Articles | Volume 13, issue 5
Geosci. Model Dev., 13, 2475–2486, 2020
Geosci. Model Dev., 13, 2475–2486, 2020
Development and technical paper
28 May 2020
Development and technical paper | 28 May 2020

An adaptive method for speeding up the numerical integration of chemical mechanisms in atmospheric chemistry models: application to GEOS-Chem version 12.0.0

Lu Shen et al.

Related authors

Continuous weekly monitoring of methane emissions from the Permian Basin by inversion of TROPOMI satellite observations
Daniel J. Varon, Daniel J. Jacob, Benjamin Hmiel, Ritesh Gautam, David R. Lyon, Mark Omara, Melissa Sulprizio, Lu Shen, Drew Pendergrass, Hannah Nesser, Zhen Qu, Zachary R. Barkley, Natasha L. Miles, Scott J. Richardson, Kenneth J. Davis, Sudhanshu Pandey, Xiao Lu, Alba Lorente, Tobias Borsdorff, Joannes D. Maasakkers, and Ilse Aben
Atmos. Chem. Phys. Discuss.,,, 2022
Preprint under review for ACP
Short summary
Satellite quantification of oil and natural gas methane emissions in the US and Canada including contributions from individual basins
Lu Shen, Ritesh Gautam, Mark Omara, Daniel Zavala-Araiza, Joannes D. Maasakkers, Tia R. Scarpelli, Alba Lorente, David Lyon, Jianxiong Sheng, Daniel J. Varon, Hannah Nesser, Zhen Qu, Xiao Lu, Melissa P. Sulprizio, Steven P. Hamburg, and Daniel J. Jacob
Atmos. Chem. Phys., 22, 11203–11215,,, 2022
Short summary
Methane emissions from China: a high-resolution inversion of TROPOMI satellite observations
Zichong Chen, Daniel J. Jacob, Hannah Nesser, Melissa P. Sulprizio, Alba Lorente, Daniel J. Varon, Xiao Lu, Lu Shen, Zhen Qu, Elise Penn, and Xueying Yu
Atmos. Chem. Phys., 22, 10809–10826,,, 2022
Short summary
Integrated Methane Inversion (IMI 1.0): a user-friendly, cloud-based facility for inferring high-resolution methane emissions from TROPOMI satellite observations
Daniel J. Varon, Daniel J. Jacob, Melissa Sulprizio, Lucas A. Estrada, William B. Downs, Lu Shen, Sarah E. Hancock, Hannah Nesser, Zhen Qu, Elise Penn, Zichong Chen, Xiao Lu, Alba Lorente, Ashutosh Tewari, and Cynthia A. Randles
Geosci. Model Dev., 15, 5787–5805,,, 2022
Short summary
A machine-learning-guided adaptive algorithm to reduce the computational cost of integrating kinetics in global atmospheric chemistry models: application to GEOS-Chem versions 12.0.0 and 12.9.1
Lu Shen, Daniel J. Jacob, Mauricio Santillana, Kelvin Bates, Jiawei Zhuang, and Wei Chen
Geosci. Model Dev., 15, 1677–1687,,, 2022
Short summary

Related subject area

Atmospheric sciences
Lightning assimilation in the WRF model (Version 4.1.1): technique updates and assessment of the applications from regional to hemispheric scales
Daiwen Kang, Nicholas K. Heath, Robert C. Gilliam, Tanya L. Spero, and Jonathan E. Pleim
Geosci. Model Dev., 15, 8561–8579,,, 2022
Short summary
Optimization of snow-related parameters in the Noah land surface model (v3.4.1) using a micro-genetic algorithm (v1.7a)
Sujeong Lim, Hyeon-Ju Gim, Ebony Lee, Seungyeon Lee, Won Young Lee, Yong Hee Lee, Claudio Cassardo, and Seon Ki Park
Geosci. Model Dev., 15, 8541–8559,,, 2022
Short summary
Development of an LSTM broadcasting deep-learning framework for regional air pollution forecast improvement
Haochen Sun, Jimmy C. H. Fung, Yiang Chen, Zhenning Li, Dehao Yuan, Wanying Chen, and Xingcheng Lu
Geosci. Model Dev., 15, 8439–8452,,, 2022
Short summary
A local particle filter and its Gaussian mixture extension implemented with minor modifications to the LETKF
Shunji Kotsuki, Takemasa Miyoshi, Keiichi Kondo, and Roland Potthast
Geosci. Model Dev., 15, 8325–8348,,, 2022
Short summary
A comprehensive evaluation of the use of Lagrangian particle dispersion models for inverse modeling of greenhouse gas emissions
Martin Vojta, Andreas Plach, Rona L. Thompson, and Andreas Stohl
Geosci. Model Dev., 15, 8295–8323,,, 2022
Short summary

Cited articles

Bechara, J., Borbon, A., Jambert, C., Colomb, A., and Perros, P. E.: Evidence of the impact of deep convection on reactive Volatile Organic Compounds in the upper tropical troposphere during the AMMA experiment in West Africa, Atmos. Chem. Phys., 10, 10321–10334,, 2010. 
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106, 23073–23095, 2001. 
Brasseur, G. P. and Jacob, D. J.: Modeling of atmospheric chemistry, Cambridge University Press, 2017. 
Brown-Steiner, B., Selin, N. E., Prinn, R., Tilmes, S., Emmons, L., Lamarque, J.-F., and Cameron-Smith, P.: Evaluating simplified chemical mechanisms within present-day simulations of the Community Earth System Model version 1.2 with CAM4 (CESM1.2 CAM-chem): MOZART-4 vs. Reduced Hydrocarbon vs. Super-Fast chemistry, Geosci. Model Dev., 11, 4155–4174,, 2018. 
Damian, V., Sandu, A., Damian, M., Potra, F., and Carmichael, G. R.: The kinetic preprocessor KPP – a software environment for solving chemical kinetics, Comput. Chem. Eng., 26, 1567– 1579, 2002. 
Short summary
Chemical mechanisms in air quality models tend to get more complicated with time, reflecting both increasing knowledge and the need for greater scope. This objectively improves the models but increases the computational burden. In this work, we present an approach that can reduce the computational cost of chemical integration by 30–40 % while maintaining an accuracy better than 1 %. It retains the complexity of the full mechanism where it is needed and preserves full diagnostic information.