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Abstract. The major computational bottleneck in atmo-
spheric chemistry models is the numerical integration of
the stiff coupled system of kinetic equations describing the
chemical evolution of the system as defined by the model
chemical mechanism (typically over 100 coupled species).
We present an adaptive method to greatly reduce the com-
putational cost of that numerical integration in global 3-D
models while maintaining high accuracy. Most of the atmo-
sphere does not in fact require solving for the full chemi-
cal complexity of the mechanism, so considerable simplifica-
tion is possible if one can recognize the dynamic continuum
of chemical complexity required across the atmospheric do-
main. We do this by constructing a limited set of reduced
chemical mechanisms (chemical regimes) to cover the range
of atmospheric conditions and then pick locally and on the fly
which mechanism to use for a given grid box and time step
on the basis of computed production and loss rates for indi-
vidual species. Application to the GEOS-Chem global 3-D
model for oxidant–aerosol chemistry in the troposphere and
stratosphere (full mechanism of 228 species) is presented.
We show that 20 chemical regimes can largely encompass the
range of conditions encountered in the model. Results from a
2-year GEOS-Chem simulation shows that our method can
reduce the computational cost of chemical integration by
30 %–40 % while maintaining accuracy better than 1 % and
with no error growth. Our method retains the full complex-
ity of the original chemical mechanism where it is needed,

provides the same model output diagnostics (species produc-
tion and loss rates, reaction rates) as the full mechanism, and
can accommodate changes in the chemical mechanism or in
model resolution without having to reconstruct the chemical
regimes.

1 Introduction

Accurate representation of atmospheric chemistry is of cen-
tral importance for air quality and Earth system models
(National Research Council, 2016), but it is computation-
ally expensive. The complete Master Chemistry Mecha-
nism (MCM, version 3.3, http://mcm.leeds.ac.uk/MCMv3.
3.1/, last access: November 2019) consists of 5832 species
and 16 701 reactions. Atmospheric chemistry models use
greatly simplified mechanisms, which still include hundreds
of species coupled through production and loss pathways
and with lifetimes ranging from less than 1 s to many years.
Computing the kinetic temporal evolution of such systems
involves solving a stiff system of N coupled non-linear ordi-
nary differential equations (ODEs) of the form

dni
dt
= Pi (n)−Li (n) , (1)

where n= (n1, . . .nK)
T is the vector of species concen-

trations, expressed typically as number densities (e.g.,
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molecules per cubic centimeter), and K is the number of
species in the mechanism. Pi(n) and Li(n) are the produc-
tion and loss rates of species i that depend on the concen-
trations of other species in the mechanism. Finite-difference
solution of the coupled system of ODEs requires an implicit
scheme to avoid limitation of the time step by the short-
est lifetime in the system (Brasseur and Jacob, 2017). Im-
plicit schemes involve repeated construction and inversion
of the Jacobian matrix (K ×K) for the system, and this is
computationally expensive for large K . But the full coupled
chemical mechanism may not be needed everywhere in the
model domain. For example, highly reactive volatile organic
compounds (VOCs) have little influence far away from their
source regions. Here we show that we can obtain a substan-
tial reduction in computational cost in a global 3-D model
by adaptively adjusting the ensemble of species that actually
need to be solved as a coupled system in a given model grid
box. We do so with a general algorithm that is readily appli-
cable to any chemical mechanism or numerical solver.

As the simplest example of an implicit scheme, consider
the first-order method which approximates Eq. (1) as

fi (n(t +1t))= ni (t +1t)−ni (t)−si (n(t +1t))1t, (2)

where1t is the time step and si(n(t+1t))= Pi(n(t+1t))−
Li(n(t +1t)) is the net source evaluated at the end of the
time step. This defines a vector function f = (f1, . . .fK)

T

and an algebraic system f (n(t+1t))= 0 that is solved iter-
atively by the Newton–Raphson method. The procedure in-
volves iterative calculation and inversion of the K ×K Ja-
cobian matrix J= ∂s/∂n. Most models use higher-order im-
plicit algorithms designed for accuracy and speed, such as the
Gear (Gear, 1971; Hindmarsh, 1983) and Rosenbrock (Sandu
et al., 1997; Hairer and Wanner, 1991) solvers, but all re-
quire iteratively calculating the Jacobian matrix and solving
the linear system using a matrix factorization. As a result,
the chemical operator that solves for the chemical evolution
of species concentrations from Eq. (1) is the most expen-
sive component of atmospheric chemistry models (Eastham
et al., 2018), and this computational cost has been a barrier
for inclusion of atmospheric chemistry in Earth system mod-
els (National Research Council, 2012).

There are various ways to speed up the chemical operator,
all involving some loss of accuracy or generality (Brasseur
and Jacob, 2017). A general approach is to reduce the di-
mension of the coupled system of ODEs that needs to be
solved implicitly. This can be done by simplifying the chem-
ical mechanism to decrease the number of species (Brown-
Steiner et al., 2018; Sportisse and Djouad, 2000) or by
isolating long-lived species for which a fast explicit solu-
tion scheme is acceptable (Young and Boris, 1977). Jacob-
son (1995) used different subsets of their full mechanism
to simulate the urban atmosphere, the troposphere, and the
stratosphere. Machine learning algorithms have been devel-
oped to replace the role of the conventional chemical solver;
but these methods have only been applied to simple scenarios

and are subject to error growth as simulation time progresses
(Keller and Evans, 2019).

Santillana et al. (2010) combined these ideas in an adap-
tive algorithm for 3-D models that determines locally at each
time step (“on the fly”) which species in the chemical mech-
anism need to be solved in the coupled implicit system. This
was done by computing the local production (Pi) and loss
rates (Li) for all species at the beginning of the time step.
Species with either Pi or Li above a given threshold were
labeled “fast” and solved with an implicit scheme, while
the others were labeled “slow” and solved with an explicit
scheme. The complexity of the chemical system to be solved
was thus adapted to the local environment. Here “fast” and
“slow” refer to the rates in the chemical system, not the
species lifetime. For example, short-lived VOCs may be con-
sidered slow outside of their source regions because they
have negligible influence on other species. Whether a species
is fast or slow depends on the changing local conditions,
hence the need for an adaptive algorithm, The adaptive ap-
proach does not prejudge the local environment, unlike in
Jacobson (1995), and instead resolves the dynamic contin-
uum of complexity encountered in the atmosphere. Santil-
lana et al. (2010) applied their algorithm to the GEOS-Chem
global 3-D Eulerian chemical transport model (Bey et al.,
2001). While the computational savings were promising for
the chemical integration within each grid box, the need to
construct a different system in every single grid box and at
every time step canceled out some of the gains and led to
only small time savings when compared to the performance
of the standard full-chemistry model.

Here we draw from the approach introduced by Santillana
et al. (2010) but use a set of pre-defined chemical regimes
to take full advantage of the time savings from the adaptive
reduction mechanism algorithm. We start with the objective
identification of a limited number of chemical regimes that
encompass the range of atmospheric conditions encountered
in the model. These regimes are defined by the subset of fast
species from the full mechanism that need to be considered
in the coupled system, and we pre-code the Jacobian matrix
and its inverse for each. The model then picks the appro-
priate chemical regime to be solved locally and on the fly.
We show that this approach can achieve large computational
savings without significantly compromising accuracy when
implemented in GEOS-Chem. Our method can be adapted to
any mechanism and model, retains the complexity of the full
mechanism where it is needed, and preserves full diagnos-
tic information on chemical evolution (such as reaction rates
and production and loss of individual species).

2 Model description

We use the GEOS-Chem 12.0.0 global 3-D
model for tropospheric and stratospheric chemistry
(https://doi.org/10.5281/zenodo.1343547) as a demon-
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stration for our algorithm. The model is applied here with
a horizontal resolution of 4◦× 5◦ and 72 pressure levels
extending from the surface to 0.01 hPa. It is driven by
MERRA2 assimilated meteorological data from the NASA
Global Modeling and Assimilation System (GMAO). The
model includes coupled gas-phase and aerosol chemistry as
described by Sherwen et al. (2016) and Travis et al. (2016)
for the troposphere and Eastham et al. (2014) for the
stratosphere. The chemical mechanism has 228 species
and 724 reactions. Among these species, 143 are volatile
organic compounds (VOCs), 37 are inorganic reactive
halogen species, 24 are organic halogen species, and 24 are
other inorganic and aerosol species. The chemical reactions
are integrated using the Rosenbrock solver (Sandu et al.,
1997; Hairer and Wanner, 1991) generated from the Kinetic
PreProcessor 2.2.4 (KPP) (Damian et al., 2002) software.
The model uses operator splitting between chemistry and
transport with a chemistry time step of 20 min (Philip et
al., 2016). We use 12 cores with shared memory in the
simulations.

The key processes in the KPP chemical operator are as fol-
lows. The operator first updates the reaction rate coefficients
on the basis of temperature, actinic flux, etc. It then passes
these reaction rate coefficients together with initial species
concentrations to the Rosenbrock solver, which solves for the
temporal evolution of concentrations over the external time
step 1t . In the process, the Rosenbrock solver approximates
the solution at multiple internal time steps, so it needs to
repeatedly recompute the species production and loss rates,
construct the corresponding Jacobian matrix, and solve the
linear system numerically using a matrix factorization. The
bulk of the cost in the overall chemical operator is in the re-
peated computation of production or loss rates and in solving
the linear system using a matrix factorization. Reducing the
number of species in the system to be solved can significantly
reduce the computational cost.

3 The adaptive algorithm for the chemical operator

Our adaptive algorithm determines locally and on the fly
what degree of complexity is needed in the chemical mech-
anism by diagnosing all species in the full chemical mech-
anism as either “fast” or “slow”, and choosing among
pre-constructed chemical mechanism subsets (“chemical
regimes”) which is most appropriate for the local conditions.
Here we present (1) the definition of fast and slow species
and the different treatments for each and (2) the approach
used to pre-construct the chemical regimes.

3.1 Definition of fast and slow species

Following Santillana et al. (2010), we separate atmospheric
species as fast or slow based on their production and loss
rates in Eq. (1) relative to a threshold δ: fast if either Pi(n)≥

δ or Li(n)≥ δ; slow if Pi(n) < δ and Li(n) < δ. Concen-
trations of the fast species are integrated as a coupled sys-
tem with the KPP Rosenbrock solver. Concentrations of
slow species are integrated by explicit analytical solution of
Eq. (1) assuming first-order loss with effective rate coeffi-
cient ki = Li/ni :

dni
dt
= Pi − kini, (3)

ni (t +1t)=
Pi (t)

ki (t)
+

(
ni (t)−

Pi(t)

ki(t)

)
e−ki (t)1t . (4)

Solving for ni(t +1t) by Eq. (4) incurs negligible compu-
tational cost; therefore, there is considerable advantage in
classifying species as slow if this can be done without signif-
icant loss in accuracy. We select the threshold δ for species
to be classified as fast or slow by numerical testing, as de-
scribed in Sect. 4, but some basic chemical reasoning is use-
ful. Consider the OH radical, which is a central species in
atmospheric chemistry mechanisms. OH has a daytime con-
centration of the order of 106 molecules cm−3 and a lifetime
of the order of 1 s, implying production and loss rates of
the order of 106 molecules cm−3 s−1. Species with produc-
tion and loss rates that are orders of magnitude lower than
106 molecules cm−3 s−1 are therefore unlikely to influence
OH or other species in the coupled mechanism, as these are
all to some extent related to OH at least in the daytime. So
we may expect an appropriate threshold δ to be of the order
of 102–103 molecules cm−3 s−1. Santillana et al. (2010) rec-
ommended δ = 100 molecules cm−3 s−1 in their algorithm.

One issue with the solution for the slow species by Eq. (4)
is that it does not strictly conserve mass, because the loss
rate for a given species over the time step does not necessar-
ily match the production rate of the product species. This is
usually inconsequential, but we found in early testing that it
resulted in the total mass of reactive halogen species growing
slowly over time in the stratosphere. To avoid this effect, we
treat all 37 reactive inorganic halogen species as fast above
10 km altitude. This increases the computation cost of chem-
ical integration by only 4 % relative to letting the algorithm
set them as either fast or slow.

3.2 Preselecting the chemical regimes

Instead of building a local chemical mechanism subset at ev-
ery time step as in Santillana et al. (2010), we greatly im-
prove the computational efficiency by preselecting a lim-
ited number (M) of chemical mechanism subsets (chemical
regimes) for which we pre-define the Jacobian matrix in KPP.
We then determine locally which chemical regime to apply
on basis of the ensemble of species classified as fast. This
approach reduces the computational overhead of repeatedly
allocating and de-allocating memory in the method of San-
tillana et al. (2010).

Construction of the chemical regimes can be done objec-
tively by searching for a minimum in the computational cost
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of the chemical operator over the global domain. But some
narrowing of the search is necessary. For the 228-species
mechanism in GEOS-Chem, there are in principle 2228

−1
possible combinations of species that would form mecha-
nism subsets. The vast majority of those combinations make
no chemical sense, but diagnosing this objectively would be
computationally unfeasible. Instead, we start by splitting the
mechanism species into N different blocks based on similar-
ity of chemical behavior. Then we classify a block as fast if
at least one species in the block is fast and slow if all species
in the block are slow. The chemical regime is defined as the
assemblage of fast blocks.

The partitioning of species into blocks can be optimized
by minimizing globally the number of fast species (and hence
the computation cost) for a given threshold δ. We use for this
purpose a training dataset from a GEOS-Chem simulation for
2013, consisting of the global ensemble of tropospheric and
stratospheric grid boxes for the first 10 d of February, May,
August, and November sampled every 6 h (160 time steps in
total). To reduce the computational cost, we optimize the par-
titioning of species into blocks for each individual time step,
resulting in 160 different partitionings, and we then select the
partitioning that yields the lowest cost function when applied
to all time steps.

For each grid box j , we diagnose each individual species
i as fast or slow following Sect. 3.1. We then diagnose the
blocks as fast or slow with the indicator yi,j = 1 if the block
is fast (at least one species in the block is fast) or yi,j = 0
if the block is slow (all species in the block are slow). The
fraction Z1 of all species that needs to be treated as fast over
the testing domain is then given by

Z1 =
1
�

∑
j

∑
i

yi,j , (5)

where �= 195 408 is the total number of grid boxes in
the troposphere and stratosphere (195 408 grid boxes, cor-
responding to the 59 lower levels of the model up to the
stratopause) multiplied by the total number of species (228 in
our case). We seek the partitioning of species into blocks that
will minimize Z1, and we use for that purpose the simulated
annealing algorithm (Kirkpatrick et al., 1983). Starting from
an arbitrary partitioning of the 228 species into N blocks,
and at each iteration of the algorithm, we randomly move
one species from one block to another. If Z1 decreases, this
transition is accepted; if not, the transition is accepted with a
probability controlled by a parameter named temperature that
decreases gradually as the algorithm proceeds. Among the
N blocks, three are allocated to the reactive inorganic halo-
gen species, and N -3 are allocated to the other species. This
forced separation of the reactive inorganic halogen species
is because the corresponding blocks are imposed to be fast
above 10 km altitude (see Sect. 3.1). Throughout this study,
we present the results with the lowest cost function after run-

Figure 1. The diagram for calculating the cost function Z2.

ning the optimization multiple times and using different tem-
perature parameters.

Once the blocks have been defined in the above manner,
we define the chemical regimes as different assemblages of
blocks. This yields 2N−1 possible chemical regimes. Indi-
vidual grid boxes in the model domain may correspond to
any of these 2N–1 regimes at any given time depending on
which blocks are classified as fast or slow. We need to limit
the number of regimes to a much smaller number Mof most
useful regimes in order to keep the compilation of the code
manageable. In fact, as we will see, the bulk of conditions
in the model domain can effectively be represented by just a
few regimes. Grid boxes that do not correspond to any of the
M regimes need to be matched to one of the M regimes by
moving some blocks from slow to fast, which will change the
values of the corresponding indicators yi,j from 0 to 1. We
check each of the M regimes and select the one that needs
the least number of moves from slow to fast, and this se-
lection can be pre-defined so it does not add extra compu-
tational time. We refer to y∗i,j as the indicators adjusted by
these changes. Thus, the fraction Z2 of species that needs to
be treated as fast over the global domain is given by

Z2 =
1
�

(∑
D1

∑
i

yi,j +
∑
D2

∑
i

y∗i,j

)
, (6)

where D1 is the grid boxes that can be represented by the
M chemical regimes and D2 is the grid boxes that are rep-
resented by other regimes and must be matched to the M
regimes. At the beginning of each time step, we pick the
chemical regime to use for each grid box on the basis of
computed production and loss rates for individual species.
A diagram for this process can be found in Fig. 1.

We tested a range of values from 5 to 20 for the num-
ber N of blocks. In this testing we used a threshold δ =
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Figure 2. Minimum of cost function Z2 (global fraction of chemi-
cal species treated as fast) as a function of the number N of blocks
used to group the species for mechanism reduction. Values were
computed using the GEOS-Chem troposphere + stratosphere sim-
ulation on the first days of February, April, August, and Novem-
ber 2013, over 24 h and sampled every 6 h. Shaded area shows the
standard deviation of the cost function minimum computed for each
sample.

100 molecules cm−3 s−1 to partition fast and slow species,
following Santillana et al. (2010), and a number M = 20 of
chemical regimes (see next paragraph for choice of M). Fig-
ure 2 shows the fraction of fast species in the global domain
(Z2) as a function ofN . IfN is low such that blocks are large,
there is more likelihood that a species in a given block will
be fast, causing all species in the block to be treated as fast.
If N is high, more blocks will need to be moved from slow
to fast in order to match the limited number M of chemical
regimes. For M = 20 we thus find an optimal value N = 12
at which only 40 % of the species need to be treated as fast
in the global tropospheric and stratospheric domain.

Table 1 lists the species of these 12 blocks. Oxidants such
as OH, O3, and NO2 are important under all circumstances
so blocks 8 and 9 are fast in most grid boxes. Non-methane
VOC species often have low concentrations outside of the
continental boundary layer and very low concentrations in
the stratosphere, so the dominant VOC blocks 1–7 are fast in
fewer than 40 % of grid boxes. Anthropogenic VOC species
(blocks 4 and 5) are found to be fast in the boundary layer
and daytime mid-troposphere (Figs. S1–S2 in the Supple-
ment). Biogenic VOC species have shorter lifetimes, so they
are found to be fast only in the lower and middle troposphere
over land (Figs. S3–S4).

This algorithm still has shortcomings. There are some un-
expected groupings (such as sulfur species and peroxyacetyl
nitrate) and separations (such as HO2 and H2O2). The blocks
are constructed by minimizing the number of fast species in
the optimization, so species tend to be in the same block as
long as they are fast or slow simultaneously. For example,
isoprene products and CFCs are both slow in the stratosphere
and clean regions, so they may be assigned to the same group

Figure 3. Speedup of the chemical computation as a function of the
numberM of chemical mechanism subsets (chemical regimes) used
in the coupled implicit solver of the GEOS-Chem model for adap-
tive simulation of the troposphere and stratosphere. (a) Minimum
of cost function Z2 (global fraction of chemical species treated as
fast) as a function of the number of chemical regimes. (b) Percent-
age of model grid boxes that can be represented by the M chemical
regimes without adjustment (see Eq. 5 and related text). Dashed
lines show the values for M = 20. For both panels, results are for
the first 10 d of February, May, August, and November sampled ev-
ery 6 h (shaded area denotes 1 standard deviation of results sampled
every 6 h).

(e.g., block 6). In addition, there are still noticeable changes
in species groups if we run the simulated annealing algorithm
with different initializations and choices of the temperature
parameter, even though the optimized blocks can generally
separate the oxidants, anthropogenic VOCs, and biogenic
VOCs (Table S1 in the Supplement). These two shortcom-
ings may be addressed by introducing regularization terms
in the cost function to enforce known species relationships.
We will implement this in follow-up work.

We tested different numbers of chemical regimes (M)
from 3 to 40 for combining the N = 12 blocks and again
selected the regimes to minimize the global fraction Z2 of
species to be included in the implicit solver. Z2 decreases
from 65 % to 40 % as M increases from 3 to 20 and flat-
tens at higher values of M (Fig. 3a). This is because 88 %
of the grid boxes can be represented by 20 chemical regimes
(Fig. 3b). A larger number of blocks (N > 12) would extend
the improvement to higher values of M , but the size of M
is also limited by considerations of code manageability and
compilation speed. We use 20 chemical regimes in what fol-
lows.

Table 2 shows the composition of the 20 chemical regimes
as defined by the blocks of Table 1. For 72 % of the grid
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Table 1. Partitioning of GEOS-Chem chemical species into N = 12 blocks.a

Block Type of Number of Species Percentage of grid
speciesb species boxes where fastc

1 Aromatics 21 CH2I2, LBRO2H, LBRO2N, LTRO2H, LTRO2N,
SO4H2, IMAE, BENZ, TOLU, TRO2, BRO2, CH2Cl2,
IMAO3, RA3P, RP, PP, IPMN, GLYX, A3O2, PO2,
R4N1

33.4

2 Organic nitrates 7 INDIOL, SO4H1, PPN, IONITA, N, RCO3, R4N2 39.3

3 Isoprene, terpenes 30 CH2ICl, LISOPOH, LISOPNO3, MONITA, OCS,
CHBr3, CHCl3, HCFC22, PRPN, HPALD, HONIT,
RIPB, RIPA, LIMO, MONITS, ISOPNB, CH3CHOO,
MVKN, PRN1, MONITU, CH2OO, PROPNN, ISOP,
OLND, OLNN, HC5OO, ISN1, HC5, RIO2, INO2

13.9

4 Alkanes, alkenes, acetone 12 MSA, MAP, ETP, SO4, ATOOH, C2H6, ATO2, ACTA,
ACET, ETO2, PRPE, ALD2

41.4

5 Higher alkanes, methyl ethyl
ketone

14 CH3I, RB3P, CH3Cl, ALK4, R4P, C3H8, EOH, B3O2,
KO2, MGLY, R4O2, HAC, RCHO, MEK

36.5

6 Halocarbons, isoprene products 55 CH2IBr, ISN1OA, ISN1OG, LVOCOA, LVOC, PYAC,
SOAMG, DHDN, CH3CCl3, H1301, H2402, PMNN,
CCl4, CFC11, CFC12, CFC113, CFC114, CFC115,
H1211, IEPOXD, CH2Br2, HCFC123, HCFC141b,
HCFC142b, CH3Br, DHPCARP, IAP, HPC52O2,
MOBA, ISNP, MAOP, MRP, RIPD, ETHLN, ISNO-
HOO, NPMN, MOBAOO, DIBOO, ISNOOB, INPN,
MACRNO2, MVKOO, GAOO, MGLYOO, MGLOO,
MAN2, ISNOOA, ISOPNDO2, MACROO, MACRN,
MAOPO2, LIMO2, ISOPNBO2, ISOPND, NMAO3

10.2

7 Secondary organic aerosol 25 LXRO2H, LXRO2N, SOAGX, SOAIE, SOAME,
DHDC, IEPOXA, IEPOXB, XRO2, XYLE, PIP,
HC187, VRP, DHMOB, MTPA, MTPO, ROH,
IEPOXOO, HCOOH, PIO2, GLYC, VRO2, MRO2,
MACR, MVK

15.6

8 Sulfur, peroxyacetyl nitrate 15 CO2, N2O, DMS, HNO4, HNO2, PAN, MP, H, CH4,
H2O2, MCO3, SO2, CO, O1D, O

95.9

9 Oxidants 12 MPN, N2O5, HNO3, CH2O, MO2, O3, NO, HO2,
NO3, NO2, H2O, OH

100.0

10 Iodine reservoirs 13 AERI, ISALA, ISALC, I2O4, I2O3, IBr, INO, HI, ICl,
ClNO2, BrSALC, BrSALA, I2

69.5

11 Bromine and chlorine inorganic
species

11 ClOO, BrCl, Br2, BrNO3, HOBr, HOCl, ClNO3, Cl,
HBr, ClO, HCl

99.9

12 Bromine and iodine radicals 13 I2O2, BrNO2, Cl2O2, IONO, OIO, OClO, HOI,
IONO2, Cl2, I, IO, BrO, Br

85.0

a The full GEOS-Chem mechanism has 228 species. The full names of these acronyms can be found at
http://wiki.seas.harvard.edu/geos-chem/index.php/Species_in_GEOS-Chem (last access: November 2019). Results in columns 2–4 are obtained using data from the first 10 d of
February, May, August, and November sampled every 6 h. b Qualitative descriptor of the most important species in the block. c Global percentage of GEOS-Chem model grid
boxes in the troposphere and stratosphere where the block is treated as fast. Values are for 1 August 2013 sampled every 6 h.
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boxes in the troposphere and stratosphere, we only need to
solve for fewer than 50 % of the species as fast. Only 3.6 %
of grid boxes need to use the full chemistry mechanism, as
defined by the 20th regime.

Figure 4 shows the distribution of these 20 chemical
regimes globally and for different altitudes and the corre-
sponding percentage of fast species that needs to be included
in the chemical solver. In continental surface air where VOC
emissions are concentrated, we find that over 80 % of species
generally need to be included. This percentage is reduced
to 20 %–60 % over the ocean and < 20 % over Antarctica.
At 5 km altitude, we find a distinct boundary between the
daytime and nighttime hemisphere; the daytime chemistry
is more active, and the percentage of fast species is higher
in the daytime (40 %–60 %) than at night (10 %–30 %). At
15 km altitude the extratropics are in the stratosphere, where
non-methane VOC chemistry is largely absent, but the model
still needs to solve 30 %–40 % species as fast because of
the halogens. Deep convection over tropical continents de-
livers short-lived VOCs and their oxidation products to the
upper troposphere, so that a large number of species needs
to be treated as fast in the convective outflow where and
when it occurs. The importance of deep convective outflow
for global atmospheric chemistry has been pointed out in a
number of studies (Prather and Jacob, 1997; Bechara et al.,
2010; Schroeder et al., 2014) and emphasizes the advantage
of reducing the mechanism adaptively on the fly rather than
with preset geographic boundaries.

4 Error analysis

Here we quantify the errors in our adaptive reduced mecha-
nism method by comparison with a standard GEOS-Chem
simulation for the troposphere and stratosphere (version
12.0.0) including full chemistry (228 species). The compar-
ison is conducted for a 1-month simulation to examine the
sensitivity to the rate threshold δ and for a 2-year simula-
tion to evaluate the stability of the method. In both cases, we
use the relative root mean square (RRMS) metric as given by
Sandu et al. (1997) to characterize the error:

RRMSi =

√√√√√ 1
Qi

Qi∑
j=1

(
nreduced
i,j − nfull

i,j

nfull
i,j

)2

, (7)

where nreduced
i,j and nfull

i,j are the concentrations for species i
and grid box j in the reduced and full chemical mechanisms,
and the sum is over the Qi grid boxes where nfull

i,j is greater
than a threshold a. Here we use a = 1×106 molecules cm−3

as in Eller et al. (2009) and Santillana et al. (2010).
A critical parameter to select in the algorithm is the rate

threshold δ separating fast and slow species on the basis of
their production and loss rates. A high threshold decreases
the number of fast species and hence speeds up the compu-

Figure 4. Chemical mechanism complexity needed in different re-
gions of the atmosphere. The figure identifies the chemical regime
from Table 2 needed to simulate a given GEOS-Chem grid box on
1 August 2013 at 00:00 and 12:00 GMT. The percentage of the 228
species treated as fast (requiring coupled implicit solution) in that
chemical regime is shown on the color bar and more details are in
Tables 1 and 2. Results are shown for different altitudes and using a
threshold δ of 100 molecules cm−3 s−1.

tation but at the expense of accuracy. We tested different rate
thresholds ranging from 10 to 5000 molecules cm−3 s−1 in a
1-month GEOS-Chem simulation starting on 1 August 2013.
Figure 5 shows the median RRMS error for all species on
1 September and the increased computational performance
for different rate thresholds δ. The best range for δ is be-
tween 100 and 1000 molecules cm−3 s−1, where the median
RRMS error is below 1 % and the improvement in computa-
tional performance is in the 30 %–40 % range.

Figure S5 further shows the distribution of RRMS
errors over all species for different rate thresholds δ.
The 90th percentile RRMS error stays below 5 % if
δ ≤ 1000 molecules cm−3 s−1 but exceeds 10 % for δ =

5000 molecules cm−3 s−1. The 99th percentile RRMS error
is less than 20 % for δ ≤ 1000 molecules cm−3 s−1 but rises
to 80 % for δ = 5000 molecules cm−3 s−1. The largest errors
are usually from the tropospheric halogen species (Fig. S6).
When near the day–night terminator, the sharp transition of
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Table 2. Composition and frequency of the 20 chemical regimes in the adaptive algorithma.

Regime no. Block Percentage of Percentage of
fast speciesb grid boxesc

1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 0 0 0 0 0 0 1 0 0 0 5.6 0.1
2 0 0 0 0 0 0 0 0 1 0 1 0 10.3 3.9
3 0 0 0 0 0 0 0 0 1 0 1 1 15.8 0.1
4 0 0 0 0 0 0 0 1 1 0 1 0 18.4 5.4
5 0 1 0 0 0 0 0 1 1 0 1 0 21.4 2.2
6 0 0 0 0 0 0 0 1 1 0 1 1 23.9 0.5
7 0 1 0 0 0 0 0 1 1 0 1 1 26.9 0.2
8 0 1 0 1 0 0 0 1 1 0 1 0 26.9 1.1
9 0 0 0 0 0 0 0 1 1 1 1 1 29.5 46.3
10 0 0 0 1 0 0 0 1 1 0 1 1 29.5 0.5
11 0 0 0 1 0 0 0 1 1 1 1 1 35.0 3.3
12 0 0 0 1 1 0 0 1 1 0 1 1 35.5 0.7
13 0 1 0 1 1 0 0 1 1 0 1 1 38.5 2.4
14 1 1 0 1 1 0 0 1 1 0 1 1 47.4 5.2
15 1 1 0 1 1 0 0 1 1 1 1 1 53.0 12.7
16 1 1 0 1 1 0 1 1 1 0 1 1 58.1 1.7
17 1 1 1 1 1 0 1 1 1 1 1 1 76.5 3.7
18 1 1 1 1 1 1 1 1 1 0 1 0 88.9 2.3
19 1 1 1 1 1 1 1 1 1 0 1 1 94.4 4.4
20 1 1 1 1 1 1 1 1 1 1 1 1 100.0 3.6

a The chemical regimes are defined by the ensemble of fast species that need to be treated as a coupled system with an implicit solution in
the chemical operator. The species are assembled into blocks as listed in Table 1, and here we identify the blocks treated as fast in the
chemical regime (1≡ fast, 0≡ slow). b Percentage of the 228 species in the GEOS-Chem chemical mechanism treated as fast in the
chemical regime. c Global percentage of GEOS-Chem tropospheric and stratospheric grid boxes for which the chemical regime is
selected. Values are for 1 August 2013 sampled every 6 h.

production and loss rates is not properly captured by the first-
order explicit equations, resulting in high relative errors.

Figure 6 shows the time evolution over 2 years of sim-
ulation of the median RRMS error for all species and also
for the selected species OH, ozone, sulfate, and NO2. The
median RRMS for all species is 0.2 %, 0.5 %, and 0.8 % for
rate thresholds δ of 100, 500, and 1000 molecules cm−3 s−1

respectively. There is no error growth over time. Among
the four representative species, the RRMS is highest for
NO2, ranging from 1.0 % to 2.0 % for δ ranging from 100
to 1000 molecules cm−3 s−1. For OH, ozone, and sulfate,
the RRMSs are below 0.3 % in call cases. Figure 7 dis-
plays the spatial distribution of the relative error on the last
day of the 2-year simulation, using a rate threshold δ of
500 molecules cm−3 s−1 as an example. The relative errors
are below 0.5 % everywhere for O3, OH, and sulfate. The er-
ror for NO2 reaches 1 %–10 % at high latitudes, but this is
still well within other systematic sources of errors in esti-
mating NO2 concentrations (Silvern et al., 2018). Results for
rate thresholds δ of 100 and 1000 molecules cm−3 s−1 can be
found in Figs. S7–8. Running the optimizing algorithm may
produce different groupings of species (e.g., Table S1), but
they show similar errors.

5 Conclusions

We have presented an adaptive method to speed up the tem-
poral integration of chemical mechanisms in global atmo-
spheric chemistry models. This integration (“chemical op-
erator”) involves the implicit solution of a stiff coupled sys-
tem of ordinary differential equations (ODEs) representing
the kinetic evolution of individual species in the mecha-
nism. With typical mechanisms including over 100 coupled
species, this chemical integration is the principal computa-
tional bottleneck in atmospheric chemistry models and hin-
ders the adoption of detailed atmospheric chemistry in Earth
system models.

Our method takes advantage of the fact that different re-
gions of the atmosphere need different levels of detail in the
chemical mechanism and that greatly reduced mechanisms
can be used in most of the atmosphere. We do this reduction
locally and on the fly by choosing from a portfolio of prese-
lected reduced chemical mechanisms (chemical regimes) on
the basis of species production and loss rates, distinguishing
between “fast” species that need to be in the coupled mech-
anism and “slow” species that can be solved explicitly. Our
method has six advantages over other methods proposed to
speed up the chemical computation. (1) It does not sacri-
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Figure 5. Performance and accuracy of the adaptive chemi-
cal mechanism reduction method for different rate thresholds δ
(molecules per cubic centimeter per second) to separate fast and
slow species. The performance is measured by the reduction in com-
puting processor unit (CPU) time for the chemical operator, and
the accuracy is measured by the median relative root mean square
(RRMS) error for species concentrations relative to a global GEOS-
Chem simulation for the troposphere and stratosphere using the full
chemical mechanism (228 species treated as fast). The second x
axis gives the global fraction of species that need to be treated as
fast depending on the value of δ. The number of blocks (N ) is 12
and the number of chemical regimes (M) is 20.

fice the complexity of the chemical mechanism where it is
needed, while greatly simplifying it over much of the world
where it is not. (2) It conserves all of the meaningful diagnos-
tic information of the chemical system, such as production
and loss rates of species and families, and individual reac-
tion rates. (3) It can be tailored to achieve the level of simpli-
fication that one wishes. (4) It is robust against small mech-
anistic changes, as these may not alter the choice of chem-
ical regimes or may be accommodated by minor tweaking
of the regimes (new species may be assigned to their most
appropriate groups on the basis of chemical logic). (5) It is
robust against increases in model resolution, where source
grid boxes (e.g., urban areas) may simply default to the full
mechanism. (6) If an adjoint is available for the full chemical
solver, then it can also be used in our method since the soft-
ware code of the full chemical solver (e.g., KPP) is retained.

We applied the method to the GEOS-Chem global 3-D
model for oxidant–aerosol chemistry in the troposphere and
stratosphere. The full chemical mechanism in GEOS-Chem
has 228 coupled species. We developed an objective numer-
ical method to preselect the reduced chemical regimes on
the basis of time slices of full-mechanism model results. We
showed that 20 regimes could efficiently cover the range of
atmospheric conditions encountered in the model. We then
pick appropriate regimes for the chemical operator on the fly
by comparing the local production and loss rates of individ-
ual model species to a threshold δ. Values of δ in the range

100–1000 molecules cm−3 maintain an accuracy better than
1 % relative to a model simulation with the full mechanism
and decrease the computational cost of the chemical solver
by 32 %–41 %. Comparison testing with a 2-year global
GEOS-Chem simulation for the troposphere and stratosphere
including the full mechanism shows errors of less than 1 %
for critical species and no significant error growth over the
2 years.

The performance tests presented here were for a single-
node implementation of GEOS-Chem using 12 CPUs in a
shared-memory Open Message Passing (Open-MP) parallel
environment. High-performance GEOS-Chem (GCHP) sim-
ulations can also be conducted in massively parallel envi-
ronments with Message Passing Interface (MPI) commu-
nication between nodes and domain decomposition across
nodes by groups of columns (Eastham et al., 2018). In prin-
ciple, the chemical operator scales perfectly across nodes
because it does not need to exchange information between
columns (Long et al., 2015). However, differences in compu-
tational costs between columns (due to differences in chem-
ical regimes) could result in load imbalance between nodes,
degrading performance. In the current implementation of
GCHP, the MPI domain decomposition is by clustered ge-
ographical columns in order to minimize the exchange of in-
formation across nodes in the advection operator (Eastham
et al., 2018). Such a decomposition would penalize our ap-
proach since different geographical domains may have differ-
ent computational loads for chemistry (e.g., oceanic vs. con-
tinental regions). This could be corrected by using different
MPI domain decompositions for different model operators,
and tailoring the domain decomposition for the chemical op-
erator to balance the number of fast species across nodes.
Such an approach is used for example in the NCAR Commu-
nity Earth System Model (CESM) where different domain
decompositions are done for advection (clustered geographi-
cal regions) and for radiation (number of daytime columns).

Several improvements could be made to our method.
(1) The blocks of species used to construct the reduced
chemical mechanisms are optimized to minimize the num-
ber of fast species but are not always chemically logical,
which could be improved by applying prior regularization
constraints to the optimization. (2) Optimization in the def-
inition of the reduced mechanisms could take into account
not only the number of species but also their lifetimes that
affect the stiffness of the system. (3) Separation between fast
and slow species could take into account species lifetimes,
because species with long lifetimes but high loss rates (such
as methane or CO) can be solved explicitly. (4) Mass con-
servation in the explicit solution could be enforced to en-
able more species (in particular stratospheric halogens) to
be treated explicitly when they play little role in the cou-
pled system. (5) Besides removing the slow species from the
implicit chemical operator, we could also remove unimpor-
tant reactions, which would reduce the cost in updating the
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Figure 6. Accuracy of the adaptive reduced chemistry mechanism algorithm over a 2-year GEOS-Chem simulation (see text). The accuracy
is measured by the 24 h mean RRMS error on the end day of each month relative to a simulation including the full chemical mechanism. Rate
thresholds δ of (a) 100, (b) 500, and (c) 1000 molecules cm−3 s−1 are used to partition the fast and slow species in the reduced mechanism.
Results are shown for the median RRMS across all 228 species of the full mechanism and more specifically for ozone, OH, NO2, and sulfate.

Figure 7. Relative error from the adaptive mechanism reduction
method after 2 years of simulation in the GEOS-Chem global 3-
D model for tropospheric-stratospheric chemistry. The figure shows
relative differences of 24 h average OH, ozone, sulfate, and NO2
concentrations relative to the full-chemistry simulation on the last
day of the 2-year simulation (2013–2014). The relative error for
surface NO2 can be up to ±10 % in polar regions. The calculation
uses a rate threshold δ = 500 molecules cm−3 s−1 to partition the
species between fast and slow. The number of blocks (N ) is 12 and
the number of chemical regimes (M) is 20.

production or loss rates and the Jacobian matrix. These im-
provements will be the target of future work.
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