Articles | Volume 12, issue 12
https://doi.org/10.5194/gmd-12-5177-2019
https://doi.org/10.5194/gmd-12-5177-2019
Development and technical paper
 | 
11 Dec 2019
Development and technical paper |  | 11 Dec 2019

Explicit aerosol–cloud interactions in the Dutch Atmospheric Large-Eddy Simulation model DALES4.1-M7

Marco de Bruine, Maarten Krol, Jordi Vilà-Guerau de Arellano, and Thomas Röckmann

Related authors

Age of air as a diagnostic for transport timescales in global models
Maarten Krol, Marco de Bruine, Lars Killaars, Huug Ouwersloot, Andrea Pozzer, Yi Yin, Frederic Chevallier, Philippe Bousquet, Prabir Patra, Dmitry Belikov, Shamil Maksyutov, Sandip Dhomse, Wuhu Feng, and Martyn P. Chipperfield
Geosci. Model Dev., 11, 3109–3130, https://doi.org/10.5194/gmd-11-3109-2018,https://doi.org/10.5194/gmd-11-3109-2018, 2018
Short summary
The impact of precipitation evaporation on the atmospheric aerosol distribution in EC-Earth v3.2.0
Marco de Bruine, Maarten Krol, Twan van Noije, Philippe Le Sager, and Thomas Röckmann
Geosci. Model Dev., 11, 1443–1465, https://doi.org/10.5194/gmd-11-1443-2018,https://doi.org/10.5194/gmd-11-1443-2018, 2018
Short summary
Pathfinder: applying graph theory to consistent tracking of daytime mixed layer height with backscatter lidar
Marco de Bruine, Arnoud Apituley, David Patrick Donovan, Hendrik Klein Baltink, and Marijn Jorrit de Haij
Atmos. Meas. Tech., 10, 1893–1909, https://doi.org/10.5194/amt-10-1893-2017,https://doi.org/10.5194/amt-10-1893-2017, 2017
Short summary
Evaluation of column-averaged methane in models and TCCON with a focus on the stratosphere
Andreas Ostler, Ralf Sussmann, Prabir K. Patra, Sander Houweling, Marko De Bruine, Gabriele P. Stiller, Florian J. Haenel, Johannes Plieninger, Philippe Bousquet, Yi Yin, Marielle Saunois, Kaley A. Walker, Nicholas M. Deutscher, David W. T. Griffith, Thomas Blumenstock, Frank Hase, Thorsten Warneke, Zhiting Wang, Rigel Kivi, and John Robinson
Atmos. Meas. Tech., 9, 4843–4859, https://doi.org/10.5194/amt-9-4843-2016,https://doi.org/10.5194/amt-9-4843-2016, 2016
Short summary

Related subject area

Atmospheric sciences
Evaluation of dust emission and land surface schemes in predicting a mega Asian dust storm over South Korea using WRF-Chem
Ji Won Yoon, Seungyeon Lee, Ebony Lee, and Seon Ki Park
Geosci. Model Dev., 18, 2303–2328, https://doi.org/10.5194/gmd-18-2303-2025,https://doi.org/10.5194/gmd-18-2303-2025, 2025
Short summary
Sensitivity studies of a four-dimensional local ensemble transform Kalman filter coupled with WRF-Chem version 3.9.1 for improving particulate matter simulation accuracy
Jianyu Lin, Tie Dai, Lifang Sheng, Weihang Zhang, Shangfei Hai, and Yawen Kong
Geosci. Model Dev., 18, 2231–2248, https://doi.org/10.5194/gmd-18-2231-2025,https://doi.org/10.5194/gmd-18-2231-2025, 2025
Short summary
A Bayesian method for predicting background radiation at environmental monitoring stations in local-scale networks
Jens Peter Karolus Wenceslaus Frankemölle, Johan Camps, Pieter De Meutter, and Johan Meyers
Geosci. Model Dev., 18, 1989–2003, https://doi.org/10.5194/gmd-18-1989-2025,https://doi.org/10.5194/gmd-18-1989-2025, 2025
Short summary
Inclusion of the ECMWF ecRad radiation scheme (v1.5.0) in the MAR (v3.14), regional evaluation for Belgium, and assessment of surface shortwave spectral fluxes at Uccle
Jean-François Grailet, Robin J. Hogan, Nicolas Ghilain, David Bolsée, Xavier Fettweis, and Marilaure Grégoire
Geosci. Model Dev., 18, 1965–1988, https://doi.org/10.5194/gmd-18-1965-2025,https://doi.org/10.5194/gmd-18-1965-2025, 2025
Short summary
Development of a fast radiative transfer model for ground-based microwave radiometers (ARMS-gb v1.0): validation and comparison to RTTOV-gb
Yi-Ning Shi, Jun Yang, Wei Han, Lujie Han, Jiajia Mao, Wanlin Kan, and Fuzhong Weng
Geosci. Model Dev., 18, 1947–1964, https://doi.org/10.5194/gmd-18-1947-2025,https://doi.org/10.5194/gmd-18-1947-2025, 2025
Short summary

Cited articles

Aan de Brugh, J. M. J., Ouwersloot, H. G., Vilà-Guerau de Arellano, J., and Krol, M. C.: A large-eddy simulation of the phase transition of ammonium nitrate in a convective boundary layer, J. Geophys. Res.-Atmos., 118, 826–836, https://doi.org/10.1002/jgrd.50161, 2013. a
Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. a
Andrejczuk, M., Reisner, J. M., Henson, B., Dubey, M. K., and Jeffery, C. A.: The potential impacts of pollution on a nondrizzling stratus deck: Does aerosol number matter more than type?, J. Geophys. Res.-Atmos., 113, D19204, https://doi.org/10.1029/2007JD009445, 2008. a
Arabas, S., Jaruga, A., Pawlowska, H., and Grabowski, W. W.: libcloudph++ 1.0: a single-moment bulk, double-moment bulk, and particle-based warm-rain microphysics library in C++, Geosci. Model Dev., 8, 1677–1707, https://doi.org/10.5194/gmd-8-1677-2015, 2015. a
Barbaro, E., Vilà-Guerau de Arellano, J., Krol, M. C., and Holtslag, A. A. M.: Impacts of Aerosol Shortwave Radiation Absorption on the Dynamics of an Idealized Convective Atmospheric Boundary Layer, Bound.-Lay. Meteorol., 148, 31–49, https://doi.org/10.1007/s10546-013-9800-7, 2013. a
Download
Short summary
An aerosol scheme with multiple aerosol species is introduced in the Dutch Atmospheric Large-Eddy Simulation model (DALES) and focused to simulate the feedback of aerosol–cloud interaction (ACI) on the aerosol population. Cloud aerosol processing is found to be sensitive to the numerical method, while removal by precipitation is more stable. How ACI increases or decreases the mean aerosol size depends on the balance between the evaporation of clouds/rain and ultimate removal by precipitation.
Share