Articles | Volume 13, issue 3
https://doi.org/10.5194/gmd-13-1459-2020
https://doi.org/10.5194/gmd-13-1459-2020
Model description paper
 | 
25 Mar 2020
Model description paper |  | 25 Mar 2020

HETEROFOR 1.0: a spatially explicit model for exploring the response of structurally complex forests to uncertain future conditions – Part 2: Phenology and water cycle

Louis de Wergifosse, Frédéric André, Nicolas Beudez, François de Coligny, Hugues Goosse, François Jonard, Quentin Ponette, Hugues Titeux, Caroline Vincke, and Mathieu Jonard

Related authors

HETEROFOR 1.0: a spatially explicit model for exploring the response of structurally complex forests to uncertain future conditions – Part 1: Carbon fluxes and tree dimensional growth
Mathieu Jonard, Frédéric André, François de Coligny, Louis de Wergifosse, Nicolas Beudez, Hendrik Davi, Gauthier Ligot, Quentin Ponette, and Caroline Vincke
Geosci. Model Dev., 13, 905–935, https://doi.org/10.5194/gmd-13-905-2020,https://doi.org/10.5194/gmd-13-905-2020, 2020
Short summary

Related subject area

Biogeosciences
Parameterization toolbox for a physical–biogeochemical model compatible with FABM – a case study: the coupled 1D GOTM–ECOSMO E2E for the Sylt–Rømø Bight, North Sea
Hoa Nguyen, Ute Daewel, Neil Banas, and Corinna Schrum
Geosci. Model Dev., 18, 2961–2982, https://doi.org/10.5194/gmd-18-2961-2025,https://doi.org/10.5194/gmd-18-2961-2025, 2025
Short summary
H2MV (v1.0): global physically constrained deep learning water cycle model with vegetation
Zavud Baghirov, Martin Jung, Markus Reichstein, Marco Körner, and Basil Kraft
Geosci. Model Dev., 18, 2921–2943, https://doi.org/10.5194/gmd-18-2921-2025,https://doi.org/10.5194/gmd-18-2921-2025, 2025
Short summary
NN-TOC v1: global prediction of total organic carbon in marine sediments using deep neural networks
Naveenkumar Parameswaran, Everardo González, Ewa Burwicz-Galerne, Malte Braack, and Klaus Wallmann
Geosci. Model Dev., 18, 2521–2544, https://doi.org/10.5194/gmd-18-2521-2025,https://doi.org/10.5194/gmd-18-2521-2025, 2025
Short summary
China Wildfire Emission Dataset (ChinaWED v1) for the period 2012–2022
Zhengyang Lin, Ling Huang, Hanqin Tian, Anping Chen, and Xuhui Wang
Geosci. Model Dev., 18, 2509–2520, https://doi.org/10.5194/gmd-18-2509-2025,https://doi.org/10.5194/gmd-18-2509-2025, 2025
Short summary
Process-based modeling of solar-induced chlorophyll fluorescence with VISIT-SIF version 1.0
Tatsuya Miyauchi, Makoto Saito, Hibiki M. Noda, Akihiko Ito, Tomomichi Kato, and Tsuneo Matsunaga
Geosci. Model Dev., 18, 2329–2347, https://doi.org/10.5194/gmd-18-2329-2025,https://doi.org/10.5194/gmd-18-2329-2025, 2025
Short summary

Cited articles

Ahmadi, M. T., Attarod, P., Mohadjer, M. R. M., Rahmani, R., and Fathi, J.: Partitioning rainfall into throughfall, stemflow, and interception loss in an oriental beech (Fagus orientalis Lipsky) forest during the growing season, Turk. J. Agr. Forest, 33, 557–568, 2009. 
Ainsworth, E. A. and Long, S. P.: What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2, New Phytol., 165, 351–372, 2005. 
Allen, C. D., Breshears, D. D., and McDowell, N. G.: On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene, Ecosphere, 6, 1–55, 2015. 
An, H. and Noh, S. J.: High-order averaging method of hydraulic conductivity for accurate soil moisture modelling, J. Hydrol., 516, 119–130, 2014. 
Anderegg W. R., Konings A. G., Trugman A. T., Yu K., Bowling D. R., Gabbitas R., and Zenes N.: Hydraulic diversity of forests regulates ecosystem resilience during drought, Nature, 561, 538–541, 2018. 
Short summary
Given their key role in the simulation of climate impacts on tree growth, phenological and water balance processes must be integrated in models simulating forest dynamics under a changing environment. Here, we describe these processes integrated in HETEROFOR, a model accounting simultaneously for the functional, structural and spatial complexity to explore the forest response to forestry practices. The model evaluation using phenological and soil water content observations is quite promising.
Share