
 

We thank both referees for the obvious time and care they put into their reviews, which helped 
us to revise the manuscript with improved focus and clarity.  We have addressed all of the 
referee comments as described below.  In addition, the figures and results were completely 
revised due to an error that we recently discovered in the particular ozone product that we 
retrieved from the TOAR Surface Ozone Database and used in this analysis.  The product was 
the monthly mean of the maximum daily 8-hour average (DMA8), calculated for each site in the 
TOAR database.  Close inspection of the product and comparison to daily DMA8 ozone values 
at individual sites revealed that the sampling of the daily DMA8 values for this particular product 
was in error, which resulted in monthly means that were biased high.  As a result the observed 
6-month running mean of the monthly mean DMA8 values used in this analysis was biased high 
by approximately 25%.  The error has been corrected in the TOAR database and in the archived 
TOAR data products. This analysis has also been updated with the corrected data.  However 
the method for constructing our final fused surface ozone product (M​3​Fusion) did not change. 
The final corrected product shows that the atmospheric chemistry models are generally biased 
high with regards to the 6-month running mean of DMA8.  As described in the new concluding 
paragraph at the end of the manuscript, this is an important result which demonstrates the 
usefulness of our method for bias correcting model output.  
 
 
 
Anonymous Referee #1  
We thank the reviewer for providing valuable comments on our manuscript. The reviewer 
comments are shown below in bold font, followed by our response in normal font.  
 
This manuscript presents a new statistical method for combining observations of surface 
ozone with model outputs. The manuscript is clearly written and the method is well 
described. The fused data set represents a significant output that could be useful to 
analyze the relevance of ozone to health impacts. 
The manuscript is nearly ready for publication, but I have several questions and editorial 
suggestions for the authors, listed below. 
1. I suggest to combine Section 2.2 and Section 2.3 into one. Section 2.3 describes the 
implementation details but ends up repeating concepts already described in Section 2.2, 
resulting in poor readability. 
Thanks for the suggestion. We have merged these two sections and removed the overlapping 
concepts. 
 
2. To create the interpolated field from ozone observations the authors used a Bayesian 
approach that allows for the quantification of the uncertainty in the gap-filled product. 
2.1. Can the authors comment on why they choose not to account for the sampling 
uncertainty, even though it could be easily estimated from the posterior? 
Accounting for the sampling uncertainty in the data fusion process is a difficult task and 
according to the referee’s comments we now include some discussion of this topic at the end of 
Section 2: 



 

 
“We adopted a regression weighting approach that only accounts for the mean spatial fields of 
the interpolated ozone and model output, rather than the underlying associated uncertainty. We 
take this approach due to the prohibitive size of high resolution output  (over 1 million output 
points for each model), but also due to the lack of a thorough investigation regarding the ideal 
method for combining models based on different sources of uncertainty. For example, the 
interpolation uncertainty can be quantified easily through the posterior distribution and 
considered to be related to measurement error (small scale) or sparse sampling across a region 
(large scale), however, model uncertainty is a different concept altogether that could result from 
input uncertainty (e.g. air pollution emissions inventories), or limitations of the transport and 
chemistry mechanisms within the model (Brynjarsdottir and O’Hagan, 2014). The current 
interest of this study focuses on a better estimate of mean ozone exposure. Explicit 
quantification of different sources of model uncertainty and incorporation of this information into 
the data fusion process presents another level of complexity that cannot be tackled until model 
uncertainties are better characterized.  Young et al. 2018 provide a current overview of 
chemistry-climate modelling and discuss the challenges of improving models in light of so many 
uncertainties.” 
 
2.2 For example, creating an ensemble of weights (and therefore and ensemble of fused 
data sets) could be used to explore the impact of poor observational sampling on the 
fused data set compared to the multi-model mean. 
We expanded the discussion on the differences between our fused product (also model 
weighting product) and the multi-model mean at the end of Section 3: 
 
“When interpreting the fused product the reader should consider the following: (1) For a region 
with an extensive monitoring network, such as the USA, a detailed bias correction can be 
achieved. We can utilize the observations to accurately reflect many local features (i.e., sub-grid 
variations) as shown in the ozone pollution hot-spots of southern California and Mexico City. 
However it should be noted that this improvement is due to bias correction, instead of model 
weighting; (2) For regions with large observational gaps, such as South America, Africa or 
Russia, the spatial difference between the fused product and the multi-model mean is rather 
featureless, because the model weighting can only adjust the overall regional mean according 
to a few monitoring sites, and cannot address the local variations. Filling large data gaps with 
the intermediate multi-model composite can indeed avoid the influence of preferential sampling 
(Diggle et al., 2010; Shaddick and Zidek, 2014), but it is still subject to a high uncertainty due to 
lack of data.” 
 
3. In order to compare both the interpolated observations and each models, and the 
multi-model mean with the fused dataset, I suggest to also plot the empirical variograms, 
to quantify the differences in the spatial structure. 
Thanks, the variogram is indeed a useful tool to summarize the spatial structure. We added a 
discussion about variogram in the end of Section 3.3 
 



 

“The fused product can be evaluated in terms of spatial correlation using the variogram which 
assumes that spatial correlation is not a function of absolute location, but only a function of 
distance (i.e., stationarity). Since spatial variability and continuity from the models are the result 
of geophysical processes represented by mathematical equations, the variogram must be 
customized for each field. In addition, the extremely large size of the model output prohibits us 
from carrying out a standard empirical variogram analysis, which requires calculating the 
variance of the difference between all pair-wise grid cells. 
 
Nevertheless, we provide examples of omnidirectional variograms for the spatial field in North 
America from each model and product in supplementary Fig. S-5. The standard variogram 
analysis focuses on the following three parameters: (1) the nugget (variance at zero distance, 
which represents a sub-grid variation), which is similar for all cases; (2) the sill (total variance of 
a field), where the variogram value reaches a maximum and levels off The result is very similar 
for G5NR-Chem, GEOSCCM and GFDL-AM3, while CHASR and MRI-ESM show a larger 
variance in the spatial field. The reason is that the latter two models produce low ozone in the 
high latitude region over Canada (see supplementary Fig. S-1), but the former three models 
simulate relatively higher ozone in the same region, and this difference is reflected by the total 
variance; (3) the range (a distance where the sill is reached, and beyond that there is no longer 
spatial correlation): the variogram peak is about 35-40 degrees for the models. Note that a 
continuously increasing variogram indicates the evidence of non-stationarity in the field, which is 
the case for SPDE, an issue that we have accounted for. Even though North America has one 
of the most extensive monitoring networks in the world, some of the remote areas (mostly in 
Canada) are mainly described by the model output in the final fused product. Therefore the 
variogram of the fused product is likely adjusted toward the remote areas of Canada as 
simulated by G5NR-Chem, which provided the largest weighting in North America).” 
 
4. Line 27, page 6: cite the R core development team. 
A citation was added to the code and data availability section. 
 
 
 
  



 

Anonymous Referee #2 
We thank the reviewer for valuable comments on our manuscript. The comments from the 
reviewers are below in bold font and we make a response accordingly.  
 
General comments. Overall quality 
The article proposes a method for combining measurements from 6 different global 
models with the aim of generating an improved estimation of the global surface ozone 
when compared to the estimation obtained by the simple average of these 6 different 
global models. Hence, this article proposes a method for estimating the weight factor to 
give to each global model within a weighted average of global models available, and also 
proposes a method for fusing this result with kriging estimates depending of closeness 
of locations to monitoring networks. The latter results in an estimated global surface 
ozone which is a combination between interpolation-based kriging for areas near 
monitoring networks, and the proposed weighted average for areas far from monitoring 
networks. Notwithstanding, results from this article and the final surface for global ozone 
is estimated by a smoothing splines approach which is applied to the estimation either of 
the composite model or its fused version. Consequently, the smoothing splines step is 
the key for the method presented, however it is not explained in the article and authors 
only dedicate two to three lines to comment about its use to avoid discontinuities in the 
joints between continental regions. 
Thank you for pointing out this issue. We indeed need to clarify that the use of the smoothing 
splines is not a key method for producing the final fused product, and is only a minor step that 
we employ to smooth the transition between three regions with sharp discontinuities. This 
smoothing is only conducted over a 5-degree distance along the boundaries between 2 regions 
at the 3 locations in the world with the largest discontinuities (see below Figure 1), leaving the 
rest of the regions unaffected.  This procedure is now more clearly described in Section 2.2 
(step 2): 
 
“This smoothing is carried out using a low rank Gaussian process by the default penalized least 
square from the function ``gam'' in the R package mgcv (Kammann and Wand, 2003; Wood, 
2017), following the examples of Wood and Augustin (2002).The purpose is to merely avoid a 
sharp and unrealistic (geometric) transition between three regions and to efficiently smooth out 
the discontinuity, performed in a regular spaced grid only around the geometric boundary. Any 
region away from the geometric boundary will not be affected by this smoothing, which should 
be considered as a blending of multiple models without any attempt of bias correction (see 
supplementary Fig. S-2).” 
 
We added Figure 1 to the Supplement (Fig. S-2) to illustrate the smoothing procedure, using an 
expanded color scale to highlight the impact of the spline smoothing on the regional 
discontinuities.  We only apply the smoothing to 3 regions: one horizontal discontinuity between 
Russia and East/South Asia, one vertical discontinuity between East and South Asia, and one 
vertical discontinuity between South Asia and Africa.​ ​The discontinuities along the rest of the 
boundaries between regions were minor and therefore we do not make any further adjustment. 



 

The spatial structure produced from the weighting is not supposed to be create a discontinuity, 
because the output is smooth. However, a straight line discontinuity is an artifact from our 
regionalized module in which the models are evaluated for separate regions of the world; the 
spline smoothing corrects this artifact. 
  



 

  

 

 
Figure 1: Strong ozone discontinuities, or artifacts, were present along the boundaries between 
world regions, especially in western China, before a spline smoothing was employed. 
 
 



 

The authors are trying to address three different problems in geostatistics. First, 
irregularly spaced sources of information or when the coordinates of the locations from 
different sources do not match. Second, the lack of information due to observations 
sparsely distributed or missing locations or almost no information in certain regions. 
And third, to obtain a better estimate of a surface or compare one estimate with others.  
 
The first problem is more related with interpolation and this is explained well in sections 
2.1 and 2.2 of the article. The second problem is being addressed by the use of global 
ozone models to obtain a better guess of the non-observed ozone in certain locations. 
Here the authors propose the composite mean between the global models and its fused 
version with the interpolation depending on closeness of monitoring network stations 
which in practice is working as a method for "imputation" of ozone in non-observed 
locations. The description of the method is mostly well explained (although it is missing 
important details which I describe in the next section of this report) but the method is not 
a solution for this problem in areas like Africa or South America where there is not 
enough information and this is not solved by the composite nor fused method, but by 
having more measurements. This should be stated clearly in the article. It is difficult to 
believe that the weight coefficients estimated for Africa or South America would be good 
estimates given the little sample size available. Nevertheless, the authors could have 
taken advantage of the dense data available for North America, Europe and East Asia to 
perform cross-validation and then using the data from South America, Africa and 
Australia as validation sets of data. This would have provided a rough idea of the quality 
of the composite estimates to perform the imputation of the ozone level on areas with 
sparsely distributed observations. 
We modified the text associated with large data gaps in Section 2.2: 
  
“Above land, large observational gaps are present across Africa, the Middle East, South 
America, and South and Southeast Asia, where the spatial interpolation is generally too 
uncertain to yield a reliable surface ozone approximation. The ozone estimates in these regions 
must come from either models or distant observations, neither of which is ideal to solve this 
issue. As a compromise strategy we fill these gaps with a weighted model product evaluated by 
the interpolated ozone observations.” 
 
Following the recommendations of the referee we have expanded this discussion at the end of 
Section 3: 
 
“The advantage of our fused surface ozone product over the simple multi-model mean can be 
clearly seen in Figure 8. When interpreting the fused product the reader should consider the 
following: (1) For a region with an extensive monitoring network, such as the USA, a detailed 
bias correction can be achieved. We can utilize the observations to accurately reflect many local 
features (i.e., sub-grid variations) as shown in the ozone pollution hot-spots of southern 
California and Mexico City. However it should be noted that this improvement is due to bias 
correction, instead of model weighting; (2) For regions with large observational gaps, such as 



 

South America, Africa or Russia, the spatial difference between the fused product and the 
multi-model mean is rather featureless, because the model weighting can only adjust the overall 
regional mean according to a few monitoring sites, and cannot address the local variations. 
Filling large data gaps with the intermediate multi-model composite can indeed avoid the 
influence of preferential sampling (Diggle et al., 2010; Shaddick and Zidek, 2014), but it is still 
subject to a high uncertainty due to lack of data.” 
 
The cross validation technique is indeed a common criterion for assessing the spatial fits, and 
we used a simple leave one out (LOO) cross validation for assessing our model (the GCV score 
in table A1). However this score represents an overall LOO error, and doesn’t allow for an 
observation in sparsely sampled region, such as Africa, to receive a lower fitted error than any 
other observation (and it should not because it would be a conceptual prejudice).  We prefer to 
avoid this type of analysis as we cannot explicitly quantify the representativeness of every single 
site.  
 
The third problem is poorly or not explained in the article. As presented, the article gives 
the impression that the main modelling product is the composite mean or its fused 
version which is confusing since the results are based on a smoothed version and this is 
not explained in the article. One reader could think that in equation (1) the yˆ(sg)’s are the 
"imputed" observations based on the interpolation technique while the composite mean 
is the proposed model for the ozone level. However, given that later in the article it is 
expressed that the results are obtained using smoothing splines over the fitted 
composite mean surface or its fused version, other readers can interpret that actually the 
fitted composite or fused mean are the imputed observations of the ozone level and the 
proposed model is the smoothing spline. This is extremely confusing and the article is 
poorly explained in all this part. 
Thanks for the commentary. We hope we have clarified this concern over the smoothing 
splines, as described above. The model composite is indeed made from the models, while the 
smoothing splines only play a minor role for the purpose of removing the straight line 
discontinuities in Asia and Africa. We further clarified this point in Section 2.2 (step 2): 
 
“It should also be noted that the INLA-SPDE technique in step 1 is applied to the observations, 
while the smoothing spline is only applied to the boundaries between regions of the model 
composite, not directly involving any observations.” 
 
 
Specific comments. Individual scientific questions/issues 
 
(a) There are important issues which are not addressed by the authors. What is the real 
role of the smoothing spline applied to the fussed estimation as described in page 8 lines 
10-15 and the supplementary material Figure S-2? As the article is presented, this step 
seems to have a minor role for their proposed method, however it is a key step and the 
authors did not explain this in detail. In the abstract and along the presentation until 



 

section 2.2, the authors’ product of this work is a method which relies on a fusion 
between a weighted average of the 6 global models and the interpolation/kriging step. 
Nevertheless, from the results it can be deduced that the final product of this work is 
actually the smoothing spline fit to the surface obtained either by the composite method 
or its fused version. Therefore, the results presented in Figure 8 (and therefore all related 
results) rather than being the surface obtained by the multi-model composite and 
multi-model composite plus bias correction, are respectively the smoothing spline fit to 
the surface obtained by the multi-model composite and the smoothing spline fit to 
the surface obtained by the multi-model composite plus bias correction. This must be 
clearly stated. 
To illustrate the limited impact of the spline smoothing on just three regional boundaries we 
have included figure S-2 in the Supplement.  
 
(b) What is the interpretation of the parameters in every model discussed? For example: 
-What is the practical interpretation of the parameter αr in equation (1)? It is related to the 
general mean over the r-th continental region. 
-What is the practical interpretation of the parameter βrk in equation (1)? The cell-by-cell 
average model corresponds to assume βrk = 1/6, thus the same weight is given to each 
model on each continental region. Then on the composite model βrk can have a 
meaningful interpretation but the authors do not comment on this. 
-What does it mean if βrk = 0 (i.e. with respect to the cell-by-cell mean model)?  
Moreover, what does it mean if βrk 6= 0? How to interpret if βrk < 0? How to interpret if 
βrk > 0? This is important and connects the cell-by-cell average with the composite mean 
model proposed. It tells us whether the composite model offers or not a better 
representation than the average model. 
Since the interpolated observations and models use the same ozone metric with the same units, 
it makes sense that we restrict the coefficient of the covariate to a range between [0, 1] and 
summed to 1: 
- From a regression point of view, if we only include beta (weight) without a constant, the 
residuals will have a biased mean, so the alpha term will force the overall residuals to have a 
mean value of zero. 
- Any positive value of beta should be seen as a significant component of the model composite. 
- If beta is zero, it means this particular model makes no contribution to the model composite. 
The coefficient is not permitted to have a negative value since a negative value doesn’t have a 
physical meaning. 
We modified the interpretation in Section 2.2 (step 2): 
 
“Note that since the interpolated observations and models use the same ozone metric with the 
same units, we thus constrain the weights to be positive and sum to 1 for better physical 
interpretability, such that the most accurate models receive the higher weight. A constant offset 
αr is included to guarantee that the residuals from this optimization have a zero mean.” 
 



 

(c) Regarding comment (b), some statistical summaries are not presented in Table 2. For 
example, what is the significance of each weight/coefficient for the global models and 
their standard errors or confidence limits? Note that the proposed quadratic 
programming idea can be seen as a multiple linear regression within each continental 
region where the yˆ(sg)’s are seen as the (imputed) observations, the global ozone 
models ηr1(sg), . . . , ηr6(sg) are seen as predictors or covariates, and the errors are 
assumed uncorrelated with constant variance. From this approach the authors can 
obtain variability estimates for the weight coefficients and test their significance. 
There is no standard or consensus methodology for combining models based on the uncertainty 
(i.e., standard errors), and we are unable to adjust the weights based on the standard errors. 
For example, no matter what value of standard error is associated with a 0 coefficient, it will still 
have a 0 weight, which doesn’t allow us to properly interpret the variability. This is why we 
restrict the coefficients to a range between [0, 1] and summed to 1; this arrangement forces the 
coefficient of an insignificant predictor to be 0, and any positive coefficient should be seen as a 
significant contribution to the model composite. We added a discussion on the difficulty of 
combining models based on the uncertainties to the Section 2.2: 
 
“We adopted a regression weighting approach that only accounts for the mean spatial fields of 
the interpolated ozone and model output, rather than the underlying associated uncertainty. We 
take this approach due to the prohibitive size of high resolution output  (over 1 million output 
points for each model), but also due to the lack of a thorough investigation regarding the ideal 
method for  combining models based on different sources of uncertainty. For example, the 
interpolation uncertainty can be quantified easily through the posterior distribution and 
considered to be related to measurement error (small scale) or sparse sampling across a region 
(large scale), however, model uncertainty is a different concept altogether that could result from 
input uncertainty (e.g. air pollution emissions inventories), or limitations of the transport and 
chemistry mechanisms within the model (Brynjarsdottir and O’Hagan, 2014). The current 
interest of this study focuses on a better estimate of mean ozone exposure. Explicit 
quantification of different sources of model uncertainty and incorporation of this information into 
the data fusion process presents another level of complexity that cannot be tackled until model 
uncertainties are better characterized.  Young et al. 2018 provide a current overview of 
chemistry-climate modelling and discuss the challenges of improving models in light of so many 
uncertainties.” 
  
(d) The authors comment that their composite and fused composite method is better than 
the simple average (or cell-by-cell average) method. It would be helpful if the authors 
presented p-values for a test comparing these two hypotheses. 
To the best of our knowledge the use of a hypothesis test or p-value for comparing spatial 
model fits (or climate model performance) is not an ideal approach and not discussed in the 
literature. This is largely because the kriging procedure (or Gaussian process) is the result of 
machine learning, so there is no corresponding “hypothesis testing” concept for the Gaussian 
process.  Rather, computer scientists tune the parameters to yield the best output.  



 

 
The most common practice to measure the performance of a model is directly comparing the 
root mean square error (RMSE, as shown in tables 2 and 3) between observations and output, 
and quantifying the percentage of improvement. The report of the physical quantity, such as 
RMSE shown in the same unit as the ozone metric, should be more meaningful than potentially 
misleading p-values. 
 
 (e) The authors do not mention the assumption for the mean nor covariance of the 
smoothing splines model, nor give any details about which type of splines they used 
(tensor products, thin-plate splines, regression splines, etc.). Did you use penalties?  
The authors only refer to mgcv R package (Wood, 2017) in line 20 of page 13 and we need 
to see the code to see what they did, however they should also explain their method, 
procedure and assumptions in the article. It is the most important modelling they are 
doing and their results depend on this smoothing splines step. 
As described above, the spline smoothing was just a very minor component of our method, only 
used to smooth 3 geographical discontinuities. We used a particularly simple form of the Matern 
covariance function suggested by Kammann and Wand (2003), and we added the details to 
Section 2.2. 
 
The main command to perform this smoothing is given by (a complete code can be found in 
supplementary material): 
mod = gam(composite ~ s(lon,lat, bs="gp", k=180), data=sm, method="REML", 

na.action='na.omit') 

Since the removal of a straight line discontinuity is the only concern, any spline model should 
achieve this goal as long as it can handle the high resolution output. We chose this Matern 
spline merely because it is simple and efficient for high resolution output. 
 
(f) We can see three different steps in this method. The initial interpolation using INLA, 
the determination of the weights, and the final smoothing splines using mgcv. INLA and 
the composite are imputing the ozone measurement on unobserved locations, and the 
gam function of mgcv package is performing the fit using smoothing splines. In practice, 
INLA and the smoothing splines are performing the same procedure: interpolation. The 
only difference is that INLA is based on a triangulation and finite element approach to 
find a solution. Besides, in both cases the authors are assuming a Matérn covariance 
function. Therefore, in practice they are fitting an interpolation model to the data (using 
INLA), and then fitting pretty much the same interpolation model (but using mgcv 
package) to the previous fit obtained by INLA. Thus, the INLA interpolation is 
"smoothing" the variation (Figure 3a, page 28), and then an additional smoothing using 
gam function is being performed (Figure 8a and 8b, page 33, and Figure S-4 in 
supplementary material). These two fits seem very similar and differences between them 
can be (visually) attributed mainly to the "variation" generated by the composite mean fit 
(Figure S-2). 



 

Yes the INLA and smoothing spline are indeed performing the same procedure, but as 
described above the spline smoothing is only used under very limited circumstances to smooth 
3 regional boundary discontinuities. We also added a note in Section 2.2 (step 2): 
 
“It should be noted that the INLA-SPDE technique in step 1 is applied to the observations, while 
the smoothing spline is only applied to the boundaries between regions of the model composite, 
not directly involving any observations.” 
 
-The first INLA smoothing imputes the ozone at unobserved locations but the resulting 
"smoothed" process has smaller variation than what we could expect from the original 
spatial process. Why did the authors not use resampling methods for the imputation step 
(either before applying the INLA interpolation and/or before applying the smoothing 
splines fit)? This would have allowed them to keep some spatial variability on the 
imputed spatial process, and also evaluate assumptions regarding this spatial variability 
model. 
-Examples of how to implement resampling methods can be found in Liang et al. (2013), 
and in a more practical presentation by Muñoz et al. (2010). Other approaches based on 
Expectation-Maximization (EM) algorithm are presented in Schneider (2001). 
 
When comparing Figures 1 and 2(a), the INLA interpolation can reproduce the hot spots in East 
China, Mexico City and LA, but it indeed missed the highest ozone in the Beijing Metropolitan 
area. This result is related to the degree of smoothing that we allow for the spatial field. The 
success of reproducing ozone in East China, Mexico City and LA is due to these locations 
having multiple grids with high ozone observations. However, there is only one grid with high 
ozone observed in Beijing, and half of the grid points around that spot do not observe high 
ozone, therefore the smoothing of the spatial field missed this single hot spot.  Reducing the 
degree of smoothing in order to capture the ozone hot spot in Beijing Metropolitan would 
introduce more noise and unrealistic peaks in other regions, and also increase the 
computational burden. 
 
We choose the INLA-SPDE technique for interpolation merely because it can incorporate the 
non-stationary component in an easy way (illustrated in the appendix). No matter the details of 
the INLA-SPDE, resampling method, or other approaches mentioned in Section 2.2 (covariance 
tapering, low rank, spectral representation, likelihood approximation…), they are all special 
cases of a more general Gaussian process designed to alleviate the large sample size (n) 
problem. Parts of these approaches are only proven to be efficient on regional or national 
scales, and they are not necessarily adequate on the global scale. For example in the 
differential manifold, a covariance model is positive definite on a plane, it is not guarantee that 
will also valid in a sphere (Gneiting, 2013). 
 
The idea of resampling is similar to the leave-n-out validation, it keeps iteratively removing a 
portion of data and re-fitting the model until the error is minimized. So it is an algorithm to 
improve the fit to the data (we cannot leave the data out without an actual observation). 



 

However, the similar but much simpler leave-1-out validation is used for evaluating the 
interpolation performance (the GCV score in table A1). We added the citations accordingly in 
the manuscript, but Munoz et al. (2010) focused on the discussion of type and mechanism of 
missing data, which is a bit far from our topic. 
 
(g) Regarding the previous comment (f), the authors did not present results about the 
estimation of the Matérn semivariogram’s parameters for the INLA and smoothing 
splines step. Given that they are performing a "pre-smoothing" of the variation using 
INLA, it would be expected that the Matérn semivariogram in the smoothing splines step 
would be modelling a significantly lower amount of spatial variation which might result in 
almost uncorrelated errors (except in areas where there are peaks or throughs in the 
process). Is that a good representation or assumption for the global ozone process? 
The INLA package provides a more general class of model that can specify a spatially varying 
nugget and sill, which would be more flexible than the variogram approach that assumes a fixed 
nugget and sill over the whole spatial field. From a series expansion of spherical harmonics in 
Eq A1, we used several basis functions to select the best statistical model in table A1; for further 
details please refer to the appendix. We also added a discussion about variograms to the end of 
Section 3.3 
 
“The fused product can be evaluated in terms of spatial correlation using the variogram which 
assumes that spatial correlation is not a function of absolute location, but only a function of 
distance (i.e., stationarity). Since spatial variability and continuity from the models are the result 
of geophysical processes represented by mathematical equations, the variogram must be 
customized for each field. In addition, the extremely large size of the model output prohibits us 
from carrying out a standard empirical variogram analysis, which requires calculating the 
variance of the difference between all pair-wise grid cells. 
 
Nevertheless, we provide examples of omnidirectional variograms for the spatial field in North 
America from each model and product in supplementary Fig. S-5. The standard variogram 
analysis focuses on the following three parameters: (1) the nugget (variance at zero distance, 
which represents a sub-grid variation), which is similar for all cases; (2) the sill (total variance of 
a field), where the variogram value reaches a maximum and levels off The result is very similar 
for G5NR-Chem, GEOSCCM and GFDL-AM3, while CHASR and MRI-ESM show a larger 
variance in the spatial field. The reason is that the latter two models produce low ozone in the 
high latitude region over Canada (see supplementary Fig. S-1), but the former three models 
simulate relatively higher ozone in the same region, and this difference is reflected by the total 
variance; (3) the range (a distance where the sill is reached, and beyond that there is no longer 
spatial correlation): the variogram peak is about 35-40 degrees for the models. Note that a 
continuously increasing variogram indicates the evidence of non-stationarity in the field, which is 
the case for SPDE, an issue that we have accounted for. Even though North America has one 
of the most extensive monitoring networks in the world, some of the remote areas (mostly in 
Canada) are mainly described by the model output in the final fused product. Therefore the 



 

variogram of the fused product is likely adjusted toward the remote areas of Canada as 
simulated by G5NR-Chem, which provided the largest weighting in North America).” 
 
The multi-model mean and composite (Figures 3(a) and 7(a)) show a lower spatial variation, 
which is unrelated to INLA or the Matern function, since they are completely made/weighted 
from the model output. Based on the comparison of the similarity between Figures 1 and 2(a), 
we see that the interpolation reproduces many local features, a result that we view as 
successful. 
 
(h) Regarding the modelling part, as presented the article overlooks the real role that the 
smoothing splines step (page 8 lines 8-15 and Figure S-2 in supplementary material) is 
playing in the resulting global ozone surface estimated. What is the main modelling 
technique of their method: the composite method with/without bias correction, or the 
smoothing splines in question? This is a key issue which cannot be disregarded. 
As described above, the smoothing splines are only a minor component of the overall analysis. 
Our final fused product is the result of three important steps, all of which are necessary.  We 
modified the following paragraph in the Introduction that summarizes the key steps in this 
process: 
 
“This paper presents a new statistical approach (M3Fusion) for combining surface ozone output 
from multiple atmospheric chemistry models with all available surface ozone observations to 
produce a global surface ozone distribution with greater accuracy than the multi-model 
ensemble mean. As described in greater detail below, this fused surface ozone product is 
constructed in three steps: 1) Ozone observations from all available surface ozone monitoring 
sites around the world are spatially interpolated to a smooth global field; 2) For each of 8 
continental regions of the world 6 global atmospheric chemistry models are evaluated against 
the interpolated observed ozone field by a quadratic programming optimization, with the most 
accurate models receiving the highest weight. A locally confined spline interpolation is used at 
the regional boundaries to avoid unphysical step changes; 3) finally, the global ozone field 
derived from the polynomial equation is bias corrected, but only within a limited distance from 
available observations.  The final product is based on the annual maximum of the 6-month 
running mean of the monthly average daily maximum 8-hour average mixing ratios (DMA8), a 
metric that can be used to estimate human mortality due to long-term ozone exposure (Turner 
et al., 2016; Malley et al., 2017; Seltzer et al., 201; Shindell et al.,2018).” 
 
 ​(i) At moments, it is not clear whether the key goal of the article is to propose a novel 
method to estimate the weights to give to each global ozone model, or to propose an 
estimated global ozone surface (which is indeed being obtained based on the smoothing 
splines step). I suggest this is clarified. 
The goal is to create a best estimate surface for the global ozone concentration, and this is 
done through a three-step process (which we clarified in the paragraph as above), and we also 
added a note in Conclusion that this method can be used for different applications: 
 



 

“The application of our methodology focuses on, but is not limited to, a particular ozone metric 
relevant for quantifying the impact of long-term ozone exposure on human health. We expect 
that this framework could also be applied to  other ozone metrics relevant to crop production or 
natural vegetation (Lefohn et al., 2018; Mills et al., 2018), or any other trace gas provided 
adequate in situ observations are available for model evaluation.” 
 
(j) The authors mention that the success of their composite mean obtained via the 
quadratic programming approach depends on the existence of a global ozone model 
which reproduces correctly the correct curvature on the process (line 30 page 7 – line 5 
page 8). This is not necessarily true since equation (1) is only selecting αr, βrk based on 
a least squares criterion and no regularization conditions on the solution are being 
specified, i.e. a curvature penalty. Besides, the curvature of a surface is defined 
throughout the two-dimensional space in question (the map), and requires the existence 
of first and second derivatives of the surface. None of these conditions are being 
established in the article, so that the weights of the composite mean are best only in 
terms of the "squared distance" between the (imputed) observations and the composite 
mean at the regular grid of locations being used, not throughout the continuous 
two-dimensional space. 
Thanks for the suggestion, we indeed have not discussed about spatial curvature and 
first/second derivatives of the surface. We thus removed this paragraph and added a 
clarification in p7: 
 
“The weights are optimized in terms of the squared distance between the interpolated ozone 
and multi-model output. A different criterion of optimization, such as mean absolute error, can 
be established accordingly.” 
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Abstract. We have developed a new statistical approach (M3Fusion) for combining surface ozone observations from thou-

sands of monitoring sites around the world with the output from multiple atmospheric chemistry models to produce a global

surface ozone distribution with greater accuracy than can be provided by any individual model. The ozone observations from

4766 monitoring sites were provided by the Tropospheric Ozone Assessment Report (TOAR) surface ozone database which

contains the world’s largest collection of surface ozone metrics. Output from six models was provided by the participants of5

the Chemistry-Climate Model Initiative (CCMI) and NASA’s Global Modeling and Assimilation Office (GMAO). We analyze

the 6-month maximum of the maximum daily 8-hour average ozone value (DMA8) for relevance to ozone health impacts. We

interpolate the irregularly-spaced observations onto a fine resolution grid by using integrated nested Laplace approximations,

and compare the ozone field to each model in each world region. This method allows us to produce a global surface ozone

field based on TOAR observations, which we then use to select the combination of global models with the greatest skill in10

each of 8 world regions; models with greater skill in a particular region are given higher weight. This blended model product

is bias-corrected within two degrees of observation locations to produce the final fused surface ozone product. We show that

our fused product has an improved mean squared error compared to the simple multi-model ensemble mean, which is biased

high in most regions of the world.
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1 Introduction

Tropospheric ozone is a pollutant detrimental to human health and has been associated with a range of adverse cardiovascular

and respiratory health effects due to short-term and long-term exposure (World Health Organization, 2005; Jerrett et al., 2009;

US Environmental Protection Agency, 2013; GBD, 2015; Turner et al., 2016; Cohen et al., 2017). Assessing the human health

impacts of ozone on the global scale requires accurate exposure estimates at any given inhabited location (Shaddick et al.,5

2018). Due to the limited availability of surface ozone observations in many regions of the world (Fleming et al., 2018),

global atmospheric chemistry models are required to calculate surface ozone exposure. Despite continual development and

improvement, global models struggle in their ability to accurately simulate ozone in all regions of the world (Young et al.,

2018). The ability to accurately simulate observed ozone at a particular location also varies between models, as demonstrated

by several multi-model comparisons (Stevenson et al., 2006; Young et al., 2013; Cooper et al., 2014).10

A useful endeavor for producing an accurate representation of the global surface ozone distribution is to combine the output

from many models in a way that takes advantage of the strengths of each model and minimizes the weaknesses. Such efforts

have already been made for both climate and chemistry climate models. For example, multi-model output has been combined

using a parametric approach, either by assigning an equal or optimum weight to each model (Stevenson et al., 2006; He and

Xiu, 2016; Braverman et al., 2017), or by tuning the initial conditions under different scenarios or parameterizations (Cariolle15

and Teyssèdre, 2007; Wu et al., 2008; Young et al., 2013). These approaches often assume that individual model biases will

at least partly cancel by averaging or weighting, according to certain measures of predictive performance. Thus the combined

model product is likely to be more accurate than a single model prediction, as has been shown for multi-model combinations

of past or present day climate (Buser et al., 2009; Knutti et al., 2010; Weigel et al., 2010; Chandler, 2013).

For the case of simply averaging the output from multiple climate models, most studies either explicitly or implicitly assume20

that every model is independent and is a random sample from a distribution, with the true climate as its unbiased mean. This

implies that the average of a set of models converges to the true climate as more and more models are added. This multi-model

ensemble often outperforms any single model in terms of the predictive capability. Undeniably, when one has several dozen

or hundreds of possible ensemble members, the most straightforward and efficient approach is to simply take the ensemble

average, ignoring the impact of potentially erroneous outlier ensemble members. From a statistical point of view, one might25

argue that ruling out potentially erroneous ensemble members prior to conducting the ensemble mean would yield an even

better result, especially if the overall number of ensemble members is small.

Combining model ensembles using a method more sophisticated than the simple average is a challenge because a meaningful

model evaluation can rarely be condensed into a single metric, and there is no technique that can explicitly quantify the degree

of similarity (i.e both accuracy and precision) between two different spatial fields (Hyde et al., 2018). Indeed, Stainforth et al.30

(2007) concluded that any attempt to assign weights is, in principle, inappropriate. With a lack of appropriate criteria, the

model weighting approach has not become a standard alternative to the ensemble average. Accordingly, there is presently no

objective criterion for combining surface ozone estimates from a model ensemble to produce a surface ozone product with
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improved accuracy beyond that of any ensemble member or the simple ensemble mean. The absence of such a methodology is

the motivation for this paper.

This paper presents a new statistical approach (M3Fusion) for combining surface ozone output from multiple atmospheric

chemistry models with all available surface ozone observations to produce a global surface ozone distribution with greater

accuracy than the multi-model ensemble mean. As described in greater detail below, this fused surface ozone product is con-5

structed in three steps: 1) Ozone observations from all available surface ozone monitoring sites around the world are spatially

interpolated to a smooth global field; 2) For each of 8 continental regions of the world 6 global atmospheric chemistry models

are evaluated against the interpolated observed ozone field by a quadratic programming optimization, with the most accurate

models receiving the highest weight. A locally confined spline interpolation is used at the regional boundaries to avoid unphys-

ical step changes ; 3) finally, the global ozone field derived from the polynomial equation is bias corrected, but only within a10

limited distance from available observations. The final product is based on the annual maximum of the 6-month running mean

of the monthly average daily maximum 8-hour average mixing ratios (DMA8), a metric that can be used to estimate human

mortality due to long-term ozone exposure (Turner et al., 2016; Malley et al., 2017; Seltzer et al., 2018; Shindell et al., 2018).

Past estimates of global mortality due to long-term ozone exposure have relied on surface ozone fields produced by global

atmospheric chemistry models due to the limited coverage of the global ozone monitoring network (Anenberg et al., 2010;15

Brauer et al., 2012, 2015; Malley et al., 2017). The fused surface ozone product is a blend of global surface ozone observations

and model output that has been adjusted according to the observations. This particular product will be available for future

estimates of global human mortality due to long-term ozone exposure (e.g. Global Burden of Disease (Brauer et al., 2012,

2015)). Furthermore, the methodology can be applied to a range of ozone metrics for quantifying the impacts of ozone on

human health, or vegetation, and it can also be applied to PM2.5, CO2, or any other trace gas.20

Section 2 provides details of the data sources and fusion process, including the techniques to register all data sources onto a

common grid, and the statistical model used to minimize the difference between interpolated observations and the multi-model

combination. In Section 3 the results of employing these techniques are presented, including the mapping accuracy, evaluation

of regional model performance and the final multi-model bias correction. The paper concludes with a summary and discussion

in Section 4.25

2 Data and Method

2.1 Observations and model output

1. Tropospheric Ozone Assessment Report (TOAR) Surface Ozone Database: In this analysis, surface ozone observations

are used to evaluate the performance of 6 global atmospheric chemistry models and to also bias-correct the multi-model

surface ozone product. TOAR has produced the world’s largest database of surface ozone metrics based on hourly30

observations at over 9000 sites around the globe (Schultz et al., 2017, ozone metrics available for download at: https:

//doi.org/10.1594/PANGAEA.876108). Spatial coverage is high in North America, Europe, South Korea and Japan, but

much lower across the rest of the world with very low data availability across Africa, the Middle East, Russia and India.
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In addition to data sparseness, other challenges, such as data inhomogeneity in time and the irregular spatial distribution

of stations (Chang et al., 2017), make the comparison between model output and observations difficult without serious

statistical modeling. While satellite retrievals have been utilized by previous works for quantifying the health impacts of

PM2.5 (Brauer et al., 2012, 2015), satellite retrievals of tropospheric ozone have limited sensitivity near the surface and

are inadequate for this analysis (Gaudel et al., 2018).5

TOAR has gathered ozone observations through 2014 at most sites, and has chosen 2008-2014 as a “present-day” win-

dow for more rigorous analysis. The purposes of the multi-year average are to reduce the effects of ozone interannual

variability, which is largely driven by changes in meteorological conditions (Strode et al., 2015), and to increase the

number of available sites than if we used a single year. In this analysis we focus on the annual maximum of the 6-month

running mean of the maximum daily 8-hour average (DMA8) at every site in the TOAR database. Specifically, the metric10

was calculated from the 6-month running mean of the monthly mean DMA8 ozone values at a given site. This metric

was selected because it aligns with the ozone metric used by Turner et al. (2016) to quantify the impact of long-term

ozone exposure on human mortality. Hereinafter this quantity is simply referred to as “the ozone metric".

2. Atmospheric chemistry model simulations: We use output from models from phase 1 of the Chemistry-Climate Model

Initiative (CCMI), downloaded from the Centre for Environmental Data Analysis (CEDA) database (http://archive.ceda.15

ac.uk). We chose four models (CHASER, GEOSCCM, MOCAGE and MRI-ESM1r1) because they report hourly ozone

output (Table 1). These particular simulations were part of CCMI’s REF-C2 experiment (Morgenstern et al., 2017)

which follows the World Meteorological Organization (2011) A1 scenario for ozone depleting substances, and RCP

6.0 for tropospheric ozone precursors, and aerosol and aerosol precursor emissions (Morgenstern et al., 2010) for the

period 1960-2100. Even though the most appropriate experiment would have been the REF-C1SD, in which the models20

are nudged to the reanalysis meteorology and thus best represent the past in the observations, we use output from

the REF-C2 simulation in this study, as the last year of the REF-C1SD was 2010, and would therefore not cover the

most recent period where observations are available. However, the NOAA Geophysical Fluid Dynamics Laboratory

(GFDL) AM3 model continued the simulation over the entire study period and was therefore selected for this analysis.

In addition, we obtained output from the GEOS-5 nature run with chemistry (G5NR-Chem), provided by the NASA25

Global Modeling and Assimilation Office (GMAO), which we included in our analysis because of the model’s very fine

horizontal resolution (Hu et al., 2018), but the output was only available for July 2013 to June 2014.

The output from each individual model is shown in supplemental Fig S-1. Note that NASA G5NR-Chem has the finest

resolution of these models; accordingly we aim to produce our final product on the same 0.125◦×0.125◦ grid. However,

even at this resolution the output is not street-resolving and thus will not capture urban scale variability in the regions30

with the highest population density.

In order to compare model output to observations, we need to register model output and observations to a common grid. This

registration enables us to quantify the differences between the models and observations. Previous attempts have usually relied

on a variant from a general statistical interpolation framework to combine incompatible spatial data (Gotway and Young, 2002;
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Fuentes and Raftery, 2005; Gelfand and Sahu, 2010; Berrocal et al., 2012; Nguyen et al., 2012). Due to the highly irregular

locations of ozone monitors around the globe, we use a kriging technique to build a statistical model, interpolate the ozone

distribution based on the surrogate, and then project the global surface onto a common grid.

2.2 Fusion of observations and models

Following is a description of our method for fusing observations and output from multiple global atmospheric chemistry models5

to produce a surface ozone product with maximized accuracy. This method is known as Measurement and Multi-Model Fusion

(version 1), or M3Fusion (v1), and the code accompanies this manuscript in supplementary material. We consider a general

framework of uncertainty quantification consisting of the following components (Kennedy and O’Hagan, 2001; Chang and

Guillas, 2019):

Observation = Reality + Random Error;10

Reality = Model + Structured Bias,

Since this equation requires matching components (observations and model output) on a common grid, we use the interpolated

observations to estimate an optimized weight for each model by a L2 norm (details are given later), which means that we expect

the multi-model combination to capture the general pattern of the surface ozone distribution in terms of their joint predictive

capability; and the model bias is considered as a model correction term. The difference between observation error and model15

bias is that the former term is assumed to be a normal noise with zero mean and constant variance; and the latter term is

considered as a systematic and structured discrepancy (Williamson et al., 2015), which will be revealed as a spatial cluster

across a poorly simulated region.

Due to this study’s human health focus we do not consider ozone above the data-sparse oceans. Above land, large obser-

vational gaps are present across Africa, the Middle East, South America, and South and Southeast Asia, where the spatial20

interpolation is generally too uncertain to yield a reliable surface ozone approximation. The ozone estimates in these regions

must come from either models or distant observations, neither of which is ideal to solve this issue. As a compromise strategy

we fill these gaps with a weighted model product evaluated by the interpolated ozone observations. We propose the following

procedure to combine model output and observations for data integration:

1. Interpolating irregularly located monitoring observations to the model output grid: Kriging is a procedure used to25

statistically interpolate irregularly spaced and/or sparse observed data onto a regular and dense grid, based on a weighted

average of the fitted surrogate model in the neighborhood of the grid. We assume that the global ozone distribution can

be approximated by a Gaussian spatial process (GP) with a constant mean and Matérn covariance function (Stein, 2012).

The GP fitting typically involves a cubic complexity, and thus is computationally expensive for large spatial data sets.

Therefore several alternatives have been developed to address the large n issue by using a reduced set of data (Cressie30

and Johannesson, 2008; Banerjee et al., 2012; Liang et al., 2013), tapering the covariance between two grid points to

zero if their distance is beyond a certain range (Furrer and Sain, 2009; Sang and Huang, 2012), and/or evaluating the
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covariance only through the specification of a neighborhood system (also known as the Gaussian Markov random field)

(Rue et al., 2009; Lindgren et al., 2011).

In this study we carry out the spatial interpolation by using the combination of the integrated nested Laplacian ap-

proximations (INLA) framework (Rue et al., 2009), and the stochastic partial differential equation (SPDE) technique

(Lindgren et al., 2011), available as an R package (http://www.r-inla.org/) (Lindgren and Rue, 2015). The details of5

this technique are rather complex and the reader is referred to the original paper (Lindgren et al., 2011), however we

describe the key component of this INLA-SPDE technique in the Appendix. INLA-SPDE spatial modeling has proven

to be effective in a wide range of applications (Cameletti et al., 2013; Shaddick and Zidek, 2015; Heath et al., 2016;

Liu and Guillas, 2017; Rue et al., 2017). We chose this technique because it manages a fairly large and complex spatial

field in a relatively efficient way (Rue and Held, 2005), and allows an extension for nonstationarity on the sphere (Bolin10

and Lindgren, 2011; Chang et al., 2015). Notably, a recent study elaborately compared dozens of spatial modeling ap-

proaches, and the results suggest that almost all of these approaches can achieve a similar performance in terms of their

predictive accuracy, albeit with very different computation times (Heaton et al., 2018). Therefore, we expect that the

choice of spatial modeling approach is not the most crucial component in our data fusion process as long as the analysis

is carried out in a rigorous way (i.e. through the statistical model selection and diagnostics). To differentiate this result15

from the actual observations in the TOAR database, we refer to this interpolated surface as the “spatially interpolated

ozone”.

We carry out the statistical interpolation via the following steps: (1) calculate the ozone metric at each TOAR site and

for every year in 2008-2014; (2) perform the statistical interpolation using all available sites with their exact coordinates,

and project the surface onto a 0.125◦× 0.125◦ spherical grid for every year; (3) average these surfaces over the 7 years20

to yield an observation-based present-day ozone distribution. We expect that this aggregation will smooth out at least

some of the potential uncertainties. The kriging can be seen as a nonparametric regression problem, therefore a statistical

assessment of fitted quality must be considered to select the best representation to the data (Hoeting et al., 2006). Further

details on the statistical model selection procedure are provided in Appendix A.

We use a bilinear interpolation to smooth model output from coarser resolution to a 0.125◦× 0.125◦ grid (Jun et al.,25

2008). The ozone metric for each model was calculated for each single grid in each year, then averaged over 2008-2014

(except for NASA G5NR-Chem, which was already in fine resolution, but only available for 1 year).

2. Weighting model output against spatially interpolated ozone by region: The next step is to create an intermediate “multi-

model composite”. We divide the global land surface into 8 regions (see Fig 1), roughly matching the continental outlines

or major population regions. We adopt this regional approach because global models vary in their ability to simulate30

ozone in different regions of the world. Next we regress the observations on multi-model output by a constrained least

square approach within each of the eight regions. Let sg be the grid cell at resolution 0.125◦× 0.125◦, ŷ(sg) be the

interpolated observations, and {ηk(sg);k = 1, . . . ,6} be the model output registered onto the same grid from the six
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models considered in this paper (table 1). The optimization equation is based on a constrained least squares approach:

minimize
{αr,βrk;k=1,...,6}

∑
sg∈Region r

(
ŷ(sg)−αr −

6∑
k=1

βrkηk(sg)

)2

, (1)

subject to
6∑
k=1

βrk = 1 and βrk ≥ 0.

where αr is a constant that allows adjustment to the overall (regional) underestimation or overestimation, βrk is an opti-

mal weight for the k-th model in region r. Note that since the interpolated observations and models use the same ozone5

metric with the same units, we constrain the weights to be positive and sum to 1 for a better physical interpretability,

such that the most accurate models receive the higher weight. The offset term αr is aimed to adjust the overall residuals

between the observation field and the multi-model composite into zero mean in each region (regardless of the spatial

pattern), therefore if two spatial fields share a great similarity in terms of their spatial curvatures, but the overall means

are different, this term can fill the gap of the overall mean difference between the two fields. The weights are opti-10

mized in terms of the squared distance between the interpolated ozone and multi-model output. A different criterion of

optimization, such as mean absolute error, can be established accordingly.

Due to the sparsity of stations in many regions, we use a pre-defined geometric boundary to differentiate regions. A more

meaningful physical boundary (i.e., regions with similar chemical regimes, or major features such as deserts, mountain

ranges or water bodies) might be determined using a cluster analysis technique (Hyde et al., 2018), but such a step is15

beyond the scope of this paper.

Since we partition the global land surface into eight regions and evaluate the models individually, inevitably there will

be disjointed boundaries between regions. The boundaries between North and South America, or between East Asia and

Oceania, fall mostly in the oceans, so we do not need to adjust these regions. However, we should make an adjustment

to disjointed boundaries that fall across inhabited areas (see supplementary Fig. S-2 for the illustration). As an example20

of our method, consider the boundary between East Asia and Russia near 50◦N. We increase the northern boundary

of East Asia to 55◦N and decrease the southern boundary of Russia to 45◦N, to create an overlapping intersection,

and then fit cubic splines (performed for each grid cell) with knots placed at every 2 degree grid cell (Wood et al.,

2008). This smoothing is carried out using a low rank Gaussian process by the default penalized least square from the

function “gam” in the R package mgcv (Kammann and Wand, 2003; Wood, 2017), following the examples of Wood and25

Augustin (2002). The purpose is to merely avoid a sharp and unrealistic (geometric) transition between three regions

and to efficiently smooth out the discontinuity, performed in a regular spaced grid only around the geometric boundary.

Any region away from the geometric boundary will not be affected by this smoothing, which should be considered as a

blending of multiple models without any attempt of bias correction. It should be noted that the INLA-SPDE technique

in step 1 is applied to the observations, while the smoothing spline is only applied to the boundaries between regions of30

the model composite, not directly involving any observations.
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We adopted a regression weighting approach that only accounts for the mean spatial fields of the interpolated ozone and

model output, rather than the underlying associated uncertainty. We take this approach due to the prohibitive size of high

resolution output (over 1 million output points for each model), but also due to the lack of a thorough investigation re-

garding the ideal method for combining models based on different sources of uncertainty. For example, the interpolation

uncertainty can be quantified easily through the posterior distribution and considered to be related to measurement error5

(small scale) or sparse sampling across a region (large scale), however, model uncertainty is a different concept alto-

gether that could result from input uncertainty (e.g. air pollution emissions inventories), or limitations of the transport

and chemistry mechanisms within the model (Brynjarsdóttir and O’Hagan, 2014). The current interest of this study fo-

cuses on a better estimate of mean ozone exposure. Explicit quantification of different sources of model uncertainty and

incorporation of this information into the data fusion process presents another level of complexity that cannot be tackled10

until model uncertainties are better characterized. Young et al. (2018) provide a current overview of chemistry-climate

modelling and discuss the challenges of improving models in light of so many uncertainties.

3. Correcting multi-model bias in areas close to observations: A common practice of studying the model discrepancy in

the spatial fields is to fit a statistical model for their differences from observations on the whole spatial domain, to see

whether or not these residuals reveal any structured spatial pattern (Jun and Stein, 2004; Sang et al., 2011). If the model15

adequately simulates the ozone distribution (up to a level shift and a scale factor), then there is no relevant information

in these residuals. On the other hand, if the model does not properly represent the local structure, then the residuals

should exhibit a signal of the discrepancy in that region (Guillas et al., 2006; Williamson et al., 2015). However, in

our case the regular grid observation field is obtained from spatial kriging, such that in many data sparse regions we

don’t actually have observed ozone, which prevents us from correcting the model in these regions. Instead, we conduct20

a limited model bias correction based on the distance to the nearest monitoring station, but we ignore the differences

between the multi-model composite and the interpolated observations in the sparsely monitored regions. In our approach

we only correct the output grid where there is at least one observational station within a 2 degree radial distance of the

grid cell in question (i.e. the distance to the nearest station is less than 2◦). We then end up usingŷ(sg), if a grid cell sgis within a 2 degree radial distance of the station;

αr +
∑6
k=1βrkηk(sg),otherwise,

25

to generate our high resolution global surface ozone estimate. Given the limited availability of observations worldwide,

we were only able to apply this final bias correction to 14.4% of the globe’s land area. We refer to the final outcome as

the “fused surface ozone product”.
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3 Results

3.1 Mapping and uncertainty

Ground based measurements were available from 4766 stations reported in the TOAR database (Schultz et al., 2017). To

illustrate the spatial coverage of the database, Fig 1 shows the ozone metric discretized to a 2◦× 2◦ grid (a finer resolution

will be too obscure for illustrative purposes), averaged over the period 2008-2014. This figure also shows our regionalized5

classification, including Africa, North America, South America, East Asia, Southeast and central Asia, Europe, Oceania, and

Russia. Note that dense station networks are found in North America, Europe and East Asia (mostly in Japan and South Korea),

while monitoring sites are more widely scattered across the remaining regions. The highest average ozone levels are found at

sites in China, South Korea, Japan, Taiwan, India, Greece, California and Mexico City.

Fig 2(a) shows the spatially interpolated surface in each cell. For each grid cell, there is an underlying (posterior) probability10

distribution which incorporates information about the interpolation uncertainty. Fig. 2(b) shows the half-width of the 95%

posterior credible interval in each cell (Shaddick et al., 2018). From the spatial pattern of uncertainty, we can see that relatively

higher uncertainties are expected in Africa, the Middle East, South Asia and Russia, regions with very limited observations;

lower uncertainty is associated with regions with a dense station network, such as North America and Europe. Due to the

limitations of spatial kriging in a sparsely monitored region, the observations are often interpolated across very great distances,15

such as in South America, Africa and Central Asia. This method is not ideal, and instead, information from models can be used

to fill in the blanks.

The ozone metric for each model was calculated for each individual grid cell in each year, then averaged over 2008-2014, and

registered to the common 0.125◦×0.125◦ grid (except for NASA G5NR-Chem, which was already in fine resolution, but only

available for 1 year). Fig 3(a) shows the surface ozone metric which results from the simple ensemble average of the 6 models.20

It was generated from bilinear interpolation of the ozone metric on the standard output grid, by calculating the same metric for

each grid cell in each year, averaging over 2008-2014, and then averaging over the 6 models. We refer to this product as the

“multi-model mean”, and we use it to validate our final product, which should outperform not only each individual model, but

also the multi-model mean.

Averaging all 6 models captures the large scale variations of the ozone distribution, however, many regions in northern25

mid- and low latitudes are biased high compared to the observations in the TOAR database. A simple approach to address

the uncertainty in the multi-model mean is to calculate the standard deviation for each grid cell from the different models, as

shown in Fig 3(b). Higher model uncertainties across South Africa and the Middle East match the pattern of the interpolation

uncertainty in Fig. 2(b), and lower model uncertainties occur in regions with dense station networks. These findings suggest that

the multi-model mean uncertainty can also reflect the current limited understanding of surface ozone in regions with limited or30

no observations.

It should be noted that the spatially interpolated observations are smoother in regions with fewer sites, and reveal a more

detailed structure in regions with a dense station network. In contrast the multi-model mean is more noisy. Even though we

average across multiple years and multiple models, the resulting ozone metric can still be noisy because it is calculated at each
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grid cell independently. In order to make maximum use of the skill of each model, we restrict the model evaluation to the

regional scale in the next section.

3.2 Regional model evaluation and Multi-model Composite

To evaluate the performance of each model in a given region, we calculate the mean differences over all grid cells within the

region and summarize them with the root mean square error (RMSE). Let ŷ(sg) be the spatially interpolated observations, and5

{ηk(sg);k = 1, . . . ,6} be the output corresponding to the six ensemble models considered in this paper, then the (normalized)

RMSE is given by

RMSErk =

√∑
sg∈Region r (ηk(sg)− ŷ(sg))

2

n
,

where n is the number of grid cells in a given region r. The first part of Table 2 shows the RMSE statistics for each model by

region. The reliability of such an evaluation is limited by the station density in a given region, with greater reliability in a dense10

network (e.g. USA) and less reliability in a sparse network (e.g. Africa, South America or Australia). On average, CHASER,

GEOSCCM, and G5NR-Chem have the lowest biases in multiple regions; GFDL-AM3 and MRI-ESM1r1 also show low mean

biases in certain regions, such as America and Europe. However, larger model biases can be found in Africa, East, and South

Asia.

We next select three regions with extensive monitoring: North America, Europe and East Asia. Fig 4 shows the differences15

between the spatially interpolated observations and model output in North America. A consistent under-estimation can be

found in the Mexico City region for all models. A clear over-estimation is also found across much of the eastern USA, as well

as the western USA and Canada, except for CHASER which shows a mild under-estimation in these regions; In Europe (Fig

5), the models show mild levels of over-estimation across most of the region, especially for Italy . In East Asia (Fig 6), the

models show a major bias across East China, and a similar bias pattern across the entire region, although the bias amplitude20

is smaller for GEOSCCM. However, since the observations are relatively sparse in mainland China, the large scale of these

estimated biases might be an interpolation artifact.

We argue that the credibility of the model is not entirely decided by the RMSE (i.e. the mean difference): the smoother

the difference plots, the easier it is to carry out the model bias correction. Indeed, the observations and model output are not

expected to match point by point. We should also expect the model to capture the general pattern of the spatial distribution,25

rather than a point-wise agreement.

The estimated weights from the constrained least squares (Eq 1) are given in the second part of Table 2. Due to fixed

underlying spatial structures, this approach tends to give greater weight to a single model (i.e. ≥ 50%), the one which provides

the best match between its spatial structure and the observational field (e.g., G5NR-Chem in North America). Note that this

approach disfavors noisy spatial structure, therefore the algorithm gives low weights to MOCAGE, for several reasons. First,30

the MOCAGE ozone field has not been smoothed by interpolation since it is already produced on the MOCAGE model grid,

whereas all other models are interpolated. Secondly, MOCAGE uses a more complete tropospheric chemical scheme with a

larger range of species (77 tropospheric species) and has generally a higher reactivity compared to most CCMs (Voulgarakis
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et al., 2013). Thus, it tends to provide more temporal and spatial variability. Note that our optimization algorithm estimates the

weights according to the similarity of the spatial structures between the interpolated surface and each model. In regions with

sparse monitoring the kriged surface can be greatly affected by a few scattered stations, therefore we cannot use the resulting

weights to evaluate the actual model performance in these regions.

The last column of Table 2 shows the averaged and combined RMSEs from the equal weights and the constrained weights.5

A reduced overall bias can be generally achieved from the constrained weights. This approach suggests that even if a model

has a large mean error (e.g. GFDL-AM3), it can still be a good simulation if it produces a spatial pattern and curvature similar

to the observation field. A constant offset αr in the optimization Eq (1) is included to remove the overall bias over each region,

such that the residuals from the optimization have a zero mean. On the other hand, if we do not include αr in the equation,

GFDL-AM3 will have a smaller weight in the optimization, and CHASER, GEOSCCM and G5NR-Chem will dominate most10

of these regions (not shown).

We combine all models according to the optimum weights from each region for each model. Fig 7(a) shows a map of the

multi-model composite, a weighted blend of the 6 models, with the weighting calculated separately for each continent. Models

with greater simulation skill receive higher weighting. The result reveals a systematic adjustment to the large scale over-

estimation from the ensemble mean in Fig 3(a). This demonstration of a general high bias among the models argues against15

using the simple ensemble model mean for estimating surface ozone. However, when compared to the TOAR observations, the

multi-model composite still has clear local biases.

3.3 Local bias correction

The last step of producing the final fused surface ozone product is to apply a bias correction to our multi-model composite,

limited to just those areas in close proximity to ozone observations. Ideally we would like to apply a bias correction according to20

raw observations, but most stations are not exactly located on the model grid coordinates (even at 0.125◦×0.125◦ resolution).

Therefore, to carry out a statistical bias correction on a particular grid, we need to consider the number of nearby stations

and the distance to each station. All these considerations aim to deduce a single correction value on a single grid, and thus

we are still faced with implementing statistical interpolation. To avoid adding another level of complexity, we set the final

fused product to be exactly equal to the spatially interpolated ozone field within 2 degrees of an observation, as the spatially25

interpolated ozone field has already accounted for all observations. Due to the global sparseness of observations, about 85% of

model grid cells over land were not affected by this bias correction. After bias correcting the multi-model composite grid cells

within 2-degrees of a TOAR observation site, an immediate benefit is seen for the USA, Mexico City, Italy and South Korea

(see Fig 7(b)).

The choice of the correction range, in this case 2 degrees, is a ad hoc decision; we also present results with different correction30

ranges in supplementary Fig S-3 and S-4. When the radius of influence of the TOAR observations is increased to 5 or more

degrees the greatest impact is seen for the Mexico City region and eastern China. An increase of correction range is not ideal

because it extrapolates the Mexico City ozone values into the less populated regions of Mexico. Increasing the radius to 5 or
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more degrees does not improve upon the RMSE associated with 2 degrees. Therefore accepting the 2-degree bias correction

over other ranges is subjective.

The fused product can be evaluated in terms of spatial correlation using the variogram which assumes that spatial correlation

is not a function of absolute location, but only a function of distance (i.e., stationarity). Since spatial variability and conti-

nuity from the models are the result of geophysical processes represented by mathematical equations, the variogram must be5

customized for each field. In addition, the extremely large size of the model output prohibits us from carrying out a standard

empirical variogram analysis, which requires calculating the variance of the difference between all pair-wise grid cells.

Nevertheless, we provide examples of omnidirectional variograms for the spatial field in North America from each model and

product in supplementary Fig. S-5. The standard variogram analysis focuses on the following three parameters: (1) the nugget

(variance at zero distance, which represents a sub-grid variation), which is similar for all cases; (2) the sill (total variance of10

a field), where the variogram value reaches a maximum and levels off; (3) the range (a distance where the sill is reached, and

beyond that there is no longer spatial correlation). Note that a continuously increasing variogram indicates the evidence of

non-stationarity in the field, which is the case for SPDE, an issue that we have accounted for. The variogram peak is about

35-40 degrees for the models. The result is very similar for G5NR-Chem, GEOSCCM and GFDL-AM3, while CHASER and

MRI-ESM show a larger variance in the spatial field. The reason is that the latter two models produce low ozone in the high15

latitude region over Canada (see supplementary Fig. S-1), but the former three models simulate relatively higher ozone in the

same region, and this difference is reflected by the total variance. Even though North America has one of the most extensive

monitoring networks in the world, some of the remote areas (mostly in Canada) are mainly described by the model output in

the final fused product. Therefore the variogram of the fused product is likely adjusted toward the remote areas of Canada as

simulated by G5NR-Chem, which provided the largest weighting in North America).20

3.4 Validation of the results

Since the raw observations are the only reliable source for validating our results, we align each model grid to observed locations

for evaluating the predictive performance. The RMSE of the residuals from all observations in 2008-2014 are displayed in Table

3. Note that since the global network of monitoring stations is heavily weighted by North America, Europe, South Korea and

Japan, these numbers are not representative of the sparsely monitored regions. We compare the fused surface ozone results25

to the simple multi-model mean from all 6 models. Our interim product, i.e. the multi-model composite, is also compared in

Table 3.

Our multi-model composite outperforms the multi-model mean in terms of lowest mean predicted error. Based on the spa-

tially interpolated observations, the resulting multi-model composite takes advantage of the strengths of each model, and

achieves a better accuracy. This result proves that our approach is effective, since our interim product has already improved30

upon the simple multi-model mean. The bias correction further reduces the residuals: this is expected because the spatial krig-

ing algorithm is designed to minimize the difference to observations, thus it has the lowest RMSE (this value is the same for the

kriging result and the fused product since we apply the correction based on observed locations). The RMSE of approximately
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5 ppb may represent the interannually varying meteorological influence during the years 2008-2014. If this is the case, then 5

ppb may approximate the minimal RMSE that can be achieved in a multi-year analysis.

In summary, the simple multi-model mean method may perform fairly well at the continental or regional scale, but does

not provide an accurate representation of the sub-regional structure, this is of course a limitation on the use of coarse model

resolutions. The weighting applied during the construction of the multi-model composite improved the accuracy but the effect5

could be limited, because many small-scale processes are not (yet) resolved by the models. To alleviate the discrepancy further,

a statistical method based on local observations is applied to correct the bias. The advantage of our fused surface ozone product

over the simple multi-model mean can be clearly seen in Figure 8. When interpreting the fused product the reader should

consider the following: (1) For a region with an extensive monitoring network, such as the USA, a detailed bias correction

can be achieved. We can utilize the observations to accurately reflect many local features (i.e., sub-grid variations) as shown10

in the ozone pollution hot-spots of southern California and Mexico City. However it should be noted that this improvement is

due to local bias correction, instead of model weighting; (2) For regions with large observational gaps, such as South America,

Africa or Russia, the spatial difference between the fused product and the multi-model mean is rather featureless, because the

model weighting can only adjust the overall regional mean according to a few monitoring sites, and cannot address the local

variations. Filling large data gaps with the intermediate multi-model composite can indeed avoid the influence of preferential15

sampling (Diggle et al., 2010; Shaddick and Zidek, 2014), but it is still subject to a high uncertainty due to lack of data.

4 Discussion and Conclusions

In this article we present a flexible framework to incorporate observations and multiple models for providing an improved

estimate of the global surface ozone distribution. Combining multivariate spatial fields in the estimation of ozone distribution

is an extension of both the conventional multi-model ensemble approach (i.e. simple average) and a statistical bias correction20

approach, and was found to improve the prediction of surface ozone. In summary our approach has the following properties:

1. The multi-year average enables us to reduce the meteorological influence on surface ozone. An extension of this method

to time-resolved multi-annual fields can be expected to capture the interannual variability (Shaddick and Zidek, 2015),

however such an endeavor would be highly computationally demanding in such a fine resolution setting.

2. The INLA-SPDE interpolation framework allows for modeling of potential nonstationarity in the spatial processes.25

3. Regional model evaluation facilitates a feature selection for multiple competing atmospheric models.

4. Local bias correction of the multi-model composite only at a limited range of grid cells avoids using the spatially

interpolated ozone field in regions associated with higher levels of uncertainty.

5. For the regions with dense monitoring networks (such as North American, Europe, South Korea and Japan), the final

fused product was obtained mainly from the interpolation of observations; elsewhere the final product relied on the30

multi-model composite through an optimized weight from each model.
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Human health studies typically adopt a fine grid resolution, such as a 0.1◦× 0.1◦ grid product, for matching to the gridded

world population database. Even though the spatial kriging surrogate can produce the predicted value at any resolution, the

accuracy of the fused surface ozone product is still limited by the density of observations around that point, and by the resolution

of the global model output. Regarding future improvements two key developments can be expected to yield a better estimation

of the global surface ozone distribution: Firstly, we can include more simulators for increased leverage. Another way to increase5

the estimation accuracy is to expand ozone monitoring networks across sparsely sampled regions (Sofen et al., 2016; Schultz

et al., 2017; Weatherhead et al., 2017).

The application of our methodology focuses on, but is not limited to, a particular ozone metric relevant for quantifying the

impact of long-term ozone exposure on human health. We expect that this framework could also be applied to other ozone

metrics relevant to crop production or natural vegetation (Lefohn et al., 2018; Mills et al., 2018), or any other trace gas,10

provided adequate in situ observations are available for model evaluation.

In general, atmospheric chemistry model estimates of surface ozone levels are biased high, as demonstrated by a comparison

of the annual mean surface ozone produced by the ACCMIP (Atmospheric Chemistry and Climate Model Intercomparison

Project) multi-model ensemble to the TOAR Surface Ozone Database (see Figure 6 of Young et al. (2018)). This analysis has

shown that the high bias is also prevalent among models when employing an ozone metric that focuses on the high end of15

the ozone distribution (Figure 8). Similarly, Shindell et al. (2018) compared the NASA GISS-E2 model to observed values

of annual mean DMA8, and concluded that the model was biased high by 25%. Given the common tendency for models to

over-estimate surface ozone, the methodology developed by this paper can be used to improve the accuracy of model output,

either for individual models or for multi-model ensembles.

Code and data availability. The sources of the TOAR data and the output from 4 CCMI models are listed in Section 2.1; the output from the20

GFDL-AM3 model is archived at GFDL and is available to the public upon request to Meiyun Lin; G5NR-Chem model outputs are avail-

able for download at https://portal.nccs.nasa.gov/datashare/G5NR-Chem/Heracles/12.5km/DATA or can be accessed through the OpenDAP

framework at the portal https://opendap.nccs.nasa.gov/dods/OSSE/G5NR-Chem/Heracles/12.5km; All computations in our methodology are

implemented in R (R Core Team, 2013). The relevant code can be found in R packages for statistical interpolation (R-INLA, Lindgren and

Rue (2015)), quadratic programming (limSolve) and spline smoothing (mgcv, Wood (2017)). The R code accompanies this manuscript on its25

associated GMD webpage.

Appendix A: Spatial modeling using the INLA-SPDE approach

In this paper the aim of spatial interpolation is to use (discretized) monitoring observations to build a statistical surrogate

model for estimating the ozone distribution over the whole domain on a sphere. We assume that this ozone distribution follows

a Gaussian process (GP). A GP is a collection of random variables such that any subset of the observations has a joint Gaussian30

distribution. It has been widely used in many applications as a machine learning algorithm (Rasmussen and Williams, 2006).

In this section we briefly introduce the GP model with a focus on spatial kriging. The GP is a popular choice in spatial statistics
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because it allows modeling of fairly complicated functional forms, and it also provides a prediction and associated uncertainty

at any new location. A common limitation of this interpolation is that the resulting distribution of estimated uncertainty will be

lower around individual stations or within dense monitoring networks, and higher in sparsely monitored regions.

Let Y denote an n-vector of ozone observations measured at monitoring sites s, then a statistical model for the spatial field

can be expressed as: Y = f(s) + ε, i.e. the model comprises a smooth GP spatial process f(s), capturing spatial association,5

and an independent normal error ε, which follows a normal error N(0,σ2). This error term can accommodate potential mea-

surement error; on the other hand, kriging without measurement error is usually used for the surrogate of a deterministic model

(i.e. the same input always produces the same output), also known as an emulator (e.g. Conti and O’Hagan (2010)).

The specification of a GP is through its mean function and covariance function, denoting by f(s)∼GP (m(s), c(s,s′)). To

reduce computational intensity, the mean function can be assumed to be a constant m(s) = µ, thus the resulting spatial dis-10

tribution is completely defined by the covariance function. A covariance function characterizes correlations between different

locations in the spatial process, it is the crucial component in a GP, as it represents our assumptions about the latent field from

which we wish to build a surrogate. Specifically, we use the Matérn covariance function, which is a flexible covariance struc-

ture and widely used in spatial statistics (Hoeting et al., 2006; Jun and Stein, 2007, 2008). With the shape parameter ν > 0, the

scale parameter κ > 0, and the marginal precision τ2 > 0, the covariance structure can be written as:15

c(h) =
21−ν

4πκ2ντ2Γ(ν+ 1)
(κ‖h‖)νKν(κ‖h‖),h ∈ S2,

where h denotes the distance between any two locations: h = s− s′, Γ is a gamma function, and Kν is the modified Bessel

function of the second kind of order ν > 0. The scale parameter κ controls the rate of decay of the correlation between two

locations as distance increases. Smaller values of κ, allow for longer ranges over which two sites can be correlated. The

smoothness parameter ν can be seen as the determining behavior of the autocorrelation for observations that are separated by20

a small distance.

The major disadvantage of using a GP is the computational complexity, which typically involves a cubic complexity in the

number of data points, usually denoted as O(n3). Several attempts have been made to reduce the computational burden: e.g.

Cressie and Johannesson (2008), Rue et al. (2009), Banerjee et al. (2012) and Gramacy and Apley (2015). Lindgren et al. (2011)

introduced a popular approach in which the Matérn covariance can be approximated by the solution of certain stochastic partial25

differential equations (SPDE). According to Lindgren et al. (2011), a GP process f(s) with Matérn covariance on a sphere is

the solution of the following stationary SPDE:

(κ2−∆)(ν+1)/2τf(s) =W(s),

where ∆ is the Laplace operator andW is the Gaussian white noise. The core implication of this mathematical relationship is

that an efficient algorithm for solving this SPDE can be applied to approximate the GP (Lindgren et al., 2011).30

This INLA-SPDE technique also enables us to quantify the level of nonstationarity in a spatial field by employing basis

function representations for both κ and τ (i.e. these quantities are constants in a stationary field). To obtain basic identifiability,
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κ(s) and τ(s) are taken to be positive, and their logarithm can be represented as:

logκ(s) =

p∑
k=1

θκkψk(s) and logτ(s) =

p∑
k=1

θτkψk(s), (A1)

where {ψk(s)} is a set of spherical harmonics. The coefficients {θκk} and {θτk} represent local variances and correlation ranges

(Bolin and Lindgren, 2011; Lindgren et al., 2011). A larger number of basis functions permits the representation of smaller

local features.5

We now illustrate a series of statistical model fits to select the best predictive ability of the SPDE model. To choose the

maximum number of basis functions for the parameters κ and τ in equation A1, model selection techniques must be used. We

perform the model selection based on the following criteria:

– RMSE (root-mean-square error): measure of the overall mean difference between predicted values and the observed

values;10

– DIC (deviance information criterion): the DIC is a measure to compare performance of statistical models by using a

criterion based on a trade-off between the goodness of fit and the corresponding complexity of the model. Smaller values

of the DIC indicate a better balance between complexity and a good fit;

– GCV (generalized cross validation): the mean residuals in a leave-one-out test. The model that minimizes the average

predicted residuals over all the data is selected as the best model (Schneider, 2001).15

We estimate 9 statistical models with different numbers of basis functions, presented in Table A1. The simplest model is a

stationary Matérn model (we use basis number 0 to represent the κ and τ as constants). The best fit of all criteria occurs when

the orders of the basis functions are increased from four to five. We therefore conclude that a model with five spatially varying

basis functions is most appropriate for the TOAR observations.
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Table 1. List of the ensemble members used in this paper.

Model ID Group Resolution Meteorological References

Forcing†

CHASER

(MIROC-ESM)

Nagoya University; Japan Agency for Marine-Earth

Science and Technology (JAMSTEC), Japan

2.8◦× 2.8◦ C2 Sudo et al. (2002a, b); Watan-

abe et al. (2011)

GEOSCCM NASA Goddard Space Flight Center, USA 2.5◦× 2◦ C2 Oman et al. (2011)

GFDL-AM3 NOAA Geophysical Fluid Dynamics Laboratory,

USA

2◦× 2◦ C1SD Lin et al. (2012, 2014, 2017)

G5NR-Chem NASA Goddard Space Flight Center, USA 0.125◦× 0.125◦ ∗ Hu et al. (2018)

MOCAGE Centre National de Recherches Météorologiques;

Météo France, France

2◦× 2◦ C2 Josse et al. (2004); Teyssèdre

et al. (2007)

MRI-ESM1r1 Meteorological Research Institute, Japan 2.8◦× 2.8◦ C2 Adachi et al. (2013)

†Meteorological forcing includes coupled ocean-atmosphere (C2) and nudged to observed reanalysis meteorology (C1SD) in CCMI reference simulations

(Morgenstern et al., 2017).

∗ The specification of forcing scenario for this special run is described by Hu et al. (2018).
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Table 2. RMSEs (averaged errors in a given region) between spatially interpolated observations and each model, along with regionally

optimized weights {βrk : for k-th model in region r} (zero weights are not displayed). Last column shows the RMSEs from equal weighted

averages or constrained weights from the multi-model composite. All the numbers are reported in units of ppb (i.e. parts per billion by

volume).

Regional RMSE Averaged

Region CHASER GEOSCCM GFDL-AM3 G5NR-Chem MOCAGE MRI-ESM1r1 Error

Africa 6.40 8.91 12.16 12.16 10.47 14.89 10.83

N America 10.04 8.90 11.28 9.20 24.39 8.41 12.04

S America 7.39 7.19 10.00 8.81 10.59 8.59 8.76

E Asia 9.12 9.42 15.89 13.33 17.68 14.40 13.31

S/C Asia 7.68 15.11 13.36 13.38 13.37 18.41 13.55

Europe 9.14 8.41 10.75 8.20 11.88 9.66 9.67

Oceania 6.00 6.81 11.82 9.42 9.38 9.24 8.78

Russia 6.59 9.10 11.71 7.86 20.29 6.04 10.27

Constrained weights of the multi-model composite Composite

Region αr CHASER GEOSCCM GFDL-AM3 G5NR-Chem MOCAGE MRI-ESM1r1 Error

Africa -5.25 0.27 0.12 0.43 0.01 0.17 - 5.39

N America -7.84 - 0.38 - 0.62 - - 4.35

S America 2.13 0.63 0.13 - 0.24 - - 5.37

E Asia -7.99 0.08 0.83 0.09 - - - 4.88

S/C Asia -8.90 0.52 0.26 0.12 0.10 - - 4.95

Europe -9.91 - - 0.78 0.13 0.09 - 2.75

Oceania -2.36 0.73 - - 0.27 - - 5.76

Russia -7.15 0.21 - 0.45 0.32 0.02 - 2.04

Table 3. RMSE against TOAR observations (i.e. not interpolated ozone) from the multi-model mean (MMM), multi-model composite (from

fusion step 2) and the final fused product (from fusion step 3).

MMM Composite Fusion

E Asia 14.44 5.72 4.27

Europe 11.64 5.31 4.26

N America 12.22 4.51 2.76

Overall∗ 12.32 5.16 3.82

∗ Overall category includes all available sites around the world.
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Figure 1. TOAR observations where the monitoring locations are discretized to a 2◦× 2◦ grid in 2008-2014.

Table A1. Summary of results from fitting nine candidate statistical models (annual average over 2008-2014).

# basis 0 1 2 3 4 5 6 7 8

RMSE 3.82 3.17 3.18 3.23 2.90 2.52 2.76 2.76 3.44

DIC -1517 -1548 -1556 -1561 -1593 -1621 -1603 -1594 -1565

GCV 2.78 2.64 2.62 2.60 2.50 2.43 2.44 2.48 2.60
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(a) Spatially interpolated observations

(b) Interpolation uncertainty

Figure 2. Estimates of spatially interpolated surface ozone distribution and associated uncertainty (half-width of the 95% credible interval

from each cell). 27



(a) Cell-by-cell mean

(b) Cell-by-cell SD

Figure 3. Multi-model mean and standard deviation (SD) in each grid cell from 6 ensemble members.
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(a) CHASER (b) GEOSCCM

(c) GFDL-AM3 (d) G5NR-Chem

(e) MOCAGE (f) MRIESM1r1

Figure 4. Spatial distributions of the ozone metric in North America from each model minus spatially interpolated observations.
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(a) CHASER (b) GEOSCCM

(c) GFDL-AM3 (d) G5NR-Chem

(e) MOCAGE (f) MRIESM1r1

Figure 5. Spatial distributions of the ozone metric in Europe from each model minus spatially interpolated observations.
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(a) CHASER (b) GEOSCCM

(c) GFDL-AM3 (d) G5NR-Chem

(e) MOCAGE (f) MRIESM1r1

Figure 6. Spatial distributions of the ozone metric in East Asia from each model minus spatially interpolated observations.
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(a) Multi-model composite

(b) Multi-model composite + bias correction

Figure 7. Multi-model composite and bias corrected surface.
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Figure 8. Map showing result for multi-model mean minus the fused surface ozone.
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(a) CHASER (b) GEOSCCM

(c) GFDL-AM3 (d) G5NR-Chem

(e) MOCAGE (f) MRIESM1r1

Figure S-1: Global distributions of the ozone metric from ensemble members.
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(a) Before spline smoothing

(b) After spline smoothing

Figure S-2: Strong ozone discontinuities, or artefacts, were present along the geometric boundaries, especially in
western China, before a spline smoothing was employed. The smoothing is only applied to 3 regions: one horizontal
discontinuity between Russia and East/South Asia, one vertical discontinuity between East and South Asia, and one
vertical discontinuity between South Asia and Africa.
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(a) 2 degrees (b) 5 degrees

(c) 10 degrees (d) 15 degrees

Figure S-3: The multi-model bias corrected surface under different ranges of correction radius.
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(a) 2 degrees (b) 5 degrees

(c) 10 degrees (d) 15 degrees

Figure S-4: Amplitudes of multi-model bias correction under different ranges of correction radius.
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Figure S-5: The empirical variogram of ozone metric in North America from each model and product.
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