Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.240 IF 5.240
  • IF 5-year value: 5.768 IF 5-year
    5.768
  • CiteScore value: 8.9 CiteScore
    8.9
  • SNIP value: 1.713 SNIP 1.713
  • IPP value: 5.53 IPP 5.53
  • SJR value: 3.18 SJR 3.18
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 71 Scimago H
    index 71
  • h5-index value: 51 h5-index 51
GMD | Articles | Volume 13, issue 4
Geosci. Model Dev., 13, 2109–2124, 2020
https://doi.org/10.5194/gmd-13-2109-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 13, 2109–2124, 2020
https://doi.org/10.5194/gmd-13-2109-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Model experiment description paper 28 Apr 2020

Model experiment description paper | 28 Apr 2020

Configuration and intercomparison of deep learning neural models for statistical downscaling

Jorge Baño-Medina et al.

Related authors

Statistical downscaling with the downscaleR package (v3.1.0): contribution to the VALUE intercomparison experiment
Joaquín Bedia, Jorge Baño-Medina, Mikel N. Legasa, Maialen Iturbide, Rodrigo Manzanas, Sixto Herrera, Ana Casanueva, Daniel San-Martín, Antonio S. Cofiño, and José Manuel Gutiérrez
Geosci. Model Dev., 13, 1711–1735, https://doi.org/10.5194/gmd-13-1711-2020,https://doi.org/10.5194/gmd-13-1711-2020, 2020
Short summary

Related subject area

Atmospheric Sciences
Evaluation of three new surface irrigation parameterizations in the WRF-ARW v3.8.1 model: the Po Valley (Italy) case study
Arianna Valmassoi, Jimy Dudhia, Silvana Di Sabatino, and Francesco Pilla
Geosci. Model Dev., 13, 3179–3201, https://doi.org/10.5194/gmd-13-3179-2020,https://doi.org/10.5194/gmd-13-3179-2020, 2020
Short summary
An ensemble Kalman filter data assimilation system for the whole neutral atmosphere
Dai Koshin, Kaoru Sato, Kazuyuki Miyazaki, and Shingo Watanabe
Geosci. Model Dev., 13, 3145–3177, https://doi.org/10.5194/gmd-13-3145-2020,https://doi.org/10.5194/gmd-13-3145-2020, 2020
Short summary
Calculating human thermal comfort and thermal stress in the PALM model system 6.0
Dominik Fröhlich and Andreas Matzarakis
Geosci. Model Dev., 13, 3055–3065, https://doi.org/10.5194/gmd-13-3055-2020,https://doi.org/10.5194/gmd-13-3055-2020, 2020
Short summary
APIFLAME v2.0 biomass burning emissions model: impact of refined input parameters on atmospheric concentration in Portugal in summer 2016
Solène Turquety, Laurent Menut, Guillaume Siour, Sylvain Mailler, Juliette Hadji-Lazaro, Maya George, Cathy Clerbaux, Daniel Hurtmans, and Pierre-François Coheur
Geosci. Model Dev., 13, 2981–3009, https://doi.org/10.5194/gmd-13-2981-2020,https://doi.org/10.5194/gmd-13-2981-2020, 2020
Short summary
A multiphase CMAQ version 5.0 adjoint
Shunliu Zhao, Matthew G. Russell, Amir Hakami, Shannon L. Capps, Matthew D. Turner, Daven K. Henze, Peter B. Percell, Jaroslav Resler, Huizhong Shen, Armistead G. Russell, Athanasios Nenes, Amanda J. Pappin, Sergey L. Napelenok, Jesse O. Bash, Kathleen M. Fahey, Gregory R. Carmichael, Charles O. Stanier, and Tianfeng Chai
Geosci. Model Dev., 13, 2925–2944, https://doi.org/10.5194/gmd-13-2925-2020,https://doi.org/10.5194/gmd-13-2925-2020, 2020

Cited articles

Ba, W., Du, P., Liu, T., Bao, A., Luo, M., Hassan, M., and Qin, C.: Simulating hydrological responses to climate change using dynamic and statistical downscaling methods: a case study in the Kaidu River Basin, Xinjiang, China, J. Arid Land, 10, 905–920, https://doi.org/10.1007/s40333-018-0068-0, 2018. a
Baño Medina, J., Manzanas, R., and Gutiérrez, J. M.: SantanderMetGroup/DeepDownscaling: GMD paper accepted for publication (Version v1.2), Zenodo, https://doi.org/10.5281/zenodo.3731351, 2020. a, b
Bedia, J., Baño-Medina, J., Legasa, M. N., Iturbide, M., Manzanas, R., Herrera, S., Casanueva, A., San-Martín, D., Cofiño, A. S., and Gutiérrez, J. M.: Statistical downscaling with the downscaleR package (v3.1.0): contribution to the VALUE intercomparison experiment, Geosci. Model Dev., 13, 1711–1735, https://doi.org/10.5194/gmd-13-1711-2020, 2020. a, b, c, d
Cannon, A. J.: Probabilistic Multisite Precipitation Downscaling by an Expanded Bernoulli-Gamma Density Network, J. Hydrometeorol., 9, 1284–1300, https://doi.org/10.1175/2008JHM960.1, 2008. a
Chapman, W. E., Subramanian, A. C., Monache, L. D., Xie, S. P., and Ralph, F. M.: Improving Atmospheric River Forecasts With Machine Learning, Geophys. Res. Lett., 46, 10627–10635, https://doi.org/10.1029/2019GL083662, 2019. a
Publications Copernicus
Download
Short summary
In this study we intercompare different deep learning topologies for statistical downscaling purposes. As compared to the top-ranked methods in the largest-to-date downscaling intercomparison study, our results better predict the local climate variability. Moreover, deep learning approaches can be suitably applied to large regions (e.g., continents), which can therefore foster the use of statistical downscaling in flagship initiatives such as CORDEX.
In this study we intercompare different deep learning topologies for statistical downscaling...
Citation