Articles | Volume 12, issue 12
Methods for assessment of models
11 Dec 2019
Methods for assessment of models |  | 11 Dec 2019

Algorithmic differentiation for cloud schemes (IFS Cy43r3) using CoDiPack (v1.8.1)

Manuel Baumgartner, Max Sagebaum, Nicolas R. Gauger, Peter Spichtinger, and André Brinkmann

Related authors

Impact of formulations of the homogeneous nucleation rate on ice nucleation events in cirrus
Peter Spichtinger, Patrik Marschalik, and Manuel Baumgartner
Atmos. Chem. Phys., 23, 2035–2060,,, 2023
Short summary
On numerical broadening of particle-size spectra: a condensational growth study using PyMPDATA 1.0
Michael A. Olesik, Jakub Banaśkiewicz, Piotr Bartman, Manuel Baumgartner, Simon Unterstrasser, and Sylwester Arabas
Geosci. Model Dev., 15, 3879–3899,,, 2022
Short summary
New investigations on homogeneous ice nucleation: the effects of water activity and water saturation formulations
Manuel Baumgartner, Christian Rolf, Jens-Uwe Grooß, Julia Schneider, Tobias Schorr, Ottmar Möhler, Peter Spichtinger, and Martina Krämer
Atmos. Chem. Phys., 22, 65–91,,, 2022
Short summary
High homogeneous freezing onsets of sulfuric acid aerosol at cirrus temperatures
Julia Schneider, Kristina Höhler, Robert Wagner, Harald Saathoff, Martin Schnaiter, Tobias Schorr, Isabelle Steinke, Stefan Benz, Manuel Baumgartner, Christian Rolf, Martina Krämer, Thomas Leisner, and Ottmar Möhler
Atmos. Chem. Phys., 21, 14403–14425,,, 2021
Short summary
In situ observation of new particle formation (NPF) in the tropical tropopause layer of the 2017 Asian monsoon anticyclone – Part 2: NPF inside ice clouds
Ralf Weigel, Christoph Mahnke, Manuel Baumgartner, Martina Krämer, Peter Spichtinger, Nicole Spelten, Armin Afchine, Christian Rolf, Silvia Viciani, Francesco D'Amato, Holger Tost, and Stephan Borrmann
Atmos. Chem. Phys., 21, 13455–13481,,, 2021
Short summary

Related subject area

Atmospheric sciences
On the use of Infrared Atmospheric Sounding Interferometer (IASI) spectrally resolved radiances to test the EC-Earth climate model (v3.3.3) in clear-sky conditions
Stefano Della Fera, Federico Fabiano, Piera Raspollini, Marco Ridolfi, Ugo Cortesi, Flavio Barbara, and Jost von Hardenberg
Geosci. Model Dev., 16, 1379–1394,,, 2023
Short summary
Incorporation of aerosol into the COSPv2 satellite lidar simulator for climate model evaluation
Marine Bonazzola, Hélène Chepfer, Po-Lun Ma, Johannes Quaas, David M. Winker, Artem Feofilov, and Nick Schutgens
Geosci. Model Dev., 16, 1359–1377,,, 2023
Short summary
The impact of altering emission data precision on compression efficiency and accuracy of simulations of the community multiscale air quality model
Michael S. Walters and David C. Wong
Geosci. Model Dev., 16, 1179–1190,,, 2023
Short summary
AerSett v1.0: a simple and straightforward model for the settling speed of big spherical atmospheric aerosols
Sylvain Mailler, Laurent Menut, Arineh Cholakian, and Romain Pennel
Geosci. Model Dev., 16, 1119–1127,,, 2023
Short summary
Optimization of weather forecasting for cloud cover over the European domain using the meteorological component of the Ensemble for Stochastic Integration of Atmospheric Simulations version 1.0
Yen-Sen Lu, Garrett H. Good, and Hendrik Elbern
Geosci. Model Dev., 16, 1083–1104,,, 2023
Short summary

Cited articles

Albring, T., Sagebaum, M., and Gauger, N. R.: Efficient Aerodynamic Design using the Discrete Adjoint Method in SU2, AIAA 2016-3518, 2016. a
Asai, T.: A Numerical Study of the Air-Mass Transformation over the Japan Sea in Winter, J. Meteorol. Soc. Jpn. Ser. II, 43, 1–15, 1965. a
Baumgartner, M.: Algorithmic Differentiation for Cloud Schemes using CoDiPack (v1.8.1), Zenodo,, 2019. a
Belikov, D. A., Maksyutov, S., Yaremchuk, A., Ganshin, A., Kaminski, T., Blessing, S., Sasakawa, M., Gomez-Pelaez, A. J., and Starchenko, A.: Adjoint of the global Eulerian–Lagrangian coupled atmospheric transport model (A-GELCA v1.0): development and validation, Geosci. Model Dev., 9, 749–764,, 2016. a
Bischof, C. H. and Eberhard, P.: Automatic differentiation of numerical integration algorithms, Math. Comp., 68, 717–731,, 1999. a, b, c
Short summary
Numerical models in atmospheric sciences need to include physical processes through parameterizations, which are not explicitly resolved, e.g., the formation of clouds. As a consequence, the parameterizations contain uncertain parameters. We suggest using the technique of algorithmic differentiation (AD) to identify the most uncertain parameters within parameterizations. In this study, we illustrate AD by analyzing a scheme for liquid clouds incorporated into a parcel model framework.