be constrained to spatial
scales below 4 km and does not seem to depend on lead time
(see also Ayzel et al., 2019). For RainNet, however, a sub-
stantial loss of power at length scales below 16 km becomes
apparent at a lead time of 5 min. For longer lead times of 30
and 60 min, that loss of power grows and propagates to scales
of up to 32 km. That loss of power over a range of scales cor-
responds to our visual impression of spatial smoothing.

In order to investigate whether that loss of spectral power
at smaller scales is a general property of RainNet predictions,
we computed the PSD for each forecast time in each verifica-
tion event in order to obtain an average PSD for observations
and nowcasts at lead times of 5, 30, and 60 min. The corre-
sponding results are shown in Fig. 5. They confirm that the
behavior observed in the bottom row of Fig. 4 is, in fact, rep-
resentative of the entirety of verification events. Precipitation
fields predicted by RainNet are much smoother than both the
observed fields and the Rainymotion nowcasts. At a lead time
of 5 min, RainNet starts to lose power at a scale of 16 km.
That loss accumulates over lead time and becomes effective
up to a scale of 32 km at a lead time of 60 min. These results
confirm qualitative findings of Shi et al. (2015, 2018), who
described their nowcasts as “smooth” or “fuzzy”.

RainNet obviously learned, as the optimal way to mini-
mize the loss function, to introduce a certain level of smooth-
ing for the prediction at time t + 5 min. It might even have
learned to systematically “attenuate” high intensity features
as a strategy to minimize the loss function, which would
be consistent with the results of the CSI at a threshold of
15 mmh−1, as shown in Fig. 3. For the sake of simplicity,
though, we will refer to the overall effect as “smoothing”
in the rest of the paper. According to the loss of spectral
power, the smoothing is still small at a length scale of 16 km
but becomes increasingly effective at smaller scales from 2
to 8 km. It is important to note that the loss of power be-
low length scales of 16 km at a lead time of 5 min is an es-
sential property of RainNet. It reflects the learning outcome
and illustrates how RainNet factors in predictive uncertainty
at 5 min lead times by smoothing over small spatial scales.
Conversely, the increasing loss of power and its propagation
to larger scales up to 32 km are not an inherent property of
RainNet but a consequence of its recursive application in our
study context: as the predictions at short lead times serve as
model inputs for predictions at longer lead times, the results
become increasingly smooth. So while the smoothing intro-
duced at 5 min lead times can be interpreted as a direct re-
sult of the learning procedure, the cumulative smoothing at
longer lead times has to rather be considered an artifact simi-
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Figure 3. Mean absolute error (MAE) and critical success index (CSI) for five different intensity thresholds (0.125, 1, 5, 10, and 15 mmh−1).
The metrics are shown as a function of lead time. All values represent the average of the corresponding metric over all 11 verification events.

lar to the effect of “numerical diffusion” in numerically solv-
ing the advection equation.

Given this understanding of RainNet’s properties, we used
the fractions skill score (FSS) to provide further insight into
the dependency of predictive skill on the spatial scale. To that
end, the FSS was obtained by comparing the predicted and
observed fractional coverage of pixels (inside a spatial win-
dow/neighborhood) that exceed a certain intensity threshold
(see Eq. 6 in Sect. 3.3). Figure 6 shows the FSS for Rainymo-
tion and RainNet as an average over all verification events,
for spatial window sizes of 1, 5, 10, and 20 km, and for in-
tensity thresholds of 0.125, 1, 5, 10, and 15 mmh−1. In addi-
tion to the color code, the value of the FSS is given for each
combination of window size (scale) and intensity. In the case
that one model is superior to the other, the correspondingly
higher FSS value is highlighted in bold black digits.

Based on the above results and discussion of RainNet’s
versus Rainymotion’s predictive properties, the FSS figures
are plausible and provide a more formalized approach to
express different behaviors of RainNet and Rainymotion in
terms of predictive skill. In general, the skill of both mod-
els decreases with decreasing window sizes, increasing lead
times, and increasing intensity thresholds. RainNet tends to
outperform Rainymotion at lower rainfall intensities (up to
5 mmh−1) at the native grid resolution (i.e., a window size
of 1 km). With increasing window sizes and intensity thresh-
olds, Rainymotion becomes the superior model. At an inten-
sity threshold of 5 mmh−1, Rainymotion outperforms Rain-
Net at window sizes equal to or greater than 5 km. At inten-
sity thresholds of 10 and 15 mmh−1, Rainymotion is superior
at any lead time and window size (except a window size of
1 km for a threshold of 10 mmh−1).
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Figure 4. Precipitation observations as well as Rainymotion and RainNet nowcasts at t = 29 May 2016, 19:15 UTC. Top row: observed
precipitation intensity at time t , t+5, t+30, and t+60 min. Second row: corresponding Rainymotion predictions, together with the underlying
velocity field obtained from optical flow. Bottom row: power spectral density plots for observations and nowcasts at lead times of 5, 30, and
60 min.

Figure 5. PSD averaged over all verification events and nowcasts for lead times of 5, 30, and 60 min.

The dependency of the FSS (or, rather, the difference of
FSS values between Rainymotion and RainNet) on spatial
scale, intensity threshold, and lead time is a direct result
of inherent model properties. Rainymotion advects precip-
itation features but preserves their intensity. When we in-

crease the size of the spatial neighborhood around a pixel,
this neighborhood could, at some size, include high-intensity
precipitation features that Rainymotion has preserved but
slightly misplaced. RainNet’s loss function, however, only
accounts for the native grid at 1 km resolution, so it has no
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Figure 6. Fractions skill score (FSS) for Rainymotion (a, b, c) and RainNet (d, e, f) for 5, 30, and 60 min lead times, for spatial window sizes
of 1, 5, 10, and 20 km, and for intensity thresholds of 0.125, 1, 5, 10, and 15 mmh−1. In addition to the color code of the FSS, we added the
numerical FSS values. The FSS values of the models which are significantly superior for a specific combination of window size, intensity
threshold, and lead time are typed in bold black digits, and the inferior models are in regular digits.

notion of what could be a slight or “acceptable” displace-
ment error. Instead, RainNet has learned spatial smoothing
as an efficient way to factor in spatial uncertainty and min-
imize the loss function, resulting in a loss of high-intensity
features. As discussed above, that effect becomes increas-
ingly prominent for longer lead times because the effect of
smoothing propagates.

5 Summary and conclusions

In this study, we have presented RainNet, a deep convolu-
tional neural network architecture for radar-based precipita-
tion nowcasting. Its design was inspired by the U-Net and
SegNet families of deep learning models for binary seg-
mentation, and it follows an encoder–decoder architecture
in which the encoder progressively downscales the spatial
resolution using pooling, followed by convolutional layers,
and the decoder progressively upscales the learned patterns
to a higher spatial resolution using upsampling, followed by
convolutional layers.

RainNet was trained to predict precipitation at a lead time
of 5 min, using several years of quality-controlled weather
radar composites based on the DWD weather radar net-
work. Those data cover Germany with a spatial domain of
900km× 900 km and have a resolution of 1 km in space

and 5 min in time. Independent verification experiments were
carried out on 11 summer precipitation events from 2016 to
2017. In order to achieve a lead time of 60 min, a recursive
approach was implemented by using RainNet predictions at
5 min lead times as model inputs for longer lead times. In
the verification experiments, Eulerian persistence served as
a trivial benchmark. As an additional benchmark, we used
a model from the rainymotion library which had previously
been shown to outperform the operational nowcasting model
of the German Weather Service for the same set of verifica-
tion events.

RainNet significantly outperformed both benchmark mod-
els at all lead times up to 60 min for the routine verification
metrics mean absolute error (MAE) and the critical success
index (CSI) at intensity thresholds of 0.125, 1, and 5 mmh−1.
Depending on the verification metric, these results would
correspond to an extension of the effective lead time in the
order of 10–20 min by RainNet as compared to Rainymo-
tion. However, Rainymotion turned out to be clearly superior
in predicting the exceedance of higher-intensity thresholds
(here 10 and 15 mmh−1) as shown by the corresponding CSI
analysis.

RainNet’s limited ability to predict high rainfall intensities
could be attributed to a remarkable level of spatial smooth-
ing in its predictions. That smoothing becomes increasingly
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apparent at longer lead times. Yet it is already prominent at
a lead time of 5 min. That was confirmed by an analysis of
power spectral density which showed, at time t+5 min, a loss
of spectral power at length scales of 16 km and below. Obvi-
ously, RainNet has learned an optimal level of smoothing to
produce a nowcast at 5 min lead times. In that sense, the loss
of spectral power at small scales is informative as it reflects
the limits of predictability as a function of spatial scale. Be-
yond the lead time of 5 min, however, the increasing level of
smoothing is a mere artifact – an analogue to numerical diffu-
sion – that is not a property of RainNet itself but of its recur-
sive application: as we repeatedly use smoothed nowcasts as
model inputs, we cumulate the effect of smoothing over time.
That certainly is an undesirable property, and it becomes par-
ticularly unfavorable for the prediction of high-intensity pre-
cipitation features. As was shown on the basis of the frac-
tions skill score (FSS), Rainymotion outperforms RainNet
already at an intensity of 5 mmh−1 once we start to eval-
uate the performance in a spatial neighborhood around the
native grid pixel of 1km× 1 km size. This is because Rainy-
motion preserves distinct precipitation features but tends to
misplace them. RainNet, however, tends to lose such features
over longer lead times due to cumulative smoothing effects –
more so if it is applied recursively.

From an early warning perspective, that property of Rain-
Net clearly limits its usefulness. There are, however, options
to address that issue in future research.

– The loss function used in the training could be adjusted
in order to penalize the loss of power at small spatial
scales. The loss function explicitly represents our re-
quirements to the model. Verifying the model by other
performance metrics will typically reveal whether these
metrics are rather in agreement or in conflict with these
requirements. In our case, the logcosh loss function ap-
pears to favor a low MAE but at the cost of losing
distinct precipitation features. In general, future users
need to be aware that, apart from the network design,
the optimization itself constitutes the main difference to
“heuristic” tracking-and-extrapolation techniques (such
as Rainymotion) which do not use any systematic pa-
rameter optimization. The training procedure will stub-
bornly attempt to minimize the loss function, irrespec-
tive of what researchers consider to be “physically plau-
sible”. For many researchers in the field of nowcast-
ing, that notion might be in stark contrast to experiences
with “conventional” nowcasting techniques which tend
to effortlessly produce at least plausible patterns.

– RainNet should be directly trained to predict precipita-
tion at lead times beyond 5 min. However, preliminary
training experiments with that learning task had diffi-
culties to converge. We thus recommend to still use re-
cursive predictions as model inputs for longer lead times
during training in order to improve convergence. For ex-
ample, to predict precipitation at time t + 10 min, Rain-

Net could be trained using precipitation at time t − 15,
t − 10, . . ., t min as input but using the recursive pre-
diction at time t + 5 as an additional input layer. While
the direct prediction of precipitation at longer lead times
should reduce excessive smoothing as a result of numer-
ical diffusion, we would still expect the level of smooth-
ing to increase with lead time as a result of the predictive
uncertainty at small scales.

– As an alternative to predicting continuous values of pre-
cipitation intensity, RainNet could be trained to predict
the exceedance of specific intensity thresholds instead.
That would correspond to a binary segmentation task. It
is possible that the objective of learning the segmenta-
tion for low intensities might be in conflict with learn-
ing it for high intensities. That is why the training could
be carried out both separately and jointly for disparate
thresholds in order to investigate whether there are in-
herent trade-offs. From an early warning perspective, it
makes sense to train RainNet for binary segmentation
based on user-defined thresholds that are governed by
the context of risk management. The additional advan-
tage of training RainNet to predict threshold exceedance
is that we could use its output directly as a measure of
uncertainty (of that exceedance).

We consider any of those options worth pursuing in order
to increase the usefulness of RainNet in an early warning
context – i.e., to better represent precipitation intensities that
exceed hazardous thresholds. We would expect the overall
architecture of RainNet to be a helpful starting point.

Yet the key issue of precipitation prediction – the antici-
pation of convective initialization, as well as the growth and
dissipation of precipitation in the imminent future – still ap-
pears to be unresolved. It is an inherent limitation of nowcast-
ing models purely based on optical flow: they can extrapolate
motion fairly well, but they cannot predict intensity dynam-
ics. Deep learning architectures, however, might be able to
learn recurrent patterns of growth and dissipation, although
it will be challenging to verify if they actually did. In the con-
text of this study, though, we have to assume that RainNet has
rather learned the representation of motion patterns instead
of rainfall intensity dynamics: for a lead time of 5 min, the
effects of motion can generally be expected to dominate over
the effects of intensity dynamics, which will propagate to the
learning results. The fact that we actually could recursively
use RainNet’s predictions at 5 min lead times in order to pre-
dict precipitation at 1 h lead times also implies that RainNet,
in essence, learned to represent motion patterns and optimal
smoothing. In that case, the trained model might even be ap-
plicable on data in another region, which could be tested in
future verification experiments.

Another limitation in successfully learning patterns of in-
tensity growth and dissipation might be the input data itself.
While we do not exclude the possibility that such patterns
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could be learned from just two-dimensional radar compos-
ites, other input variables might add essential information on
imminent atmospheric dynamics – the predisposition of the
atmosphere to produce or to dissolve precipitation. Such ad-
ditional data might include three-dimensional radar volume
data, dual-polarization radar moments, or the output fields of
numerical weather prediction (NWP) models. Formally, the
inclusion of NWP fields in a learning framework could be
considered as a different way of assimilation, combining –
in a data-driven way – the information content of physical
models and observations.

Our study provides, after Shi et al. (2015, 2017, 2018),
another proof of concept that convolutional neural networks
provide a firm basis to compete with conventional nowcast-
ing models based on optical flow (most recently, Google Re-
search has also reported similar attempts based on a U-Net
architecture; see Agrawal et al., 2019). Yet this study should
rather be considered as a starting point to further improve the
predictive skill of convolutional neural networks and to better
understand the properties of their predictions – in a statistical
sense but also in how processes of motion and intensity dy-
namics are reflected. To that end, computational complexity
and the cost of the training process still have to be considered
as inhibitive, despite the tremendous progress achieved in the
past years. RainNet’s training would require almost a year
on a standard desktop CPU in contrast to 3 d on a modern
desktop GPU (although the latter is a challenge to implement
for non-experts). Yet it is possible to run deep learning mod-
els with already optimized (pretrained) weights on a desktop
computer. Thus, it is important to make available not only
the code of the network architecture but also the correspond-
ing weights, applicable using open-source software tools and
libraries. We provide all this – code, pretrained weights, as
well as training and verification data – as an input for future
studies on open repositories (Ayzel, 2020a, b, c).

Code and data availability. The RainNet model is free and open
source. It is distributed under the MIT software license which
allows unrestricted use. The source code is provided through
a GitHub repository https://github.com/hydrogo/rainnet (last ac-
cess: 30 January 2020; Ayzel, 2020d); a snapshot of RainNet v1.0
is also available at https://doi.org/10.5281/zenodo.3631038 (Ayzel,
2020a); the pretrained RainNet model and its weights are available
at https://doi.org/10.5281/zenodo.3630429 (Ayzel, 2020b). DWD
provided the sample data of the RY product; it is available at
https://doi.org/10.5281/zenodo.3629951 (Ayzel, 2020c).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-13-2631-2020-supplement.

Author contributions. GA developed the RainNet model, carried
out the benchmark experiments, and wrote the paper. TS and MH
supervised the study and co-authored the paper.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. Georgy Ayzel would like to thank the Open
Data Science community (https://ods.ai, last access: 10 June 2020)
for many valuable discussions and educational help in the grow-
ing field of deep learning. We ran our experiments using the GPU
computation resources of the Machine Learning Group of the Uni-
versity of Potsdam (Potsdam, Germany) and the Shared Facility
Center “Data Center of FEB RAS” (Khabarovsk, Russia). We ac-
knowledge the support of Deutsche Forschungsgemeinschaft (Ger-
man Research Foundation) and the open-access publication fund of
the University of Potsdam.

Financial support. This research has been supported by Geo.X, the
Research Network for Geosciences in Berlin and Potsdam (grant no.
SO_087_GeoX).

Review statement. This paper was edited by Simone Marras and re-
viewed by Scott Collis and Gabriele Franch.

References

Agrawal, S., Barrington, L., Bromberg, C., Burge, J., Gazen, C., and
Hickey, J.: Machine Learning for Precipitation Nowcasting from
Radar Images, available at: https://arxiv.org/abs/1912.12132 (last
access: 28 January 2020), 2019.

Austin, G. L. and Bellon, A.: The use of digital
weather radar records for short-term precipitation
forecasting, Q. J. Roy. Meteor. Soc., 100, 658–664,
https://doi.org/10.1002/qj.49710042612, 1974.

Ayzel, G.: hydrogo/rainnet: RainNet v1.0-gmdd, Zenodo,
https://doi.org/10.5281/zenodo.3631038, 2020a.

Ayzel, G.: RainNet: pretrained model and weights, Zenodo,
https://doi.org/10.5281/zenodo.3630429, 2020b.

Ayzel, G.: RYDL: the sample data of the RY
product for deep learning applications, Zenodo,
https://doi.org/10.5281/zenodo.3629951, 2020c.

Ayzel, G.: RainNet: a convolutional neural network for radar-
based precipitation nowcasting, available at: https://github.com/
hydrogo/rainnet, last access: 10 June 2020.

Ayzel, G., Heistermann, M., and Winterrath, T.: Optical flow mod-
els as an open benchmark for radar-based precipitation now-
casting (rainymotion v0.1), Geosci. Model Dev., 12, 1387–1402,
https://doi.org/10.5194/gmd-12-1387-2019, 2019.

Badrinarayanan, V., Kendall, A., and Cipolla, R.: SegNet: A
Deep Convolutional Encoder-Decoder Architecture for Im-
age Segmentation, IEEE T. Pattern Anal., 39, 2481–2495,
https://doi.org/10.1109/TPAMI.2016.2644615, 2017.

Bai, S., Kolter, J. Z., and Koltun, V.: An Empirical Evaluation of
Generic Convolutional and Recurrent Networks for Sequence
Modeling, available at: https://arxiv.org/abs/1803.01271 (last ac-
cess: 28 January 2020), 2018.

Geosci. Model Dev., 13, 2631–2644, 2020 https://doi.org/10.5194/gmd-13-2631-2020

https://github.com/hydrogo/rainnet
https://doi.org/10.5281/zenodo.3631038
https://doi.org/10.5281/zenodo.3630429
https://doi.org/10.5281/zenodo.3629951
https://doi.org/10.5194/gmd-13-2631-2020-supplement
https://ods.ai
https://arxiv.org/abs/1912.12132
https://doi.org/10.1002/qj.49710042612
https://doi.org/10.5281/zenodo.3631038
https://doi.org/10.5281/zenodo.3630429
https://doi.org/10.5281/zenodo.3629951
https://github.com/hydrogo/rainnet
https://github.com/hydrogo/rainnet
https://doi.org/10.5194/gmd-12-1387-2019
https://doi.org/10.1109/TPAMI.2016.2644615
https://arxiv.org/abs/1803.01271


G. Ayzel et al.: RainNet: a convolutional neural network for precipitation nowcasting 2643

Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolu-
tion of numerical weather prediction, Nature, 525, 47–55,
https://doi.org/10.1038/nature14956, 2015.

Boureau, Y.-L., Ponce, J., and LeCun, Y.: A Theoretical Analysis
of Feature Pooling in Visual Recognition, in: Proceedings of the
27th International Conference on International Conference on
Machine Learning, ICML’10, Omnipress, Madison, WI, USA,
21–24 June 2010, Haifa, Israel, 111–118, 2010.

Chen, P., Chen, G., and Zhang, S.: Log Hyperbolic Cosine
Loss Improves Variational Auto-Encoder, available at: https://
openreview.net/forum?id=rkglvsC9Ym (last access: 28 January
2020), 2018.

Chollet, F. et al.: Keras, https://keras.io (last access: 10 June 2020),
2015.

Dahl, G. E., Sainath, T. N., and Hinton, G. E.: Improving deep neu-
ral networks for LVCSR using rectified linear units and dropout,
in: 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing, 26–31 May 2013, Vancouver, Canada,
8609–8613, https://doi.org/10.1109/ICASSP.2013.6639346,
2013.

Dueben, P. D. and Bauer, P.: Challenges and design choices
for global weather and climate models based on ma-
chine learning, Geosci. Model Dev., 11, 3999–4009,
https://doi.org/10.5194/gmd-11-3999-2018, 2018.

Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. N.:
Convolutional Sequence to Sequence Learning, in: Proceedings
of the 34th International Conference on Machine Learning – Vol-
ume 70, ICML’17, 6–11 August 2017,Sydney, Australia, 1243–
1252, JMLR.org, 2017.

Gentine, P., Pritchard, M., Rasp, S., Reinaudi, G., and Ya-
calis, G.: Could Machine Learning Break the Convection Pa-
rameterization Deadlock?, Geophys. Res. Lett., 45, 5742–5751,
https://doi.org/10.1029/2018GL078202, 2018.

Germann, U. and Zawadzki, I.: Scale-Dependence of the
Predictability of Precipitation from Continental Radar
Images. Part I: Description of the Methodology, Mon.
Weather Rev., 130, 2859–2873, https://doi.org/10.1175/1520-
0493(2002)130<2859:SDOTPO>2.0.CO;2, 2002.

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T.,
Wang, X., Wang, G., Cai, J., and Chen, T.: Recent advances
in convolutional neural networks, Pattern Recogn., 77, 354–377,
https://doi.org/10.1016/j.patcog.2017.10.013, 2018.

Iglovikov, V. and Shvets, A.: TernausNet: U-Net with VGG11 En-
coder Pre-Trained on ImageNet for Image Segmentation, avail-
able at: https://arxiv.org/abs/1801.05746 (last access: 28 January
2020), 2018.

Kingma, D. P. and Ba, J.: Adam: A Method for Stochastic Opti-
mization, in: 3rd International Conference on Learning Repre-
sentations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015,
Conference Track Proceedings, edited by: Bengio, Y. and Le-
Cun, Y., available at: http://arxiv.org/abs/1412.6980 (last access:
10 June 2020), 2015.

Krizhevsky, A., Sutskever, I., and Hinton, G. E.: ImageNet
Classification with Deep Convolutional Neural Networks,
in: Advances in Neural Information Processing Systems 25,
NIPS 2012, Lake Tahoe, Nevada, USA, 3–9 December 2012,
Curran Associates, Inc. Red Hook, NY, USA, edited by:
Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger,
K. Q., 1097–1105, available at: http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf (last access: 10 June 2020), 2012.

LeCun, Y., Bengio, Y., and Hinton, G.: Deep learning, Nature, 521,
436–444, https://doi.org/10.1038/nature14539, 2015.
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