Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
GMD | Articles | Volume 13, issue 4
Geosci. Model Dev., 13, 2095–2107, 2020
https://doi.org/10.5194/gmd-13-2095-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 13, 2095–2107, 2020
https://doi.org/10.5194/gmd-13-2095-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development and technical paper 28 Apr 2020

Development and technical paper | 28 Apr 2020

Bayesian spatio-temporal inference of trace gas emissions using an integrated nested Laplacian approximation and Gaussian Markov random fields

Luke M. Western et al.

Related authors

Global trends and European emissions of tetrafluoromethane (CF4), hexafluoroethane (C2F6) and octafluoropropane (C3F8)
Daniel Say, Alistair J. Manning, Luke M. Western, Dickon Young, Adam Wisher, Matthew Rigby, Stefan Reimann, Martin K. Vollmer, Michela Maione, Jgor Arduini, Paul B. Krummel, Jens Mühle, Christina M. Harth, Brendan Evans, Ray F. Weiss, Ronald G. Prinn, and Simon O'Doherty
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-937,https://doi.org/10.5194/acp-2020-937, 2020
Preprint under review for ACP
Short summary
Atmospheric methane source and sink sensitivity analysis using Gaussian process emulation
Angharad C. Stell, Luke M. Western, and Matthew Rigby
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-871,https://doi.org/10.5194/acp-2020-871, 2020
Preprint under review for ACP
Short summary
Perfluorocyclobutane (PFC-318, c-C4F8) in the global atmosphere
Jens Mühle, Cathy M. Trudinger, Luke M. Western, Matthew Rigby, Martin K. Vollmer, Sunyoung Park, Alistair J. Manning, Daniel Say, Anita Ganesan, L. Paul Steele, Diane J. Ivy, Tim Arnold, Shanlan Li, Andreas Stohl, Christina M. Harth, Peter K. Salameh, Archie McCulloch, Simon O'Doherty, Mi-Kyung Park, Chun Ok Jo, Dickon Young, Kieran M. Stanley, Paul B. Krummel, Blagoj Mitrevski, Ove Hermansen, Chris Lunder, Nikolaos Evangeliou, Bo Yao, Jooil Kim, Benjamin Hmiel, Christo Buizert, Vasilii V. Petrenko, Jgor Arduini, Michela Maione, David M. Etheridge, Eleni Michalopoulou, Mike Czerniak, Jeffrey P. Severinghaus, Stefan Reimann, Peter G. Simmonds, Paul J. Fraser, Ronald G. Prinn, and Ray F. Weiss
Atmos. Chem. Phys., 19, 10335–10359, https://doi.org/10.5194/acp-19-10335-2019,https://doi.org/10.5194/acp-19-10335-2019, 2019
Short summary
Inferring the size distribution of volcanic ash from IASI measurements and optimal estimation
Luke M. Western, Peter N. Francis, I. Matthew Watson, and Shona Mackie
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-92,https://doi.org/10.5194/amt-2016-92, 2016
Revised manuscript has not been submitted
Short summary

Related subject area

Atmospheric Sciences
The urban dispersion model EPISODE v10.0 – Part 1: An Eulerian and sub-grid-scale air quality model and its application in Nordic winter conditions
Paul D. Hamer, Sam-Erik Walker, Gabriela Sousa-Santos, Matthias Vogt, Dam Vo-Thanh, Susana Lopez-Aparicio, Philipp Schneider, Martin O. P. Ramacher, and Matthias Karl
Geosci. Model Dev., 13, 4323–4353, https://doi.org/10.5194/gmd-13-4323-2020,https://doi.org/10.5194/gmd-13-4323-2020, 2020
Short summary
Can machine learning improve the model representation of turbulent kinetic energy dissipation rate in the boundary layer for complex terrain?
Nicola Bodini, Julie K. Lundquist, and Mike Optis
Geosci. Model Dev., 13, 4271–4285, https://doi.org/10.5194/gmd-13-4271-2020,https://doi.org/10.5194/gmd-13-4271-2020, 2020
Short summary
PAMTRA 1.0: the Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere
Mario Mech, Maximilian Maahn, Stefan Kneifel, Davide Ori, Emiliano Orlandi, Pavlos Kollias, Vera Schemann, and Susanne Crewell
Geosci. Model Dev., 13, 4229–4251, https://doi.org/10.5194/gmd-13-4229-2020,https://doi.org/10.5194/gmd-13-4229-2020, 2020
Short summary
Predicting the morphology of ice particles in deep convection using the super-droplet method: development and evaluation of SCALE-SDM 0.2.5-2.2.0, -2.2.1, and -2.2.2
Shin-ichiro Shima, Yousuke Sato, Akihiro Hashimoto, and Ryohei Misumi
Geosci. Model Dev., 13, 4107–4157, https://doi.org/10.5194/gmd-13-4107-2020,https://doi.org/10.5194/gmd-13-4107-2020, 2020
Short summary
An exploratory performance assessment of the CHIMERE model (version 2017r4) for the northwestern Iberian Peninsula and the summer season
Swen Brands, Guillermo Fernández-García, Marta García Vivanco, Marcos Tesouro Montecelo, Nuria Gallego Fernández, Anthony David Saunders Estévez, Pablo Enrique Carracedo García, Anabela Neto Venâncio, Pedro Melo Da Costa, Paula Costa Tomé, Cristina Otero, María Luz Macho, and Juan Taboada
Geosci. Model Dev., 13, 3947–3973, https://doi.org/10.5194/gmd-13-3947-2020,https://doi.org/10.5194/gmd-13-3947-2020, 2020
Short summary

Cited articles

Berchet, A., Pison, I., Chevallier, F., Bousquet, P., Bonne, J.-L., and Paris, J.-D.: Objectified quantification of uncertainties in Bayesian atmospheric inversions, Geosci. Model Dev., 8, 1525–1546, https://doi.org/10.5194/gmd-8-1525-2015, 2015. a
Bergamaschi, P., Frankenberg, C., Meirink, J. F., Krol, M., Dentener, F., Wagner, T., Platt, U., Kaplan, J. O., Körner, S., Heimann, M., Dlugokencky, E. J., and Goede, A.: Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations, J. Geophys. Res.-Atmos., D02304, 112, https://doi.org/10.1029/2006JD007268, 2007. a
Brioude, J., Angevine, W. M., Ahmadov, R., Kim, S.-W., Evan, S., McKeen, S. A., Hsie, E.-Y., Frost, G. J., Neuman, J. A., Pollack, I. B., Peischl, J., Ryerson, T. B., Holloway, J., Brown, S. S., Nowak, J. B., Roberts, J. M., Wofsy, S. C., Santoni, G. W., Oda, T., and Trainer, M.: Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: assessing anthropogenic emissions of CO, NOx and CO2 and their impacts, Atmos. Chem. Phys., 13, 3661–3677, https://doi.org/10.5194/acp-13-3661-2013, 2013. a
Brunner, D., Henne, S., Keller, C. A., Reimann, S., Vollmer, M. K., O'Doherty, S., and Maione, M.: An extended Kalman-filter for regional scale inverse emission estimation, Atmos. Chem. Phys., 12, 3455–3478, https://doi.org/10.5194/acp-12-3455-2012, 2012. a
Brunner, D., Arnold, T., Henne, S., Manning, A., Thompson, R. L., Maione, M., O'Doherty, S., and Reimann, S.: Comparison of four inverse modelling systems applied to the estimation of HFC-125, HFC-134a, and SF6 emissions over Europe, Atmos. Chem. Phys., 17, 10651–10674, https://doi.org/10.5194/acp-17-10651-2017, 2017. a
Publications Copernicus
Download
Short summary
Assessments of greenhouse gas emissions using atmospheric measurements and meteorological models, or top-down methods, are important to verify national inventories or produce a stand-alone estimate where no inventory exists. We present a novel top-down method to estimate emissions. This approach uses a fast method called an integrated nested Laplacian approximation to estimate how these emissions are correlated with other emissions in different locations and at different times.
Assessments of greenhouse gas emissions using atmospheric measurements and meteorological...
Citation