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Abstract. Numerical models in atmospheric sciences not
only need to approximate the flow equations on a suitable
computational grid, they also need to include subgrid effects
of many non-resolved physical processes. Among others, the
formation and evolution of cloud particles is an example of
such subgrid processes. Moreover, to date there is no univer-
sal mathematical description of a cloud, hence many cloud
schemes have been proposed and these schemes typically
contain several uncertain parameters. In this study, we pro-
pose the use of algorithmic differentiation (AD) as a method
to identify parameters within the cloud scheme, to which the
output of the cloud scheme is most sensitive. We illustrate the
methodology by analyzing a scheme for liquid clouds, incor-
porated into a parcel model framework. Since the occurrence
of uncertain parameters is not limited to cloud schemes, the
AD methodology may help to identify the most sensitive un-
certain parameters in any subgrid scheme and therefore help
limiting the application of uncertainty quantification to the
most crucial parameters.

1 Introduction

Modeling the atmosphere is a highly non-trivial task due to
the multiscale and multicomponent nature of the atmospheric
flow, where multiple physical processes on different length
and timescales interact simultaneously (Orlanski, 1975). One
particular result of the interaction of such processes is regu-
larly observed in the sky: clouds appear and disappear. The
evolution of a cloud (see, e.g., Lamb and Verlinde, 2011, for
an in-depth treatment of cloud evolution) starts on the length

scale of a few nanometers, where aerosol particles get wet-
ted by ambient water vapor leading to the formation of haze
particles. If thermodynamic conditions are fulfilled, i.e., the
(relative) humidity is large enough, the haze particles grow
further to become cloud droplets with typical diameters of
about 10–30 µm. This growth process is described by com-
bining Maxwell and Köhler theories (Rogers and Yau, 1989;
Devenish et al., 2012; Köhler, 1936; Maxwell, 1877). Col-
lisions of the cloud droplets eventually lead to rain drops
with sizes up to larger than 100 µm (see, e.g., Devenish et al.,
2012; Grabowski and Wang, 2013, for a discussion including
turbulence effects). Due to their weight, rain drops fall out of
the cloud and form precipitation. Since all phase transitions
are connected with the release or consumption of latent heat,
the formation and evaporation of a cloud can affect the ambi-
ent atmospheric flow by modifying local buoyancy (see, e.g.,
Cotton et al., 2010). However, all aforementioned cloud pro-
cesses are microphysical processes and not resolved in nu-
merical models, in particular not in the operational models
used for weather forecasts. In these models, the cloud itself
is not resolved and instead considered as a subgrid process,
calling for a representation of the impact of the cloud by us-
ing so-called “parameterizations” or “cloud schemes” (see,
e.g., Khain et al., 2000). These schemes take the values of
the resolved fields as input and compute the feedback of the
unresolved process as an output.

In the literature, many cloud schemes are formulated as
one- or two-moment schemes, predicting the mass mixing ra-
tio and, in the case of a two-moment scheme, also the number
concentration of the cloud species considered in the scheme
(Khain et al., 2015), e.g., the number of cloud droplets per
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unit mass of dry air. However, at the moment no universal
governing equation is available to describe the evolution of
a cloud across all involved scales, explaining the existence
of different formulations of the cloud processes. In addition,
cloud schemes typically contain parameters with uncertain
values, which may be introduced by artificial parameters or
limited observational evidence of the precise value. A typi-
cal example for an uncertain parameter is the autoconversion
rate, encoding the efficiency of colliding cloud droplets to
form large and falling rain drops (Khain et al., 2015). His-
torically, the autoconversion rate was introduced by Kessler,
who advocated the partitioning of the whole size spectrum of
droplets into small cloud droplets, with negligible sedimen-
tation velocity, and falling rain drops (Kessler, 1969). Most
cloud schemes adopt the partitioning of the size spectrum,
especially all schemes of the Kessler type. The cloud scheme
to be described in Sect. 3 below is also of the Kessler type.
More examples of processes with uncertainties in their de-
scription and of how uncertainties enter the description of
clouds are discussed in Khain et al. (2015).

In any case, uncertain parameters introduce uncertainty in
the cloud scheme at hand, and ultimately into the numerical
model as a whole. To assess the uncertainty of the param-
eters, one usually performs sensitivity studies, e.g., by run-
ning ensemble simulations, where each ensemble member
employs slightly different values for the parameters. How-
ever, usually the number of ensemble members is limited to
small values posing an additional challenge to extract the de-
sired signal from the simulations.

In this study, we propose the use of “algorithmic differen-
tiation” (AD) as another way of identifying the parameters
with largest sensitivity. Although this method is well known
in computer science and engineering, its potential in mete-
orological contexts, and cloud physics in particular, has not
yet been fully exploited. Most applications of AD in meteo-
rology are limited to individual studies investigating model
sensitivities (usually with respect to initial values) by using
adjoint models (e.g., Bischof et al., 1996b; van Oldenborgh
et al., 1999; Kaminski et al., 1999; Xiao et al., 2008; Rauser
et al., 2010; Zhang et al., 2013; Belikov et al., 2016) or stud-
ies targeting applications in data assimilation (e.g., Le Dimet
et al., 2002; Blessing et al., 2014). We will introduce the tech-
nique in Sect. 2, but, in a nutshell, it provides the derivative
of a given computer code with respect to selected parameters.
A cloud scheme may be described as a function f , taking the
flow characteristics y from the given grid box together with
parameters η as an input, and computing the feedback z of the
cloud, i.e., z= f (y, η), as an output. Assessing the sensitiv-
ity of the output z with respect to the parameters η amounts
to computing the derivative dz

dη . AD helps in evaluating this
derivative by computing the derivative of the function f̂ with
respect to the parameters, where the hat notation indicates
the implemented version of the mathematical function f in
some computer code. Using this technique can help in the

development of cloud schemes by providing the respective
derivatives to machine accuracy in an automated fashion, i.e.,
without implementing finite difference approximations of f̂ .

Recently, a field called uncertainty quantification has
emerged in mathematics as a more systematic combination
of (numerical) analysis and statistics in order to study the
propagation of uncertainties (e.g., Sullivan, 2015; Le Maître
and Knio, 2010). Although powerful methods for the investi-
gation of uncertainties already exist, their practical use often
limits the number of the considered uncertain parameters due
to the curse of dimensionality; see Chertock et al. (2019) for
an application in the context of cloud physics. Therefore, it is
valuable to first identify the parameters with the highest sen-
sitivity using AD in order to limit more rigorous or extensive
investigation to these parameters.

We emphasize that AD is not related to a specific appli-
cation (as a cloud scheme) nor to a specific programming
language. Although we use an implementation in C++ to-
gether with an AD tool suited for this language, AD tools for
other languages like Fortran are available (e.g., Bischof et al.,
1996a). A list can be found on http://www.autodiff.org (last
access: 23 October 2019).

In this study, we will first explain the concept of algo-
rithmic differentiation in Sect. 2, introduce the warm cloud
scheme used for illustration purposes within an air parcel
framework in Sect. 3, and show results in Sect. 4. Some con-
cluding remarks are given in Sect. 5.

2 What is algorithmic differentiation?

Algorithmic differentiation (AD) is a mathematical theory
that describes how the computation of derivatives in a com-
puter program can be automatized. It was developed in the
early 1980s and rediscovered several times since then. The
most well-known resource is the book of Griewank and
Walther (2008). A useful first introduction is given by Nei-
dinger (2010).

For the purpose of computing the derivative of a program,
it is considered as a sequence of simple elemental (or in-
trinsic) functions including the sine, cosine, multiplication,
division, and addition. The approach of AD considers the
given program as a composition of elemental functions and,
by applying the chain rule, computes its directional deriva-
tive by accumulating the derivatives of each elemental func-
tion within the program code. It is important to stress that
AD does not generate a generalized representation of the
derivative of the computer program. Instead, AD computes
the derivatives alongside the execution path. The path might
change due to conditional instructions within the code.

As an example, assume the computer program to be differ-
entiated is given by

w = (a+ b) · (c− d), (1)
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where a, b, c, d are the input variables and w is the out-
put. This program can now be split into elemental functions
which yield the intermediate steps t1, t2 required by AD as
follows:

t1 = a+ b,

t2 = c− d,

w = t1 · t2. (2)

For the application of the chain rule the Jacobian matrix
has to be computed for each of these intermediate steps
with respect to all input variables, which is quite simple;
e.g., for t1 = t1(a, b, c, d)= a+ b the matrix is (1, 1, 0, 0)
since ∂t1

∂a
=

∂t1
∂b
= 1 and ∂t1

∂c
=

∂t1
∂d
= 0. However, for nota-

tional convenience it is common to drop the indication of
the formal dependence of the elemental function t1 and its
derivatives on the input parameters c, d since they are un-
changed in t1. In order to compute the directional derivative,
the Jacobian matrix is multiplied with the desired direction
(ȧ, ḃ, ċ, ḋ)T , where the dot notation is used in the AD the-
ory to describe the corresponding derivative direction of a
variable. Applying this process to the full procedure Eq. (2),
the result is

ṫ1 = ȧ+ ḃ,

ṫ2 = ċ− ḋ,

ẇ = t2 · ṫ1+ t1 · ṫ2, (3)

since, e.g.,

ṫ1 =

(
∂t1

∂a
,
∂t1

∂b

)
·
(
ȧ, ḃ

)T
= (1, 1) ·

(
ȧ, ḃ

)T
= ȧ+ ḃ, (4)

where we again neglected the formal dependency of t1 on c
and d . By computing the corresponding directional deriva-
tive statements in procedure Eq. (3) alongside the original
statements in procedure Eq. (2), the directional derivative
is computed for the whole computer program Eq. (1). Note
that the choices (ȧ, ḃ, ċ, ḋ)= (1, 0, 0, 0) and (ȧ, ḃ, ċ, ḋ)=
(0, 1, 0, 0) for the input directions for the AD computation
results in the computation of the partial derivatives ∂w

∂a
and

∂w
∂b

.
The example shows the application of the forward AD

mode on a simple computer program. The general the-
ory of AD assumes that the elemental functions are eval-
uated at argument values where they are differentiable in
a neighborhood of the argument value. Actually, many
common elemental functions are differentiable everywhere
as, e.g., addition or multiplication, but there are elemen-
tal functions which are differentiable except at some criti-
cal points. Examples for elemental functions with a critical
point are square root, absolute value, and division, which
are not differentiable at the origin. How these difficulties
are treated mainly depends on the AD tool. The AD tool
CoDiPack used in this study provides the preprocessor op-
tion CODI_CheckExpressionArguments to throw an

exception if such a critical point is encountered. In any case,
the exact derivative of each elemental function, at least apart
from the critical points, may be written down explicitly. Note
that conditional instructions (e.g., if-else switches) do not
pose problems, since they only alter the program path, i.e.,
the specific sequence of the elemental instructions that are
executed. Since the whole computer program is a compo-
sition of the differentiable elemental operations, the chain
rule states that also the whole program is differentiable (apart
from the critical points). Moreover, if the program is repre-
sented by the function f̂ : Rn→ Rm, the so-called forward
mode of AD computes

ż=
df̂
dx
(x) ẋ. (5)

In Eq. (5), df̂
dx (x) is the Jacobian of the full program at state

x, vector ẋ is the direction for which the program derivative is
desired along the computational path and the variable x sub-
sumes all input variables. In the notation of Sect. 1, we have
x = (y, η), i.e., x contains the cloud model and thermody-
namic variables y together with the inherent parameters η. In
this terminology, an inherent parameter of the (cloud) model
is also now considered as a parameter if this parameter is to
be investigated.

Equation (5) just states which result is computed by the
forward mode of AD and not how it is computed. The evalu-
ation of the derivative is done alongside the primal computa-
tion of f̂ (x) by applying Eq. (5) to each elemental operation
as in the above example, i.e., the full Jacobian is never com-
puted explicitly but accumulated by considering each code
statement individually.

The second operation mode of AD is called the reverse
AD mode. As will become clear, the reverse mode can be
introduced by multiplying an adjoint direction from the left
side to the derivative representation of the computer program,
instead of multiplying a derivative direction from the right as
in Eq. (5). This yields the general equation xT = zT df̂

dx (x).
The standard AD notation for the adjoint of a variable v is
the bar notation v and may be thought of as containing the
immediate derivative of the current statement with respect to
the particular variable.

As an example, for the statementw = t1·t2, the AD reverse
mode evaluation is

(
t1, t2

)
= w ·

(
∂w

∂t1
,
∂w

∂t2

)
= w · (t2, t1)= (w · t2, w · t1) . (6)

The information flow in Eq. (6) is reversed for the adjoint
variables: the input variable is w, while t1 and t2 are output
variables. Because of this reversal of the information flow, all
reverse AD statements need to be evaluated in reverse order.
The reverse of the last statement of the program code f̂ will
be evaluated first, the second to last statement as second, and
so on. The reverse AD procedure for the example procedure
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Eq. (2) is then

t1 = t2 ·w,

t2 = t1 ·w,

c = t2,

d =−t2,

a = t1,

b = t1. (7)

As discussed above, the statements from procedure Eq. (2)
are now handled in reverse order. The values a, b, c, and
d contain the derivatives of w with respect to themselves.
Taking d as an example, according to the chain rule this is

dw
dd
= w

dw
dt2

dt2
dd
= w · t1 · (−1)=−t1 ·w, (8)

and the value of t1 is taken from the primal evaluation of
the program. By choosing w = 1 as input for the reverse AD
mode, the adjoint variable d contains the derivative of proce-
dure Eq. (2) with respect to the input d .

The example, Eq. (7), shows the application of the reverse
AD mode on a simple computer program. According to the
general theory of AD, given a computer program which can
be represented by the function f̂ : Rn→ Rm, the reverse AD
mode computes

x =

[
df̂
dx
(x)

]T
z (9)

where, again, df̂
dx (x) denotes the Jacobian of f̂ and[

df̂
dx (x)

]T
its transpose, while z represents the desired di-

rection for the derivative. Eq. (9) again just states the result
that is computed by the reverse mode of AD and not how it
is computed. The actual evaluation of the derivative is done
without forming the Jacobian and instead by storing infor-
mation during the primal computation of f̂ (x). Afterwards, a
reverse sweep over the stored information is performed. This
reverse sweep applies a slightly modified version of Eq. (9)
to each elemental function as in the above example.

Both operation modes of AD are connected via the discrete
adjoint operator. Let 〈·, ·〉n and 〈·, ·〉m denote the Euclidian
scalar products in Rn and Rm, respectively. We now select
an arbitrary direction z ∈ Rm, which we apply to the result of
the forward mode. This yields the equality

〈z, ż〉m =

〈
z,

df̂
dx
(x) ẋ

〉
m

=

〈[
df̂
dx
(x)

]T
z, ẋ

〉
n

= 〈x, ẋ〉n (10)

by shifting the Jacobian matrix of f̂ to the left side of the
scalar product. This shows that the reverse mode is the dis-
crete adjoint of the forward mode (see, e.g., Kalnay, 2003,

for the use of adjoint models in atmospheric data assimila-
tion).

The advantage of the reverse mode becomes clear if we as-
sume that we want to compute the full gradient of a function
f̂ : Rn→ Rm. In the case ofm= 1, i.e., a computer program
with n input and a single output variable, the full gradient
df̂
dx (x) is a matrix with n columns and one row; hence its
transpose is a matrix with n rows and a single column. Since
m= 1, the direction z is a vector with a single entry. Conse-
quently, we obtain the result x by computing Eq. (9) exactly
once with the single input z= (1) ∈ R1. Using the forward
mode of AD, we infer from Eq. (5) that the computation of
the full gradient requires n subsequent computations with the
choices ẋ = e1, ẋ = e2, . . ., ẋ = en, and ei ∈ Rn denotes the
ith unit vector. If n is large, these n subsequent computations
require much more computational effort than a single (but
slightly more costly) computation using the reverse mode of
AD.

In contrast, if n= 1, i.e., the computer program has a
single input and m output variables, the forward mode of
AD computes the full derivative with a single computation
by choosing the 1× 1 matrix ẋ = (1) as the input direc-
tion, whereas the reverse mode needs m computations, being
costly for large values of m.

An alternative approach to compute the derivative of f̂ :
Rn→ Rm in the direction d ∈ Rn is to apply the finite differ-
ence approach

df̂
dx
(x) · d ≈

f̂ (x+ td)− f̂ (x)

t
(11)

with a (small) step size t > 0, requiring two evaluations of
the program f̂ . Instead of the approximation Eq. (11), one
could alternatively choose a finite difference approximation
of a higher order (e.g., Grossmann and Roos, 2007), but these
typically need even more program evaluations. In contrast to
AD, the finite difference approach requires the choice and
tuning of the step size t > 0 to achieve the desired accuracy
of the derivative. Moreover, the optimal value of the step size
will in general depend on the selected direction d and the
state x (see Elizondo et al., 2002, for a comparison with AD).
These issues render the finite difference approach as quite
unattractive but due to its simplicity it is often used, accept-
ing all drawbacks of the method.

If f̂ is a linear function, then an arbitrary step size t can be
chosen for all directions. For non-linear functions, t should
be as small as possible to achieve the desired accuracy but
large enough to avoid cancellation errors due to the differ-
ence in Eq. (11). AD has the advantage of not having to
choose and tune a step size. Since the derivative of each el-
emental function is known exactly and AD applies the chain
rule, the computed derivatives are accurate up to machine
precision (Griewank et al., 2012).

Moreover, using the reverse mode for computing the full
gradient in the case of only a small number of output vari-
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ables, AD has the potential of being several times faster com-
pared to using finite difference approximations.

AD is introduced into computer programs mostly in two
ways: either through operator overloading or through source
transformation. For C++, the majority of tools (as listed at
http://www.autodiff.org, last access: 23 October 2019) use
the operator overloading approach which is also used by the
AD tool CoDiPack (Sagebaum et al., 2017a) developed by
the authors from the Scientific Computing group in Kaiser-
slautern and employed in this study. CoDiPack uses expres-
sion templates to reduce the amount of required informa-
tion for the reverse AD mode. The data layout of the infor-
mation is such that a minimal memory footprint is required
and caching strategies of the processors can be applied. The
general focus of CoDiPack is its application in high per-
formance computing environments which was successfully
demonstrated in Sagebaum et al. (2017b) and Albring et al.
(2016).

The source transformation approach is mostly used in For-
tran source codes. Here, the code is parsed and new code is
generated which adds the additional statements for the for-
ward or reverse AD mode. Tapenade (e.g., Hascoët and Pas-
cual, 2013) is the most widespread tool for source transfor-
mations in Fortran. It is written in Java and supports nearly all
features of older Fortran standards. Support for more mod-
ern features in newer Fortran versions is an ongoing devel-
opment.

In general AD can be applied to any computer program.
After an initial effort, the derivative computations can be au-
tomatized in the sense that every change in the code will im-
mediately affect the primal computation and also the deriva-
tive evaluation. How much time the initial effort requires de-
pends strongly on the code and which AD tool is applied. A
general effort at analyzing software and detecting problem-
atic code constructs is done in Hück et al. (2015). In gen-
eral, operator overloading tools are usually quite easy to in-
troduce into a code if it is well written and there is a distinct
place where the computation type of the program can be de-
fined. Source transformation usually requires much greater
effort. In both cases an early introduction of AD into the code
reveals incorrect implementation assumptions and yields a
cleaner code.

3 The warm cloud scheme

As an application for AD, we consider a slightly general-
ized one-moment scheme for warm cloud microphysics, i.e.,
liquid clouds without ice, within a zero-dimensional air par-
cel framework. One-moment schemes are designed to predict
the temporal evolution of the mass of non-sedimenting cloud
droplets, rain drops, and water vapor, i.e., the mixing ratios
qc =

Mc
Ma

, qr =
Mr
Ma

, and qv =
Mv
Ma

where Mc is the mass of
cloud droplets,Mr the mass of rain drops,Mv the mass of wa-
ter vapor, and Ma the mass of dry air. One-moment schemes

have a long history and are governed by the classical parti-
tioning of the droplet spectrum into non-sedimenting cloud
droplets and larger rain drops, which fall due to the gravita-
tional acceleration (Kessler, 1969). Although these schemes
remain the default choice in many computational models, for
example, the operational numerical weather forecast mod-
els IFS (ECMWF, 2017), run by the European Center for
Medium Range Weather Forecast (ECMWF), and COSMO
(Doms et al., 2011), run by the German Weather Service
(DWD), much consensus exists that two-moment schemes
are in general more accurate (Igel et al., 2015). The differ-
ence between a one-moment and a two-moment scheme is
that the two-moment scheme not only predicts the evolution
of the mass mixing ratios but also the corresponding number
concentrations.

The one-moment warm cloud schemes of the IFS and the
COSMO model may be written in generic form as (see Rose-
meier et al., 2018; Porz et al., 2018)

dqc

dt
= c · (S− 1)q

1
3

c︸ ︷︷ ︸
Condensation

− a1q
γ
c︸︷︷︸

Autoconversion

− a2q
βc
c q

βr
r︸ ︷︷ ︸

Accretion

, (12a)

dqr

dt
= a1q

γ
c︸︷︷︸

Autoconversion

+ a2q
βc
c q

βr
r︸ ︷︷ ︸

Accretion

(12b)

+
(
e1q

δ1
r + e2q

δ2
r
)

min(S− 1, 0)︸ ︷︷ ︸
Evaporation

(12c)

+B − dqζr︸︷︷︸
Sedimentation

, (12d)

dqv

dt
=−c · (S− 1)q

1
3

c (12e)

−
(
e1q

δ1
r + e2q

δ2
r
)

min(S− 1, 0) , (12f)

with the coefficients c, a1, a2, e1, e2, d , the exponents
γ, βc, βr, δ1, δ2, ζ and the saturation ratio S = pv

psat
, compar-

ing the partial pressure pv of water vapor to the saturation
vapor pressure psat over a flat surface of water. The scheme
includes the following processes:

i. condensational growth of cloud droplets;

ii. autoconversion, describing the formation of rain drops
by colliding cloud droplets;

iii. accretion, describing the collection of cloud droplets by
falling rain drops;

iv. evaporation of rain drops;

v. sedimentation of rain drops out of the grid box.

The term B subsumes the flux of rain drops falling from
above into the considered grid box. The splitting of the evap-
oration term in Eq. (12d) is due to the appearance of the
ventilation factor in the diffusional growth equation for the
rain drops, taking a non-uniform distribution of water vapor
around the falling rain drop into account.
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The major differences of Eq. (12) from the actual scheme
in the operational model are the formulations of the sedi-
mentation process as a sum of the incoming and outgoing
fluxes B and dqζr , and the use of an explicit condensation
term, which is usually circumvented by employing a sat-
uration adjustment scheme (Asai, 1965; McDonald, 1963;
Langlois, 1973; Soong and Ogura, 1973; Kogan and Mar-
tin, 1994). Note that the values of the coefficients may also
depend on the environmental conditions. Also note that the
formulation in Eq. (12) does not contain a term for the acti-
vation of new cloud droplets. Within the operational models,
the activation of cloud droplets is done with the help of the
saturation adjustment, where the excess water vapor is con-
verted into mass of cloud droplets, thus always activating the
maximal number if not restricted otherwise.

After choosing an appropriate set of coefficients and expo-
nents, Eq. (12) represent a cloud scheme for a warm cloud in
the spirit of Kessler, although not every choice of parameters
yields a physically meaningful scheme. Apart from the con-
densation term, the parameterizations of the other processes
are not based on purely physical reasoning. Rather the struc-
ture of the terms represent in some sense ad hoc formulations
and approximations, but may also be motivated in the sense
of population dynamics. The values of the coefficients and
the exponents are usually obtained by fitting to observational
data or results of detailed models (e.g., Khairoutdinov and
Kogan, 2000). In any case, the precise values of the coeffi-
cients and the exponents are uncertain to some degree.

For simplicity, we consider the cloud scheme Eq. (12)
within an adiabatic air parcel, providing a natural framework
to start with in the development of cloud schemes. The clo-
sure of Eq. (12) is given by the evolution equations for pres-
sure p and temperature T :

dp
dt
=−

g

RT
wp, (13a)(

cpa+ cpvqv+ cpl (qc+ qr)
) dT

dt
=−gw−L

dqv

dt
, (13b)

where g denotes the gravitational acceleration, R =

Ra

(
1+ 1−ε

ε
qv

1+qv

)
the gas constant for moist air, Ra the gas

constant for dry air, Rv the gas constant for water vapor, and
ε = Ra

Rv
the quotient of the gas constants of dry air and water

vapor, w the vertical velocity and L the latent heat of vapor-
ization. The coefficient c of the condensation is given by

c = 4π
(

3
4πρl

) 1
3
HN

2
3

c , (14)

with ρl the density of water, Nc an assumed constant number
concentration of the cloud droplets, and the thermodynamic
correction (Howell factor)

H =

[(
L

RvT
− 1

)
L

KT
+
RvT

Dpsat

]−1

(15)

for the condensational growth of a cloud droplet. In Eq. (15),
K denotes the thermal conductivity of dry air and D the dif-
fusivity of water vapor in air. Note that the choice of a fixed
constant cloud droplet number Nc in Eq. (14) is motivated
by the default Kessler-type warm cloud scheme of the IFS
model (ECMWF, 2017).

Using the notation introduced in Sect. 1, the combined dis-
cretization of the governing Eqs. (12) and (13) represents
the (mathematical) function f = f (y, η), taking the values
of the foregoing time step

y =
(
pold, T old, qold

c , qold
r , qold

v

)
(16)

together with the parameters

η = (a1, a2, e1, e2, d, γ, βc, βr, δ1, δ2, ζ ) (17)

to compute the state of the system at the new time level, i.e.,
computing z= f (y, η). Implementing f yields the function
f̂ , from which AD can compute the derivatives with respect
to the parameters η.

4 Application of algorithmic differentiation

We implemented the air parcel model in C++ and discretized
the ordinary differential equations using the classical explicit
Runge–Kutta method of order 4 (Hairer et al., 1993), al-
though any other method could be used as well. We chose the
values of the parameters according to the warm rain scheme
used in the operational forecast model IFS (ECMWF, 2017).
In this case, all exponents are independent of the environ-
mental conditions and only the coefficients e1, e2 of the evap-
oration depend on the environmental conditions. Table 1 col-
lects the values of the constant coefficients and exponents
together with the values of e1, e2 at pressure 850 hPa and
temperature 270 K. Note that e1, e2 vary only weakly with
pressure and temperature. Prior to each time step, we com-
pute the values of the parameters e1, e2 for the cloud model
using the environmental values of pressure and temperature
from the old time step. This fixes the values of the parameters
for the call to the function f̂ , computing numerically a sin-
gle time step of the governing Eqs. (12) and (13). Using AD,
we compute the derivative of the implemented code f̂ with
respect to the parameters Eq. (17) at the current time step.

In the following, we always assume a constant vertical
velocity w, the initial environmental conditions 270 K and
850 hPa, the constant cloud droplet number density ρNc =

50 cm−3 (as suggested in ECMWF, 2017 over ocean), no fall
of rain drops from above B = 0 s−1, and the constant time
step 1t = 0.01 s. To arrive at a meaningful sedimentation
rate, we adopt the assumption of constant terminal velocity
of the rain drops from ECMWF (2017) and assume an air
parcel with height h= 1000 m.
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Table 1. Values of the coefficients and exponents used for the cloud scheme. All coefficients except for e1, e2 are independent of environ-
mental pressure and temperature. The values for the exponents are exact; the values for the coefficients are rounded to three digits. The
coefficient values displayed for e1, e2 are for environmental pressure 850 hPa and temperature 270 K.

a1 a2 e1 e2 d

1.842s−1 134s−1
−5.025× 10−7 s−1 1.772× 10−4 s−1 4× 10−3 s−1

γ βc βr δ1 δ2 ζ

2.47 1.15 1.15 10
9

127
360 1

Figure 1. Temporal evolution of the saturation ratio S (a), the cloud droplet mixing ratio qc (b), and the rain drop mixing ratio qr (c) for the
ascending air parcel with no pre-existing clouds.

4.1 Cloud formation in updraft

As the first example we consider an updraft velocity w =
1 ms−1, the initial conditions

(qc(0), qr(0))=
(

10−10 kgkg−1, 0kgkg−1
)

(18)

for the mixing ratios, and S(0)= 1 for the saturation ratio
and integrate the governing equations for 1950 s. The reason
of not choosing qc(0)= 0 kgkg−1 is that Eq. (12a) needs a
non-zero initial value to allow for a non-constant and non-
zero solution. Physically, this reflects the fact that the cloud
scheme Eq. (12) does not include a precise activation mech-
anism which predicts the number of activated cloud droplets
as a function of saturation ratio. Such a mechanism is not
included in the operational model due to its usage of a satu-
ration adjustment scheme (e.g., Kogan and Martin, 1994).

Figure 1a, b, and c show, respectively, the temporal evolu-
tion of the saturation ratio S, the cloud droplet mixing ratio
qc, and the rain drop mixing ratio qr. Apparently, the satu-
ration ratio increases initially due to adiabatic cooling, until
cloud droplet mass increased enough to balance the source
for the saturation ratio from the adiabatic cooling by the
diffusional growth of the cloud droplets. Since autoconver-
sion is the only process for forming rain, its formation starts
after enough cloud droplet mass is available. The time in-
terval between 900 and 1200 s is a transition region, where
the influence of autoconversion decreases while the influ-
ence of accretion increases, i.e., falling rain drops start to

effectively collect cloud droplets and consequently increase
the rain drop mass mixing ratio qr. This may also be seen
directly from the model Eq. (12): accretion is modeled as
a2q

βc
c q

βr
r , hence an increase of rain drop mass directly in-

creases the influence of this process and the further decrease
in cloud droplet mass may be attributed to accretion. At about
1200s the saturation ratio starts to increase again, since the
decreasing cloud droplet mass diminishes the sink for water
vapor due to its condensational growth. Note that, according
to Eq. (12c), the evaporation term is inactive for supersatu-
rated conditions with S ≥ 1.

The derivatives of the mixing ratios with respect to the
coefficients are shown in Fig. 2, whereas Fig. 3 shows the
derivatives with respect to the exponents. As Fig. 2a shows,
the coefficient with the largest sensitivity to the cloud droplet
mass qc up to about 1000 s is the coefficient a1 for autocon-
version (red curve). The large sensitivity during the initial
stage of the cloud evolution implies that the main loss of
cloud droplet mass can be attributed to the autoconversion
process, rendering the autoconversion rate a critical param-
eter. Given that autoconversion is the only process for pro-
ducing rain drops out of the cloud droplets, this result may
be anticipated. The negative value of the derivative ∂qc

∂a1
indi-

cates a decrease in qc if the value of a1 is increased by a small
amount, i.e., a larger autoconversion rate results in a faster
decrease of the cloud droplet mass. The transition region be-
tween 900 and 1200 s, where the influence of autoconversion
decreases and accretion increases, is also clearly visible as
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Figure 2. Temporal evolution of the derivatives of the cloud droplet mixing ratio qc (a) and the derivatives of the rain drop mixing ratio qr (b)
and (c) with respect to the coefficients. Panel (b) shows the derivatives of the rain drop mixing ratio qr with respect to the coefficients but
without the derivative ∂qr

∂d
with respect to the sedimentation coefficient; the panel (c) shows the derivatives of qr including the derivative with

respect to the sedimentation coefficient d (purple curve). All panels correspond to the first case of an ascending air parcel with no pre-existing
clouds.

a decreasing magnitude of ∂qc
∂a1

and an increasing magnitude

of the derivative ∂qc
∂a2

of cloud droplet mass mixing ratio with
respect to the accretion parameter a2 (blue curve).

Inspecting Fig. 2b, we observe a positive derivative ∂qr
∂a1

of the rain mixing ratio with respect to the autoconversion
coefficient with the same magnitude as ∂qc

∂a1
. This simply re-

sembles the mass continuity, since a faster autoconversion
implies a faster decrease in the cloud droplet mass qc and
an equally fast increase in the rain drop mass qr. The same
is true for the accretion, i.e., the derivatives ∂qc

∂a2
,
∂qr
∂a2

(blue
curves in Fig. 2a and b).

The derivatives ∂qc
∂e1
,
∂qc
∂e2

of the cloud droplet mixing ratio
with respect to the rain evaporation rate coefficients e1, e2
and the derivatives ∂qr

∂e1
,
∂qr
∂e2

of the rain mixing ratio with re-
spect to the same coefficients are identically zero, consistent
with the fact that the evaporation term is inactive within a
supersaturated cloud parcel; see Eq. (12c). However, the pur-

ple curve Fig. 2a, representing the derivative ∂qc
∂d

of the cloud
droplet mixing ratio with respect to the sedimentation co-
efficient, is not identically zero although the sedimentation
term is absent in Eq. (12a) for the cloud droplet mixing ra-
tio qc. This is an example of an indirect sensitivity of qc to
this coefficient: altering the sedimentation coefficient modi-
fies the sedimentation rate which obviously directly affects
the rain mixing ratio qr. This in turn feeds back to the cloud
droplet mixing ratio qc since the rain mixing ratio qr en-
ters Eq. (12a) through the accretion term. We conclude that
the AD methodology is able to detect such indirect effects.
Moreover, as may be concluded from Fig. 2a, this indirect
sensitivity could easily be masked due to the comparable
magnitude of the positive sensitivity ∂qc

∂d
(purple curve) and

the negative sensitivity ∂qc
∂a2

(blue curve).
Figure 2c shows the derivatives of qr with respect to all

coefficients, in particular with respect to the sedimentation
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parameter d (purple curve; this curve was not included in
Fig. 2b). From this figure it is evident that qr is most sensi-
tive to the sedimentation coefficient. Comparing the differ-
ent scalings of the ordinate in Figs. 2b and c corroborates
this result. To summarize, at the beginning of this simula-
tion, the most sensitive parameter is the autoconversion rate
at creating rain drop mass. Towards the end of the simula-
tion, enough rain drop mass is formed and the sedimenta-
tion becomes more important, actually much more important
than the autoconversion or the accretion since the derivatives
∂qr
∂a1
,
∂qr
∂a2

, and ∂qr
∂d

differ by almost 4 orders of magnitude.
Figure 3 shows the derivatives of the mixing ratios qc, qr

with respect to the exponents. For both mixing ratios, ob-
viously the exponents βc, βr from the accretion process are
most sensitive (blue and green curves).

Note that the sign of the curves is counter intuitive, be-
cause, e.g., positive values of the blue and green curves imply
slower accretion after increasing the values of those expo-
nents by a small amount. This behavior is easily explained
with the values of both mixing ratios being smaller than
unity: increasing the exponent in the expression a2q

βc
c q

βr
r

with 0≤ qc, qr < 1 leads to decreased values of the expres-
sion a2q

βc
c q

βr
r and consequently to a slower accretion pro-

cess. It is important to keep such a behavior in mind in inter-
preting the derivatives.

The second most sensitive exponent for the rain mixing
ratio is given by exponent ζ from the sedimentation process,
but only after enough rain drop mass has formed after about
1000 s. The magnitude of the derivatives with respect to ζ
and the accretion exponents βc, βr are comparable and of op-
posite sign. Therefore, the influence of increasing these ex-
ponents simultaneously may cancel out.

Observe that the derivatives of both mixing ratios with
respect to the exponents δ1, δ2 in Fig. 3 are exactly zero,
again resembling the in-activeness of the evaporation term
in Eq. (12c) within the supersaturated cloud parcel.

As indicated, AD computes the derivatives of the imple-
mented code, which in our case involves a numerical method,
rather than derivatives of the (unknown) continuous solu-
tion of the governing differential equation. This distinction
is important for the interpretation of the computed sensitivi-
ties and we are now going to discuss the subtleties connected
with them.

First of all, we outline the fact that since the numerical dis-
cretization of the governing differential equation depends on
the time step 1t , the magnitude of all computed derivatives
also depend on the time step. Figure 4 illustrates this fact by
showing the derivative ∂qc

∂a1
of the cloud droplet mass on the

parameter a1 for autoconversion for several time steps. In this
figure, the dependency on1t becomes obvious, however, the
shape of the curve does actually not change. Rescaling the
curves in Fig. 4 by multiplying the values of the blue curve by
0.1

0.01 = 10, the values of the green curve by 0.1
0.001 = 100, and

the values of the yellow curve by 0.1
0.0001 = 1000, all rescaled

curves coincide with the red curve (not shown), representing
the derivative computed with time step 1t = 0.1. Although
this scaling with the time step is quite intuitive due to the
fact that if the time step is larger, the simulation is done for
a larger time interval and the sensitivities are expected to in-
crease, one should be aware of this scaling when trying to
interpret the magnitudes of the derivatives.

A second issue regarding the meaning of the computed
sensitivities is addressed in Bischof and Eberhard (1999).
There are two possibilities of computing sensitivities:

1. apply AD on the implemented code, which numerically
approximates the unknown solution of the governing
differential equation, or

2. derive an analytical differential equation (called the sen-
sitivity or variational equation as an analogue of the for-
ward AD mode or the adjoint equation as an analogue
of the reverse AD mode), describing how the sensitiv-
ities evolve with time (see, e.g., Sandu et al., 2003, or
Walther, 2007, for details). In this approach, AD may
enter the computation of the derivatives of the right-
hand side of the governing equation.

The essential difference between the possibilities is that the
first approach explicitly includes the numerical method in the
computation of the sensitivities, while the second approach
excludes any numerical method in the first place and instead
creates an analytical differential equation, e.g., the sensitivity
equation, for the description of the sensitivities and only in a
second step approximates the exact solution of this equation
using a numerical method.

In our study we choose the first option and include the
numerical method in the differentiation, since this seems
more appropriate if one is interested in how the sensitivities
propagate through a given, already implemented, numerical
model. We use a one-step numerical method with constant
time step 1t to approximate the ordinary differential equa-
tion, hence the numerical solution ynew at the new time level
is connected to the old solution yold at the old time level by
ynew
= yold

+1t ·8(yold, η, 1t), where η represents the pa-
rameter vector as in Eq. (17) and 8 is the numerical method.
Moreover, we compute the derivatives at each time step sep-
arately, i.e., the approximation yold is considered as inde-
pendent of the parameters at the current time level, hence
∂yold

∂η
= 0. Consequently, in our case the AD methodology

factually computes the derivative

∂ynew

∂η
=
∂yold

∂η
+1t ·

∂

∂η

[
8(yold, η, 1t)

]
=
∂yold

∂η
+1t ·

[
∂8

∂y
(yold, η, 1t)

∂yold

∂η

+
∂8

∂η
(yold, η, 1t)+

∂8

∂1t
(yold, η, 1t)

∂1t

∂η

]
=1t ·

∂8

∂η
(yold, η, 1t), (19)
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Figure 3. As in Fig. 2, but for the derivatives of qc (a) and qr (b) with respect to the exponents.

Figure 4. Temporal evolution of the derivative ∂qc
∂a1

using the time
steps 1t ∈ {0.1, 0.01, 0.001, 0.0001s} for the computation of the
same case as in Fig. 2.

showing once again the observed dependency of the com-
puted sensitivities on the time step. In addition, Eq. (19)
shows explicitly that the numerical method 8 is included in
the differentiation, and thus the computed sensitivities de-
pend on the numerical method. Note that we employed a con-
stant time step that, according to the results in Bischof and
Eberhard (1999), ensures that the computed sensitivities are
indeed approximations of the sensitivities of the unknown,
exact solution. If we had used a numerical method with adap-
tive time-stepping, this would not necessarily be true, since in
this case the current time step depends on the solution which
in turn depends on the parameters η, implying ∂1t

∂η
6= 0 in

general. Again, if one is interested in an approximate com-
putation of the sensitivities of the exact solution, a correc-
tion is needed for this non-zero contribution of ∂1t

∂η
6= 0; see

Bischof and Eberhard (1999). However, if one is interested

in the sensitivities of the implemented code, no correction is
needed.

Finally, it is not obvious that the computed sensitivities,
which depend on the time step, converge to the sensitivities
of the exact but unknown solution in the limit 1t→ 0. In
our case, since we rely on an explicit Runge–Kutta method
of order 4, the desired convergence is established in Walther
(2007). An extension to a more general Runge–Kutta method
for the adjoint equation is presented in Sandu (2006).

Although the magnitude of the computed derivatives de-
pend on the time step of the numerical method, the relative
magnitudes of the individual derivatives are independent of
the time step. Table 2 highlights this observation by com-
paring the ratios of some derivatives of the mixing ratios at
t = 1000 s, computed with several time steps 1t . The ratios
of the derivatives shown in Table 2 are indeed approximately
constant (except for the effects of a coarse time resolution),
implying that these ratios are indeed independent of the time
step. Therefore, the derivative with respect to the most sen-
sitive parameter will show the largest magnitude compared
to the derivatives with respect to the other parameters, re-
gardless of the chosen time step of the numerical method
involved. This allows the possibility of using the computed
derivatives to identify the most sensitive parameters of the
cloud scheme.

4.2 Cloud evaporation in a downdraft

As the second example, we consider a downdraft with veloc-
ity w =−1ms−1, the initial conditions

(qc(0), qr(0))=
(

2× 10−4 kgkg−1, 10−4 kgkg−1
)

(20)

for the mixing ratios and S(0)= 1.01 for the saturation ratio,
representing an initial supersaturation of 1 %.

The temporal evolution of the saturation ratio and the mix-
ing ratios are shown in Fig. 5. The downward vertical motion
of the air parcel causes the saturation ratio to decrease due to
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Table 2. Ratios of the derivatives of the mixing ratios with respect to different parameters at t = 1000 s, computed for several time steps 1t .
All numbers are taken from the computations of the first case of an ascending air parcel with no pre-existing cloud. The numbers are rounded
to four digits.

1t
∂qc
∂a1
/
∂qc
∂a2

∂qc
∂a1
/
∂qc
∂γ

∂qc
∂a1
/
∂qc
∂βc

∂qc
∂a1
/
∂qr
∂d

0.1s 4.0228 −7.8577× 10−2
−4.3450× 10−3 3.6168× 10−4

0.01s 4.0209 −7.8577× 10−2
−4.3429× 10−3 3.6148× 10−4

0.001s 4.0207 −7.8577× 10−2
−4.3427× 10−3 3.6146× 10−4

0.0001s 4.0207 −7.8577× 10−2
−4.3427× 10−3 3.6146× 10−4

Figure 5. Temporal evolution of the saturation ratio S (a), the cloud droplet mixing ratio qc (b), and the rain drop mixing ratio qr (c) for the
descending air parcel with evaporating cloud.

adiabatic heating. However, until the complete evaporation of
the cloud droplets at about 175 s (see Fig. 5b), the release of
water vapor of the evaporating cloud droplets counteracts the
decrease of the saturation ratio and keeps the air parcel only
slightly subsaturated (Fig. 5a). After roughly 175 s, the sat-
uration ratio decreases continuously, resulting in a substan-
tially subsaturated air parcel. Consequently, the available rain
drops not only sediment out of the air parcel but also evapo-
rate due to the subsaturation (Fig. 5c). However, the release
of water vapor of the evaporating rain drops is seemingly not
able to counteract the decrease of the saturation ratio as was
the case for the evaporating cloud droplets at the beginning
of the simulation, but the precise sensitivities of rain drop
evaporation and sedimentation cannot be deduced from the
temporal evolution of the mass mixing ratio qr.

The temporal evolutions of the derivatives of the mixing
ratios with respect to the coefficients are shown in Fig. 6.
Contrary to the first case from Sect. 4.1, the air parcel rapidly
becomes subsaturated with S ≤ 1 and the evaporation pro-
cess in Eq. (12c) is now active, hence no derivative is iden-
tically zero. Inspecting Fig. 6, the most sensitive coefficient
for both mixing ratios is e2 (yellow curve), corresponding to
the ventilation coefficient within the formulation of the evap-
oration process of the rain drops; see Eq. (12c). This result
may be anticipated regarding the rain drop mass mixing ratio
qr, because the air parcel is subsaturated and the evaporation
process directly affects the rain drop mixing ratio. However,
we also observe a large sensitivity of the cloud droplet mix-

ing ratio qc on the same parameter. This feedback is, again,
an indirect sensitivity originating from the accretion process:
if the rain drop mass decreases faster due to a slight increase
of the coefficient e2, the accretion gets slower and therefore
less cloud droplets get collected by the falling rain drops.
Consequently, the decrease of cloud droplet mixing ratio is
diminished.

Figure 6b also shows that the second most sensitive coef-
ficient for qr is given by the sedimentation rate coefficient.
This observation also answers the question which process is
more sensitive to changes in its rate coefficient for the de-
crease of rain drop mass, seen in Fig. 5b. Due to the larger
absolute values of ∂qr

∂e2
compared to ∂qr

∂d
(yellow and purple

curves in Fig. 6b), a slight change in the evaporation rate co-
efficient e2 will result in larger responses than a change in the
sedimentation rate.

Although not visible in Fig. 6a, the derivatives with re-
spect to the coefficients a1, a2, d are all of about the same
magnitude, while the sensitivity to the second evaporation
coefficient e1 is significantly smaller.

Inspecting Fig. 7, illustrating the derivatives of both mix-
ing ratios to the exponents, the most sensitive exponents for
the cloud droplet mixing ratio qc are again the exponents
βc, βr corresponding to the accretion process (blue and green
curve in Fig. 7a). For the rain drop mixing ratio qr (Fig. 7b),
the most sensitive exponent changes from the sedimentation
exponent ζ (cyan curve) at the beginning to exponent δ2, oc-
curring in the second term e2q

δ2
r of the evaporation term,
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Figure 6. Temporal evolution of the derivatives of the cloud droplet mixing ratio qc (a) and the rain drop mixing ratio qr (b) with respect to
the coefficients for the descending air parcel with evaporating cloud.

Figure 7. As in Fig. 6, but for the derivatives of qc (a) and qr (b) with respect to the exponents.

consistent with the large sensitivity of the corresponding rate
coefficient e2; see the yellow curve in Fig. 6a.

To summarize the second example: the AD methodology
pinpoints the second summand e2q

δ2
r of the evaporation term

together with the exponents βc, βr of the accretion process
in introducing the largest sensitivity in the model results. Al-
though one could find the same sensitivities using classical
sensitivity studies instead of AD, the AD methodology pro-
vides an immediate suggestion on the large sensitivity of the
coefficient e2 for both mixing ratios (see Fig. 6), without hav-
ing to carry out multiple model runs, where one perturbs each
coefficient of the cloud scheme separately, one after the other.
Moreover, the sensitivity of the cloud droplet mixing ratio
qc to e2 is indirect, rendering it difficult to identify this sen-
sitivity directly using the ensemble approach, in particular
because the governing Eq. (12a) provides no indication due
to the absence of coefficient e2. Given that even the simple
cloud scheme Eq. (12) already contains five rate coefficients,

perturbing each coefficient within a separate model run re-
sults in a significant total number of runs.

After the identification of the most sensitive parameters
using AD, one can carry out further model runs, targeted at
the parameters which were identified beforehand. Figure 8
illustrates a possible further analysis step. It shows the dif-
ference between an unperturbed run, denoted by qx,1 with
x ∈ {c, r}, and two further runs with perturbed rate coeffi-
cient s · e2 instead of e2, where s ∈ {0.9, 1.1} is a scaling pa-
rameter. Observe that the signal is consistent with the deriva-
tive, computed by AD, in Fig. 6: the derivative ∂qr

∂e2
is nega-

tive, hence a slight increase of the coefficient should result in
a smaller rain mixing ratio qr and, consequently, the differ-
ence of qr,1− qr,1.1 should be positive. Similarly, the deriva-
tive ∂qc

∂e2
is positive, and hence a slight increase of the co-

efficient should result in negative values for the difference
qc,1− qc,1.1. Figure 8 shows exactly these tendencies (blue
curves). The red curves show the resulting differences using

Geosci. Model Dev., 12, 5197–5212, 2019 www.geosci-model-dev.net/12/5197/2019/



M. Baumgartner et al.: Algorithmic differentiation for cloud schemes 5209

Figure 8. Difference between the reference run with unperturbed coefficient e2, denoted as qx,1 for x ∈ {c, r} and using the perturbed second
evaporation coefficient s ·e2 with s ∈ {0.9, 1.1}, denoted as qx,0.9 or qx,1.1, for the cloud droplet mixing ratio (a) and the rain mixing ratio (b),
respectively.

the scaling parameter s = 0.9; note that the curves are asym-
metric to each other.

4.3 Dependency on the model trajectory

After having discussed both exemplary cases individually,
we now point to another important aspect of the AD method-
ology. Given that AD was applied to the exactly same com-
putational code, a comparison between, e.g., the derivatives
of the cloud droplet mixing ratio qc with respect to the rate
coefficients (see Figs. 2a and 6a) reveals that the correspond-
ing curves are not equal to each other, but show significantly
different behavior. The only difference between the exam-
ples were the values of the initial conditions. Consequently,
the model trajectories between the runs evolved differently
despite the fact that the computational code was unchanged.
This observation is a crucial aspect of the AD methodol-
ogy since it underlines that AD computes the derivative of
the model, i.e., the computational code, along the particu-
lar model trajectory, rather than providing the derivatives for
each possible state of the model. Therefore, the AD approach
can provide the desired sensitivities for the particular evolu-
tion of the model state, posing the same limitations as the
computation of the derivatives using the aforementioned fi-
nite difference approach.

5 Conclusions

In this study, we presented and applied the technique of algo-
rithmic differentiation (AD) in the context of cloud schemes,
representing an important example of a subgrid parameteri-
zation of numerical models within the atmospheric sciences.
In the literature, many different cloud schemes are suggested
since at the moment, a universal governing equation for the
full description of a cloud is not available (in contrast to the

Navier–Stokes equation for the description of a non-reacting
flow), making it impossible to derive cloud schemes from
a common universal basis. As a consequence, many ad hoc
assumptions are made within the formulations of the cloud
processes typically leading to the introduction of uncertain
parameters.

We propose the use of algorithmic differentiation in the de-
velopment of cloud schemes in order to identify the most sen-
sitive parameters in the adopted formulation along the sim-
ulated solution trajectory. The AD methodology is based on
the observation that each computer code is a large composi-
tion of only a few differentiable elemental operations; hence,
by the chain rule, the code itself is differentiable apart from
critical points, where the elemental functions are not differ-
entiable. Since the derivatives of the elemental operations are
known, the full computational code can be differentiated in a
(semi-)automatic fashion. Moreover, the resulting derivatives
are accurate to machine precision because the AD approach
merely evaluates the exact derivative.

In the context of sensitivity studies, the AD approach
yields the desired sensitivities of the result of the computa-
tion on the parameters by requiring only a constant additional
computational effort; see Griewank and Walther (2008). The
forward mode of AD roughly doubles the number of code
instructions since each statement is complemented with its
derivative, and hence also roughly doubles the code execu-
tion time for each run. Note that the forward mode needs
the specification of the desired direction for the directional
derivative in advance, and thus it only computes a single di-
rectional derivative per run. This may rapidly become very
computational intensive if there are many input parameters
or if one is interested in the full gradient. In this case one
should use the vector forward mode, which leads to a signif-
icant reduction in complexity. In contrast, the reverse mode
introduces more overhead than the forward mode for a single
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run, but the amount is independent of the number of input
variables, among which are also the parameters to be inves-
tigated. Therefore, the reverse AD mode has the ability to
outperform the forward mode in the case of many input vari-
ables but only a small number of output variables because
only a single run of the reverse mode is required to establish
the derivatives with respect to each input variable, whereas
the forward mode requires as many runs as the number of
input variables. The fact that AD introduces only a constant
computational overhead is especially useful if the number of
parameters is comparably high, since establishing an ensem-
ble to investigate the sensitivity of the parameters quickly
results in a high number of model runs. Moreover, using an
ensemble of model runs to study parameter sensitivities ad-
ditionally involves a thorough post-processing of all model
output. In contrast, the AD approach clearly identifies the
parameters with high sensitivity, regardless of whether the
sensitivity is direct or indirect, and allows one to focus fur-
ther post-processing on only the relevant parameters.

AD helps in computing the derivatives, but one has to keep
in mind the subtleties: using AD as advocated in this study
implies that the computed derivatives involve the differenti-
ation of the numerical method used to approximate the so-
lution of the differential Eqs. (12), (13). Consequently, the
derivatives depend on the time step and may change if the
numerical method is replaced by another method. Neverthe-
less, the computed sensitivities resemble the actual sensitivi-
ties of the implemented code and comprise the correct result
to tackle the question how uncertainties propagate through a
given numerical model as, e.g., a weather forecasting model.

We emphasize that the technique of AD is not restricted
to a specific programming language nor to the analysis of
cloud schemes. It is a generic technique which may help in
the development of any (subgrid) scheme for a (geophysical)
numerical model by providing information about the sensi-
tivities of the involved parameters.

In adopting a cloud scheme or any subgrid scheme, the
question of how the inherent uncertainties of the scheme in-
fluence the (numerical) solution of the model arises. In the
context of the topic of this study, an example of the influ-
ences of a single parameter within a typical cloud scheme on
the overall cloud development is discussed in Igel and van
den Heever (2017a, b, c). Answering the question of how
uncertainties propagate within a given model is a highly non-
trivial task. As indicated in Sect. 1, methods from uncertainty
quantification allow to assess this propagation (e.g., Sullivan,
2015; Le Maître and Knio, 2010), but taking many parame-
ters simultaneously into account is challenging and compu-
tationally expensive. Algorithmic differentiation allows one
to first identify the parameters which influence the result of
a given parameterization at most, e.g., a cloud scheme, and
limit the more extensive investigation to only these parame-
ters; see Chertock et al. (2019) for an example of such an in-
vestigation. However, as AD by design computes the deriva-
tives along the numerical solution trajectory, one might not

detect all possible sensitivities, but at least the most sensitive
parameters in “typical” situations.

Code availability. The code for the cloud model together with all
scripts needed to reproduce the results in this study are available at
https://doi.org/10.5281/zenodo.3461483 (Baumgartner, 2019). The
algorithmic differentiation tool CoDiPack may be found online
at https://github.com/scicompkl/codipack (last access: 6 Decem-
ber 2019) and the version 1.8.1, which is used in this study, is avail-
able at https://doi.org/10.5281/zenodo.3460682 (Sagebaum et al.,
2019).
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