Articles | Volume 13, issue 4
Geosci. Model Dev., 13, 2109–2124, 2020
Geosci. Model Dev., 13, 2109–2124, 2020

Model experiment description paper 28 Apr 2020

Model experiment description paper | 28 Apr 2020

Configuration and intercomparison of deep learning neural models for statistical downscaling

Jorge Baño-Medina et al.

Related authors

Statistical downscaling with the downscaleR package (v3.1.0): contribution to the VALUE intercomparison experiment
Joaquín Bedia, Jorge Baño-Medina, Mikel N. Legasa, Maialen Iturbide, Rodrigo Manzanas, Sixto Herrera, Ana Casanueva, Daniel San-Martín, Antonio S. Cofiño, and José Manuel Gutiérrez
Geosci. Model Dev., 13, 1711–1735,,, 2020
Short summary

Related subject area

Atmospheric Sciences
Implementation of a synthetic inflow turbulence generator in idealised WRF v3.6.1 large eddy simulations under neutral atmospheric conditions
Jian Zhong, Xiaoming Cai, and Zheng-Tong Xie
Geosci. Model Dev., 14, 323–336,,, 2021
Short summary
Numerical study of the effects of initial conditions and emissions on PM2.5 concentration simulations with CAMx v6.1: a Xi'an case study
Han Xiao, Qizhong Wu, Xiaochun Yang, Lanning Wang, and Huaqiong Cheng
Geosci. Model Dev., 14, 223–238,,, 2021
Short summary
A multi-year short-range hindcast experiment with CESM1 for evaluating climate model moist processes from diurnal to interannual timescales
Hsi-Yen Ma, Chen Zhou, Yunyan Zhang, Stephen A. Klein, Mark D. Zelinka, Xue Zheng, Shaocheng Xie, Wei-Ting Chen, and Chien-Ming Wu
Geosci. Model Dev., 14, 73–90,,, 2021
Short summary
Ground-based lidar processing and simulator framework for comparing models and observations (ALCF 1.0)
Peter Kuma, Adrian J. McDonald, Olaf Morgenstern, Richard Querel, Israel Silber, and Connor J. Flynn
Geosci. Model Dev., 14, 43–72,,, 2021
Development of an Ozone Monitoring Instrument (OMI) aerosol index (AI) data assimilation scheme for aerosol modeling over bright surfaces – a step toward direct radiance assimilation in the UV spectrum
Jianglong Zhang, Robert J. D. Spurr, Jeffrey S. Reid, Peng Xian, Peter R. Colarco, James R. Campbell, Edward J. Hyer, and Nancy L. Baker
Geosci. Model Dev., 14, 27–42,,, 2021
Short summary

Cited articles

Ba, W., Du, P., Liu, T., Bao, A., Luo, M., Hassan, M., and Qin, C.: Simulating hydrological responses to climate change using dynamic and statistical downscaling methods: a case study in the Kaidu River Basin, Xinjiang, China, J. Arid Land, 10, 905–920,, 2018. a
Baño Medina, J., Manzanas, R., and Gutiérrez, J. M.: SantanderMetGroup/DeepDownscaling: GMD paper accepted for publication (Version v1.2), Zenodo,, 2020. a, b
Bedia, J., Baño-Medina, J., Legasa, M. N., Iturbide, M., Manzanas, R., Herrera, S., Casanueva, A., San-Martín, D., Cofiño, A. S., and Gutiérrez, J. M.: Statistical downscaling with the downscaleR package (v3.1.0): contribution to the VALUE intercomparison experiment, Geosci. Model Dev., 13, 1711–1735,, 2020. a, b, c, d
Cannon, A. J.: Probabilistic Multisite Precipitation Downscaling by an Expanded Bernoulli-Gamma Density Network, J. Hydrometeorol., 9, 1284–1300,, 2008. a
Chapman, W. E., Subramanian, A. C., Monache, L. D., Xie, S. P., and Ralph, F. M.: Improving Atmospheric River Forecasts With Machine Learning, Geophys. Res. Lett., 46, 10627–10635,, 2019. a
Short summary
In this study we intercompare different deep learning topologies for statistical downscaling purposes. As compared to the top-ranked methods in the largest-to-date downscaling intercomparison study, our results better predict the local climate variability. Moreover, deep learning approaches can be suitably applied to large regions (e.g., continents), which can therefore foster the use of statistical downscaling in flagship initiatives such as CORDEX.