Articles | Volume 12, issue 6
https://doi.org/10.5194/gmd-12-2307-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-12-2307-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Chemistry and deposition in the Model of Atmospheric composition at Global and Regional scales using Inversion Techniques for Trace gas Emissions (MAGRITTE v1.1) – Part 1: Chemical mechanism
Jean-François Müller
CORRESPONDING AUTHOR
Royal Belgian Institute for Space Aeronomy, Avenue Circulaire 3, 1180 Brussels, Belgium
Trissevgeni Stavrakou
Royal Belgian Institute for Space Aeronomy, Avenue Circulaire 3, 1180 Brussels, Belgium
Jozef Peeters
Department of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
Related authors
Beata Opacka, Trissevgeni Stavrakou, Jean-François Müller, Isabelle De Smedt, Jos van Geffen, Eloise A. Marais, Rebekah P. Horner, Dylan B. Millet, Kelly C. Wells, and Alex B. Guenther
EGUsphere, https://doi.org/10.5194/egusphere-2024-2912, https://doi.org/10.5194/egusphere-2024-2912, 2024
Short summary
Short summary
Vegetation releases biogenic volatile organic compounds, while soils and lightning contribute to the natural emissions of nitrogen oxides into the atmosphere. These gases interact in complex ways. Using satellite data and models, we developed a new method to simultaneously optimise these natural emissions over Africa in 2019. Our approach led to an increase in natural emissions that is supported by independent data showing that current estimates are underestimated.
Glenn-Michael Oomen, Jean-François Müller, Trissevgeni Stavrakou, Isabelle De Smedt, Thomas Blumenstock, Rigel Kivi, Maria Makarova, Mathias Palm, Amelie Röhling, Yao Té, Corinne Vigouroux, Martina M. Friedrich, Udo Frieß, François Hendrick, Alexis Merlaud, Ankie Piters, Andreas Richter, Michel Van Roozendael, and Thomas Wagner
Atmos. Chem. Phys., 24, 449–474, https://doi.org/10.5194/acp-24-449-2024, https://doi.org/10.5194/acp-24-449-2024, 2024
Short summary
Short summary
Natural emissions from vegetation have a profound impact on air quality for their role in the formation of harmful tropospheric ozone and organic aerosols, yet these emissions are highly uncertain. In this study, we quantify emissions of organic gases over Europe using high-quality satellite measurements of formaldehyde. These satellite observations suggest that emissions from vegetation are much higher than predicted by models, especially in southern Europe.
Rodriguez Yombo Phaka, Alexis Merlaud, Gaia Pinardi, Martina M. Friedrich, Michel Van Roozendael, Jean-François Müller, Trissevgeni Stavrakou, Isabelle De Smedt, François Hendrick, Ermioni Dimitropoulou, Richard Bopili Mbotia Lepiba, Edmond Phuku Phuati, Buenimio Lomami Djibi, Lars Jacobs, Caroline Fayt, Jean-Pierre Mbungu Tsumbu, and Emmanuel Mahieu
Atmos. Meas. Tech., 16, 5029–5050, https://doi.org/10.5194/amt-16-5029-2023, https://doi.org/10.5194/amt-16-5029-2023, 2023
Short summary
Short summary
We present air quality measurements in Kinshasa, Democratic Republic of the Congo, performed with a newly developed instrument which was installed on a roof of the University of Kinshasa in November 2019. The instrument records spectra of the scattered sunlight, from which we derive the abundances of nitrogen dioxide and formaldehyde, two important pollutants. We compare our ground-based measurements with those of the TROPOspheric Monitoring Instrument (TROPOMI).
Catalina Poraicu, Jean-François Müller, Trissevgeni Stavrakou, Dominique Fonteyn, Frederik Tack, Felix Deutsch, Quentin Laffineur, Roeland Van Malderen, and Nele Veldeman
Geosci. Model Dev., 16, 479–508, https://doi.org/10.5194/gmd-16-479-2023, https://doi.org/10.5194/gmd-16-479-2023, 2023
Short summary
Short summary
High-resolution WRF-Chem simulations are conducted over Antwerp, Belgium, in June 2019 and evaluated using meteorological data and in situ, airborne, and spaceborne NO2 measurements. An intercomparison of model, aircraft, and TROPOMI NO2 columns is conducted to characterize biases in versions 1.3.1 and 2.3.1 of the satellite product. A mass balance method is implemented to provide improved emissions for simulating NO2 distribution over the study area.
Sieglinde Callewaert, Jérôme Brioude, Bavo Langerock, Valentin Duflot, Dominique Fonteyn, Jean-François Müller, Jean-Marc Metzger, Christian Hermans, Nicolas Kumps, Michel Ramonet, Morgan Lopez, Emmanuel Mahieu, and Martine De Mazière
Atmos. Chem. Phys., 22, 7763–7792, https://doi.org/10.5194/acp-22-7763-2022, https://doi.org/10.5194/acp-22-7763-2022, 2022
Short summary
Short summary
A regional atmospheric transport model is used to analyze the factors contributing to CO2, CH4, and CO observations at Réunion Island. We show that the surface observations are dominated by local fluxes and dynamical processes, while the column data are influenced by larger-scale mechanisms such as biomass burning plumes. The model is able to capture the measured time series well; however, the results are highly dependent on accurate boundary conditions and high-resolution emission inventories.
Bert Verreyken, Crist Amelynck, Niels Schoon, Jean-François Müller, Jérôme Brioude, Nicolas Kumps, Christian Hermans, Jean-Marc Metzger, Aurélie Colomb, and Trissevgeni Stavrakou
Atmos. Chem. Phys., 21, 12965–12988, https://doi.org/10.5194/acp-21-12965-2021, https://doi.org/10.5194/acp-21-12965-2021, 2021
Short summary
Short summary
We present a 2-year dataset of trace gas concentrations, specifically an array of volatile organic compounds (VOCs), recorded at the Maïdo observatory, a remote tropical high-altitude site located on a small island in the southwest Indian Ocean. We found that island-scale transport is an important driver for the daily cycle of VOC concentrations. During the day, surface emissions from the island affect the atmospheric composition at Maïdo greatly, while at night this impact is strongly reduced.
Bert Verreyken, Crist Amelynck, Jérôme Brioude, Jean-François Müller, Niels Schoon, Nicolas Kumps, Aurélie Colomb, Jean-Marc Metzger, Christopher F. Lee, Theodore K. Koenig, Rainer Volkamer, and Trissevgeni Stavrakou
Atmos. Chem. Phys., 20, 14821–14845, https://doi.org/10.5194/acp-20-14821-2020, https://doi.org/10.5194/acp-20-14821-2020, 2020
Short summary
Short summary
Biomass burning (BB) plumes arriving at the Maïdo observatory located in the south-west Indian Ocean during August 2018 and August 2019 are studied using trace gas measurements, Lagrangian transport models and the CAMS near-real-time atmospheric composition service. We investigate (i) secondary production of volatile organic compounds during transport, (ii) efficacy of the CAMS model to reproduce the chemical makeup of BB plumes and (iii) the impact of BB on the remote marine boundary layer.
Yang Wang, Steffen Beirle, Johannes Lampel, Mariliza Koukouli, Isabelle De Smedt, Nicolas Theys, Ang Li, Dexia Wu, Pinhua Xie, Cheng Liu, Michel Van Roozendael, Trissevgeni Stavrakou, Jean-François Müller, and Thomas Wagner
Atmos. Chem. Phys., 17, 5007–5033, https://doi.org/10.5194/acp-17-5007-2017, https://doi.org/10.5194/acp-17-5007-2017, 2017
Short summary
Short summary
A long-term MAX-DOAS measurement from 2011 to 2014 was operated in Wuxi, part of the most industrialized area of the Yangtze River delta region of China. The tropospheric VCDs and vertical profiles of NO2, SO2 and HCHO derived from the MAX-DOAS are used to validate the products derived from OMI and GOME-2A/B by different scientific teams (daily- and bimonthly-averaged data). We investigate the effects of clouds, aerosols and a priori profile shapes on satellite retrievals of tropospheric VCDs.
Clio Gielen, François Hendrick, Gaia Pinardi, Isabelle De Smedt, Caroline Fayt, Christian Hermans, Trissevgeni Stavrakou, Maite Bauwens, Jean-Francois Müller, Eugène Ndenzako, Pierre Nzohabonayo, Rachel Akimana, Sebastien Niyonzima, Michel Van Roozendael, and Martine De Mazière
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-1104, https://doi.org/10.5194/acp-2016-1104, 2017
Revised manuscript has not been submitted
Short summary
Short summary
In this paper we study the composition of the lower atmosphere above the Central-African capital city of Burundi (Bujumbura) by measuring the amount of aerosol dust particles and trace gases in the air.
We find that the aerosol and trace gas seasonal and daily variation is driven by the alternation of rain periods and dry periods associated with intense biomass burning in the vicinity of Bujumbura, and the influence of human activities in the city center.
Matthieu Pommier, Cathy Clerbaux, Pierre-François Coheur, Emmanuel Mahieu, Jean-François Müller, Clare Paton-Walsh, Trissevgeni Stavrakou, and Corinne Vigouroux
Atmos. Chem. Phys., 16, 8963–8981, https://doi.org/10.5194/acp-16-8963-2016, https://doi.org/10.5194/acp-16-8963-2016, 2016
Short summary
Short summary
This work presents for the first time 7 years of formic acid (HCOOH) measurements recorded by the satellite instrument, IASI. The comparison of the data set with ground-based FTIR measurements and a CTM shows the interannual and the seasonal variation are well captured. Global distributions are provided, highlighting the long-range transport of tropospheric HCOOH over the oceans and the detection of source regions e.g. over India, USA, and Africa.
S. Compernolle and J.-F. Müller
Atmos. Chem. Phys., 14, 12815–12837, https://doi.org/10.5194/acp-14-12815-2014, https://doi.org/10.5194/acp-14-12815-2014, 2014
Short summary
Short summary
Aqueous phase occurs in the atmosphere as cloud droplets and aqueous aerosol.
The Henry's law constant regulates the water-gas partitioning of a molecule, but experimental data on polyols are limited.
New values are derived for molecules with 2-6 hydroxyl groups, by combining other thermophysical data (e.g. vapour pressure, water activity, solubility).
It is analysed which molecules will stay mostly in the gas phase, and which will preferably partition to droplet or aqueous aerosol.
K. Sindelarova, C. Granier, I. Bouarar, A. Guenther, S. Tilmes, T. Stavrakou, J.-F. Müller, U. Kuhn, P. Stefani, and W. Knorr
Atmos. Chem. Phys., 14, 9317–9341, https://doi.org/10.5194/acp-14-9317-2014, https://doi.org/10.5194/acp-14-9317-2014, 2014
S. Compernolle and J.-F. Müller
Atmos. Chem. Phys., 14, 2699–2712, https://doi.org/10.5194/acp-14-2699-2014, https://doi.org/10.5194/acp-14-2699-2014, 2014
F. Hendrick, J.-F. Müller, K. Clémer, P. Wang, M. De Mazière, C. Fayt, C. Gielen, C. Hermans, J. Z. Ma, G. Pinardi, T. Stavrakou, T. Vlemmix, and M. Van Roozendael
Atmos. Chem. Phys., 14, 765–781, https://doi.org/10.5194/acp-14-765-2014, https://doi.org/10.5194/acp-14-765-2014, 2014
Beata Opacka, Trissevgeni Stavrakou, Jean-François Müller, Isabelle De Smedt, Jos van Geffen, Eloise A. Marais, Rebekah P. Horner, Dylan B. Millet, Kelly C. Wells, and Alex B. Guenther
EGUsphere, https://doi.org/10.5194/egusphere-2024-2912, https://doi.org/10.5194/egusphere-2024-2912, 2024
Short summary
Short summary
Vegetation releases biogenic volatile organic compounds, while soils and lightning contribute to the natural emissions of nitrogen oxides into the atmosphere. These gases interact in complex ways. Using satellite data and models, we developed a new method to simultaneously optimise these natural emissions over Africa in 2019. Our approach led to an increase in natural emissions that is supported by independent data showing that current estimates are underestimated.
Jean-François Müller, Trissevgeni Stavrakou, Glenn-Michael Oomen, Beata Opacka, Isabelle De Smedt, Alex Guenther, Corinne Vigouroux, Bavo Langerock, Carlos Augusto Bauer Aquino, Michel Grutter, James Hannigan, Frank Hase, Rigel Kivi, Erik Lutsch, Emmanuel Mahieu, Maria Makarova, Jean-Marc Metzger, Isamu Morino, Isao Murata, Tomoo Nagahama, Justus Notholt, Ivan Ortega, Mathias Palm, Amelie Röhling, Wolfgang Stremme, Kimberly Strong, Ralf Sussmann, Yao Té, and Alan Fried
Atmos. Chem. Phys., 24, 2207–2237, https://doi.org/10.5194/acp-24-2207-2024, https://doi.org/10.5194/acp-24-2207-2024, 2024
Short summary
Short summary
Formaldehyde observations from satellites can be used to constrain the emissions of volatile organic compounds, but those observations have biases. Using an atmospheric model, aircraft and ground-based remote sensing data, we quantify these biases, propose a correction to the data, and assess the consequence of this correction for the evaluation of emissions.
Glenn-Michael Oomen, Jean-François Müller, Trissevgeni Stavrakou, Isabelle De Smedt, Thomas Blumenstock, Rigel Kivi, Maria Makarova, Mathias Palm, Amelie Röhling, Yao Té, Corinne Vigouroux, Martina M. Friedrich, Udo Frieß, François Hendrick, Alexis Merlaud, Ankie Piters, Andreas Richter, Michel Van Roozendael, and Thomas Wagner
Atmos. Chem. Phys., 24, 449–474, https://doi.org/10.5194/acp-24-449-2024, https://doi.org/10.5194/acp-24-449-2024, 2024
Short summary
Short summary
Natural emissions from vegetation have a profound impact on air quality for their role in the formation of harmful tropospheric ozone and organic aerosols, yet these emissions are highly uncertain. In this study, we quantify emissions of organic gases over Europe using high-quality satellite measurements of formaldehyde. These satellite observations suggest that emissions from vegetation are much higher than predicted by models, especially in southern Europe.
Rodriguez Yombo Phaka, Alexis Merlaud, Gaia Pinardi, Martina M. Friedrich, Michel Van Roozendael, Jean-François Müller, Trissevgeni Stavrakou, Isabelle De Smedt, François Hendrick, Ermioni Dimitropoulou, Richard Bopili Mbotia Lepiba, Edmond Phuku Phuati, Buenimio Lomami Djibi, Lars Jacobs, Caroline Fayt, Jean-Pierre Mbungu Tsumbu, and Emmanuel Mahieu
Atmos. Meas. Tech., 16, 5029–5050, https://doi.org/10.5194/amt-16-5029-2023, https://doi.org/10.5194/amt-16-5029-2023, 2023
Short summary
Short summary
We present air quality measurements in Kinshasa, Democratic Republic of the Congo, performed with a newly developed instrument which was installed on a roof of the University of Kinshasa in November 2019. The instrument records spectra of the scattered sunlight, from which we derive the abundances of nitrogen dioxide and formaldehyde, two important pollutants. We compare our ground-based measurements with those of the TROPOspheric Monitoring Instrument (TROPOMI).
Catalina Poraicu, Jean-François Müller, Trissevgeni Stavrakou, Dominique Fonteyn, Frederik Tack, Felix Deutsch, Quentin Laffineur, Roeland Van Malderen, and Nele Veldeman
Geosci. Model Dev., 16, 479–508, https://doi.org/10.5194/gmd-16-479-2023, https://doi.org/10.5194/gmd-16-479-2023, 2023
Short summary
Short summary
High-resolution WRF-Chem simulations are conducted over Antwerp, Belgium, in June 2019 and evaluated using meteorological data and in situ, airborne, and spaceborne NO2 measurements. An intercomparison of model, aircraft, and TROPOMI NO2 columns is conducted to characterize biases in versions 1.3.1 and 2.3.1 of the satellite product. A mass balance method is implemented to provide improved emissions for simulating NO2 distribution over the study area.
Pieternel F. Levelt, Deborah C. Stein Zweers, Ilse Aben, Maite Bauwens, Tobias Borsdorff, Isabelle De Smedt, Henk J. Eskes, Christophe Lerot, Diego G. Loyola, Fabian Romahn, Trissevgeni Stavrakou, Nicolas Theys, Michel Van Roozendael, J. Pepijn Veefkind, and Tijl Verhoelst
Atmos. Chem. Phys., 22, 10319–10351, https://doi.org/10.5194/acp-22-10319-2022, https://doi.org/10.5194/acp-22-10319-2022, 2022
Short summary
Short summary
Using the COVID-19 lockdown periods as an example, we show how Sentinel-5P/TROPOMI trace gas data (NO2, SO2, CO, HCHO and CHOCHO) can be used to understand impacts on air quality for regions and cities around the globe. We also provide information for both experienced and inexperienced users about how we created the data using state-of-the-art algorithms, where to get the data, methods taking meteorological and seasonal variability into consideration, and insights for future studies.
Sieglinde Callewaert, Jérôme Brioude, Bavo Langerock, Valentin Duflot, Dominique Fonteyn, Jean-François Müller, Jean-Marc Metzger, Christian Hermans, Nicolas Kumps, Michel Ramonet, Morgan Lopez, Emmanuel Mahieu, and Martine De Mazière
Atmos. Chem. Phys., 22, 7763–7792, https://doi.org/10.5194/acp-22-7763-2022, https://doi.org/10.5194/acp-22-7763-2022, 2022
Short summary
Short summary
A regional atmospheric transport model is used to analyze the factors contributing to CO2, CH4, and CO observations at Réunion Island. We show that the surface observations are dominated by local fluxes and dynamical processes, while the column data are influenced by larger-scale mechanisms such as biomass burning plumes. The model is able to capture the measured time series well; however, the results are highly dependent on accurate boundary conditions and high-resolution emission inventories.
Christophe Lerot, François Hendrick, Michel Van Roozendael, Leonardo M. A. Alvarado, Andreas Richter, Isabelle De Smedt, Nicolas Theys, Jonas Vlietinck, Huan Yu, Jeroen Van Gent, Trissevgeni Stavrakou, Jean-François Müller, Pieter Valks, Diego Loyola, Hitoshi Irie, Vinod Kumar, Thomas Wagner, Stefan F. Schreier, Vinayak Sinha, Ting Wang, Pucai Wang, and Christian Retscher
Atmos. Meas. Tech., 14, 7775–7807, https://doi.org/10.5194/amt-14-7775-2021, https://doi.org/10.5194/amt-14-7775-2021, 2021
Short summary
Short summary
Global measurements of glyoxal tropospheric columns from the satellite instrument TROPOMI are presented. Such measurements can contribute to the estimation of atmospheric emissions of volatile organic compounds. This new glyoxal product has been fully characterized with a comprehensive error budget, with comparison with other satellite data sets as well as with validation based on independent ground-based remote sensing glyoxal observations.
Sharmine Akter Simu, Yuzo Miyazaki, Eri Tachibana, Henning Finkenzeller, Jérôme Brioude, Aurélie Colomb, Olivier Magand, Bert Verreyken, Stephanie Evan, Rainer Volkamer, and Trissevgeni Stavrakou
Atmos. Chem. Phys., 21, 17017–17029, https://doi.org/10.5194/acp-21-17017-2021, https://doi.org/10.5194/acp-21-17017-2021, 2021
Short summary
Short summary
The tropical Indian Ocean (IO) is expected to be a significant source of water-soluble organic carbon (WSOC), which is relevant to cloud formation. Our study showed that marine secondary organic formation dominantly contributed to the aerosol WSOC mass at the high-altitude observatory in the southwest IO in the wet season in both marine boundary layer and free troposphere (FT). This suggests that the effect of marine secondary sources is important up to FT, a process missing in climate models.
Bert Verreyken, Crist Amelynck, Niels Schoon, Jean-François Müller, Jérôme Brioude, Nicolas Kumps, Christian Hermans, Jean-Marc Metzger, Aurélie Colomb, and Trissevgeni Stavrakou
Atmos. Chem. Phys., 21, 12965–12988, https://doi.org/10.5194/acp-21-12965-2021, https://doi.org/10.5194/acp-21-12965-2021, 2021
Short summary
Short summary
We present a 2-year dataset of trace gas concentrations, specifically an array of volatile organic compounds (VOCs), recorded at the Maïdo observatory, a remote tropical high-altitude site located on a small island in the southwest Indian Ocean. We found that island-scale transport is an important driver for the daily cycle of VOC concentrations. During the day, surface emissions from the island affect the atmospheric composition at Maïdo greatly, while at night this impact is strongly reduced.
Thierno Doumbia, Claire Granier, Nellie Elguindi, Idir Bouarar, Sabine Darras, Guy Brasseur, Benjamin Gaubert, Yiming Liu, Xiaoqin Shi, Trissevgeni Stavrakou, Simone Tilmes, Forrest Lacey, Adrien Deroubaix, and Tao Wang
Earth Syst. Sci. Data, 13, 4191–4206, https://doi.org/10.5194/essd-13-4191-2021, https://doi.org/10.5194/essd-13-4191-2021, 2021
Short summary
Short summary
Most countries around the world have implemented control measures to combat the spread of the COVID-19 pandemic, resulting in significant changes in economic and personal activities. We developed the CONFORM (COvid-19 adjustmeNt Factors fOR eMissions) dataset to account for changes in emissions during lockdowns. This dataset was created with the intention of being directly applicable to existing global and regional inventories used in chemical transport models.
Beata Opacka, Jean-François Müller, Trissevgeni Stavrakou, Maite Bauwens, Katerina Sindelarova, Jana Markova, and Alex B. Guenther
Atmos. Chem. Phys., 21, 8413–8436, https://doi.org/10.5194/acp-21-8413-2021, https://doi.org/10.5194/acp-21-8413-2021, 2021
Short summary
Short summary
Isoprene is mainly emitted from plants, and about 80 % of its global emissions occur in the tropics. Current isoprene inventories are usually based on modelled vegetation maps, but high pressure on land use over the last decades has led to severe losses, especially in tropical forests, that are not considered by models. We provide a study on the present-day impact of spaceborne land cover changes on isoprene emissions and the first inventory based on high-resolution Landsat tree cover dataset.
Ioanna Skoulidou, Maria-Elissavet Koukouli, Astrid Manders, Arjo Segers, Dimitris Karagkiozidis, Myrto Gratsea, Dimitris Balis, Alkiviadis Bais, Evangelos Gerasopoulos, Trisevgeni Stavrakou, Jos van Geffen, Henk Eskes, and Andreas Richter
Atmos. Chem. Phys., 21, 5269–5288, https://doi.org/10.5194/acp-21-5269-2021, https://doi.org/10.5194/acp-21-5269-2021, 2021
Short summary
Short summary
The performance of LOTOS-EUROS v2.2.001 regional chemical transport model NO2 simulations is investigated over Greece from June to December 2018. Comparison with in situ NO2 measurements shows a spatial correlation coefficient of 0.86, while the model underestimates the concentrations mostly during daytime (12 to 15:00 local time). Further, the simulated tropospheric NO2 columns are evaluated against ground-based MAX-DOAS NO2 measurements and S5P/TROPOMI observations for July and December 2018.
Bert Verreyken, Crist Amelynck, Jérôme Brioude, Jean-François Müller, Niels Schoon, Nicolas Kumps, Aurélie Colomb, Jean-Marc Metzger, Christopher F. Lee, Theodore K. Koenig, Rainer Volkamer, and Trissevgeni Stavrakou
Atmos. Chem. Phys., 20, 14821–14845, https://doi.org/10.5194/acp-20-14821-2020, https://doi.org/10.5194/acp-20-14821-2020, 2020
Short summary
Short summary
Biomass burning (BB) plumes arriving at the Maïdo observatory located in the south-west Indian Ocean during August 2018 and August 2019 are studied using trace gas measurements, Lagrangian transport models and the CAMS near-real-time atmospheric composition service. We investigate (i) secondary production of volatile organic compounds during transport, (ii) efficacy of the CAMS model to reproduce the chemical makeup of BB plumes and (iii) the impact of BB on the remote marine boundary layer.
Helen M. Worden, A. Anthony Bloom, John R. Worden, Zhe Jiang, Eloise A. Marais, Trissevgeni Stavrakou, Benjamin Gaubert, and Forrest Lacey
Atmos. Chem. Phys., 19, 13569–13579, https://doi.org/10.5194/acp-19-13569-2019, https://doi.org/10.5194/acp-19-13569-2019, 2019
Short summary
Short summary
Biogenic non-methane volatile organic compounds (NMVOCs) emitted from vegetation play a significant role in air quality and climate. However, there are large uncertainties in their role for climate. We present a Bayesian approach to estimate carbon monoxide fluxes that are chemically produced from biogenic sources. This provides independent constraints on models that predict biogenic emissions in order improve their capability for predicting air quality and future climate scenarios.
Jean-François Müller, Trissevgeni Stavrakou, Maite Bauwens, Steven Compernolle, and Jozef Peeters
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-317, https://doi.org/10.5194/gmd-2018-317, 2018
Publication in GMD not foreseen
Short summary
Short summary
A new dry deposition model for gaseous species is presented. It relies on the species reactivity and water-solubility, for which a new prediction method is also presented. The deposition model parameters are adjusted based on comparisons with field data for ozone and organic compounds at numerous sites. The importance of dry deposition as a sink of oxygenated organic compounds and nitrogen oxides is demonstrated by global model simulations with the new deposition scheme.
Corinne Vigouroux, Carlos Augusto Bauer Aquino, Maite Bauwens, Cornelis Becker, Thomas Blumenstock, Martine De Mazière, Omaira García, Michel Grutter, César Guarin, James Hannigan, Frank Hase, Nicholas Jones, Rigel Kivi, Dmitry Koshelev, Bavo Langerock, Erik Lutsch, Maria Makarova, Jean-Marc Metzger, Jean-François Müller, Justus Notholt, Ivan Ortega, Mathias Palm, Clare Paton-Walsh, Anatoly Poberovskii, Markus Rettinger, John Robinson, Dan Smale, Trissevgeni Stavrakou, Wolfgang Stremme, Kim Strong, Ralf Sussmann, Yao Té, and Geoffrey Toon
Atmos. Meas. Tech., 11, 5049–5073, https://doi.org/10.5194/amt-11-5049-2018, https://doi.org/10.5194/amt-11-5049-2018, 2018
Short summary
Short summary
A few ground-based stations have provided time series of HCHO columns until now, which was not optimal for providing good diagnostics for satellite or model validation. In this work, HCHO time series have been determined in a harmonized way at 21 stations ensuring, in addition to a better spatial and level of abundances coverage, that internal biases within the network have been minimized. This data set shows consistent good agreement with model data and is ready for future satellite validation.
Maite Bauwens, Trissevgeni Stavrakou, Jean-François Müller, Bert Van Schaeybroeck, Lesley De Cruz, Rozemien De Troch, Olivier Giot, Rafiq Hamdi, Piet Termonia, Quentin Laffineur, Crist Amelynck, Niels Schoon, Bernard Heinesch, Thomas Holst, Almut Arneth, Reinhart Ceulemans, Arturo Sanchez-Lorenzo, and Alex Guenther
Biogeosciences, 15, 3673–3690, https://doi.org/10.5194/bg-15-3673-2018, https://doi.org/10.5194/bg-15-3673-2018, 2018
Short summary
Short summary
Biogenic isoprene fluxes are simulated over Europe with the MEGAN–MOHYCAN model for the recent past and end-of-century climate at high spatiotemporal resolution (0.1°, 3 min). Due to climate change, fluxes increased by 40 % over 1979–2014. Climate scenarios for 2070–2099 suggest an increase by 83 % due to climate, and an even stronger increase when the potential impact of CO2 fertilization is considered (up to 141 %). Accounting for CO2 inhibition cancels out a large part of these increases.
Yang Wang, Steffen Beirle, Johannes Lampel, Mariliza Koukouli, Isabelle De Smedt, Nicolas Theys, Ang Li, Dexia Wu, Pinhua Xie, Cheng Liu, Michel Van Roozendael, Trissevgeni Stavrakou, Jean-François Müller, and Thomas Wagner
Atmos. Chem. Phys., 17, 5007–5033, https://doi.org/10.5194/acp-17-5007-2017, https://doi.org/10.5194/acp-17-5007-2017, 2017
Short summary
Short summary
A long-term MAX-DOAS measurement from 2011 to 2014 was operated in Wuxi, part of the most industrialized area of the Yangtze River delta region of China. The tropospheric VCDs and vertical profiles of NO2, SO2 and HCHO derived from the MAX-DOAS are used to validate the products derived from OMI and GOME-2A/B by different scientific teams (daily- and bimonthly-averaged data). We investigate the effects of clouds, aerosols and a priori profile shapes on satellite retrievals of tropospheric VCDs.
Clio Gielen, François Hendrick, Gaia Pinardi, Isabelle De Smedt, Caroline Fayt, Christian Hermans, Trissevgeni Stavrakou, Maite Bauwens, Jean-Francois Müller, Eugène Ndenzako, Pierre Nzohabonayo, Rachel Akimana, Sebastien Niyonzima, Michel Van Roozendael, and Martine De Mazière
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-1104, https://doi.org/10.5194/acp-2016-1104, 2017
Revised manuscript has not been submitted
Short summary
Short summary
In this paper we study the composition of the lower atmosphere above the Central-African capital city of Burundi (Bujumbura) by measuring the amount of aerosol dust particles and trace gases in the air.
We find that the aerosol and trace gas seasonal and daily variation is driven by the alternation of rain periods and dry periods associated with intense biomass burning in the vicinity of Bujumbura, and the influence of human activities in the city center.
Maite Bauwens, Trissevgeni Stavrakou, Jean-François Müller, Isabelle De Smedt, Michel Van Roozendael, Guido R. van der Werf, Christine Wiedinmyer, Johannes W. Kaiser, Katerina Sindelarova, and Alex Guenther
Atmos. Chem. Phys., 16, 10133–10158, https://doi.org/10.5194/acp-16-10133-2016, https://doi.org/10.5194/acp-16-10133-2016, 2016
Short summary
Short summary
Relying on a 9-year record of satellite observations of formaldehyde, we use inverse techniques to derive global top–down hydrocarbon fluxes over 2005–2013, infer seasonal and interannual variability, and detect emission trends. Our results suggest changes in fire seasonal patterns, a stronger contribution of agricultural burning, overestimated isoprene flux rates in the tropics, overly decreased isoprene emissions due to soil moisture stress in arid areas, and enhanced isoprene trends.
Matthieu Pommier, Cathy Clerbaux, Pierre-François Coheur, Emmanuel Mahieu, Jean-François Müller, Clare Paton-Walsh, Trissevgeni Stavrakou, and Corinne Vigouroux
Atmos. Chem. Phys., 16, 8963–8981, https://doi.org/10.5194/acp-16-8963-2016, https://doi.org/10.5194/acp-16-8963-2016, 2016
Short summary
Short summary
This work presents for the first time 7 years of formic acid (HCOOH) measurements recorded by the satellite instrument, IASI. The comparison of the data set with ground-based FTIR measurements and a CTM shows the interannual and the seasonal variation are well captured. Global distributions are provided, highlighting the long-range transport of tropospheric HCOOH over the oceans and the detection of source regions e.g. over India, USA, and Africa.
Eliane G. Alves, Kolby Jardine, Julio Tota, Angela Jardine, Ana Maria Yãnez-Serrano, Thomas Karl, Julia Tavares, Bruce Nelson, Dasa Gu, Trissevgeni Stavrakou, Scot Martin, Paulo Artaxo, Antonio Manzi, and Alex Guenther
Atmos. Chem. Phys., 16, 3903–3925, https://doi.org/10.5194/acp-16-3903-2016, https://doi.org/10.5194/acp-16-3903-2016, 2016
Short summary
Short summary
For a long time, it was thought that tropical rainforests are evergreen forests and the processes involved in these ecosystems do not change all year long. However, some satellite retrievals have suggested that ecophysiological processes may present seasonal variations mainly due to variation in light and leaf phenology in Amazonia. These in situ measurements are the first showing of a seasonal trend of volatile organic compound emissions, correlating with light and leaf phenology in Amazonia.
I. De Smedt, T. Stavrakou, F. Hendrick, T. Danckaert, T. Vlemmix, G. Pinardi, N. Theys, C. Lerot, C. Gielen, C. Vigouroux, C. Hermans, C. Fayt, P. Veefkind, J.-F. Müller, and M. Van Roozendael
Atmos. Chem. Phys., 15, 12519–12545, https://doi.org/10.5194/acp-15-12519-2015, https://doi.org/10.5194/acp-15-12519-2015, 2015
Short summary
Short summary
We present the new version of the BIRA-IASB algorithm for the retrieval of H2CO columns from OMI and GOME-2A and B measurements. Validation results at seven stations in Europe, China and Africa confirm the capacity of the satellite measurements to resolve diurnal variations in H2CO columns. Furthermore, vertical profiles derived from MAX-DOAS measurements in Beijing and in Bujumbura are used for a more detailed validation exercise. Finally trends are estimated using 10 years of OMI observations.
T. Stavrakou, J.-F. Müller, M. Bauwens, I. De Smedt, M. Van Roozendael, M. De Mazière, C. Vigouroux, F. Hendrick, M. George, C. Clerbaux, P.-F. Coheur, and A. Guenther
Atmos. Chem. Phys., 15, 11861–11884, https://doi.org/10.5194/acp-15-11861-2015, https://doi.org/10.5194/acp-15-11861-2015, 2015
Short summary
Short summary
Formaldehyde columns from two space sensors, GOME-2 and OMI, constrain by inverse modeling the global emissions of HCHO precursors in 2010. The resulting biogenic and pyrogenic fluxes from both optimizations show a very good degree of consistency. The isoprene fluxes are reduced globally by ca. 10%, and emissions from fires decrease by ca. 35%, compared to the prior. Anthropogenic emissions are weakly constrained except over China. Sensitivity inversions show robustness of the inferred fluxes.
B. Franco, F. Hendrick, M. Van Roozendael, J.-F. Müller, T. Stavrakou, E. A. Marais, B. Bovy, W. Bader, C. Fayt, C. Hermans, B. Lejeune, G. Pinardi, C. Servais, and E. Mahieu
Atmos. Meas. Tech., 8, 1733–1756, https://doi.org/10.5194/amt-8-1733-2015, https://doi.org/10.5194/amt-8-1733-2015, 2015
Short summary
Short summary
Formaldehyde (HCHO) amounts are obtained from ground-based Fourier transform infrared solar spectra and UV-visible Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) scans recorded at the Jungfraujoch station (46.5°N, 8.0°E, 3580m a.s.l.). Using HCHO amounts simulated by the chemical transport models GEOS-Chem and IMAGES as intermediates, comparisons reveal that FTIR and MAX-DOAS provide complementary products for the HCHO retrieval.
S. Compernolle and J.-F. Müller
Atmos. Chem. Phys., 14, 12815–12837, https://doi.org/10.5194/acp-14-12815-2014, https://doi.org/10.5194/acp-14-12815-2014, 2014
Short summary
Short summary
Aqueous phase occurs in the atmosphere as cloud droplets and aqueous aerosol.
The Henry's law constant regulates the water-gas partitioning of a molecule, but experimental data on polyols are limited.
New values are derived for molecules with 2-6 hydroxyl groups, by combining other thermophysical data (e.g. vapour pressure, water activity, solubility).
It is analysed which molecules will stay mostly in the gas phase, and which will preferably partition to droplet or aqueous aerosol.
W. Bader, T. Stavrakou, J.-F. Muller, S. Reimann, C. D. Boone, J. J. Harrison, O. Flock, B. Bovy, B. Franco, B. Lejeune, C. Servais, and E. Mahieu
Atmos. Meas. Tech., 7, 3861–3872, https://doi.org/10.5194/amt-7-3861-2014, https://doi.org/10.5194/amt-7-3861-2014, 2014
K. Tsigaridis, N. Daskalakis, M. Kanakidou, P. J. Adams, P. Artaxo, R. Bahadur, Y. Balkanski, S. E. Bauer, N. Bellouin, A. Benedetti, T. Bergman, T. K. Berntsen, J. P. Beukes, H. Bian, K. S. Carslaw, M. Chin, G. Curci, T. Diehl, R. C. Easter, S. J. Ghan, S. L. Gong, A. Hodzic, C. R. Hoyle, T. Iversen, S. Jathar, J. L. Jimenez, J. W. Kaiser, A. Kirkevåg, D. Koch, H. Kokkola, Y. H Lee, G. Lin, X. Liu, G. Luo, X. Ma, G. W. Mann, N. Mihalopoulos, J.-J. Morcrette, J.-F. Müller, G. Myhre, S. Myriokefalitakis, N. L. Ng, D. O'Donnell, J. E. Penner, L. Pozzoli, K. J. Pringle, L. M. Russell, M. Schulz, J. Sciare, Ø. Seland, D. T. Shindell, S. Sillman, R. B. Skeie, D. Spracklen, T. Stavrakou, S. D. Steenrod, T. Takemura, P. Tiitta, S. Tilmes, H. Tost, T. van Noije, P. G. van Zyl, K. von Salzen, F. Yu, Z. Wang, Z. Wang, R. A. Zaveri, H. Zhang, K. Zhang, Q. Zhang, and X. Zhang
Atmos. Chem. Phys., 14, 10845–10895, https://doi.org/10.5194/acp-14-10845-2014, https://doi.org/10.5194/acp-14-10845-2014, 2014
K. Sindelarova, C. Granier, I. Bouarar, A. Guenther, S. Tilmes, T. Stavrakou, J.-F. Müller, U. Kuhn, P. Stefani, and W. Knorr
Atmos. Chem. Phys., 14, 9317–9341, https://doi.org/10.5194/acp-14-9317-2014, https://doi.org/10.5194/acp-14-9317-2014, 2014
T. Stavrakou, J.-F. Müller, M. Bauwens, I. De Smedt, M. Van Roozendael, A. Guenther, M. Wild, and X. Xia
Atmos. Chem. Phys., 14, 4587–4605, https://doi.org/10.5194/acp-14-4587-2014, https://doi.org/10.5194/acp-14-4587-2014, 2014
S. Compernolle and J.-F. Müller
Atmos. Chem. Phys., 14, 2699–2712, https://doi.org/10.5194/acp-14-2699-2014, https://doi.org/10.5194/acp-14-2699-2014, 2014
J.-F. Müller, J. Peeters, and T. Stavrakou
Atmos. Chem. Phys., 14, 2497–2508, https://doi.org/10.5194/acp-14-2497-2014, https://doi.org/10.5194/acp-14-2497-2014, 2014
F. Hendrick, J.-F. Müller, K. Clémer, P. Wang, M. De Mazière, C. Fayt, C. Gielen, C. Hermans, J. Z. Ma, G. Pinardi, T. Stavrakou, T. Vlemmix, and M. Van Roozendael
Atmos. Chem. Phys., 14, 765–781, https://doi.org/10.5194/acp-14-765-2014, https://doi.org/10.5194/acp-14-765-2014, 2014
T. Stavrakou, J.-F. Müller, K. F. Boersma, R. J. van der A, J. Kurokawa, T. Ohara, and Q. Zhang
Atmos. Chem. Phys., 13, 9057–9082, https://doi.org/10.5194/acp-13-9057-2013, https://doi.org/10.5194/acp-13-9057-2013, 2013
Related subject area
Atmospheric sciences
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
Observational operator for fair model evaluation with ground NO2 measurements
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
Assessment of object-based indices to identify convective organization
The Global Forest Fire Emissions Prediction System version 1.0
NEIVAv1.0: Next-generation Emissions InVentory expansion of Akagi et al. (2011) version 1.0
FLEXPART version 11: improved accuracy, efficiency, and flexibility
Challenges of high-fidelity air quality modeling in urban environments – PALM sensitivity study during stable conditions
Air quality modeling intercomparison and multiscale ensemble chain for Latin America
Recommended coupling to global meteorological fields for long-term tracer simulations with WRF-GHG
Selecting CMIP6 global climate models (GCMs) for Coordinated Regional Climate Downscaling Experiment (CORDEX) dynamical downscaling over Southeast Asia using a standardised benchmarking framework
Improved definition of prior uncertainties in CO2 and CO fossil fuel fluxes and its impact on multi-species inversion with GEOS-Chem (v12.5)
RASCAL v1.0: an open-source tool for climatological time series reconstruction and extension
Introducing graupel density prediction in Weather Research and Forecasting (WRF) double-moment 6-class (WDM6) microphysics and evaluation of the modified scheme during the ICE-POP field campaign
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Atmospheric-river-induced precipitation in California as simulated by the regionally refined Simple Convective Resolving E3SM Atmosphere Model (SCREAM) Version 0
Recent improvements and maximum covariance analysis of aerosol and cloud properties in the EC-Earth3-AerChem model
GPU-HADVPPM4HIP V1.0: using the heterogeneous-compute interface for portability (HIP) to speed up the piecewise parabolic method in the CAMx (v6.10) air quality model on China's domestic GPU-like accelerator
Preliminary evaluation of the effect of electro-coalescence with conducting sphere approximation on the formation of warm cumulus clouds using SCALE-SDM version 0.2.5–2.3.0
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Orbital-Radar v1.0.0: A tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Impact of ITCZ width on global climate: ITCZ-MIP
Deep-learning-driven simulations of boundary layer clouds over the Southern Great Plains
Mixed-precision computing in the GRIST dynamical core for weather and climate modelling
A conservative immersed boundary method for the multi-physics urban large-eddy simulation model uDALES v2.0
RCEMIP-II: mock-Walker simulations as phase II of the radiative–convective equilibrium model intercomparison project
Objective identification of meteorological fronts and climatologies from ERA-Interim and ERA5
TAMS: a tracking, classifying, and variable-assigning algorithm for mesoscale convective systems in simulated and satellite-derived datasets
Development of the adjoint of the unified tropospheric–stratospheric chemistry extension (UCX) in GEOS-Chem adjoint v36
New explicit formulae for the settling speed of prolate spheroids in the atmosphere: theoretical background and implementation in AerSett v2.0.2
ZJU-AERO V0.5: an Accurate and Efficient Radar Operator designed for CMA-GFS/MESO with the capability to simulate non-spherical hydrometeors
The Year of Polar Prediction site Model Intercomparison Project (YOPPsiteMIP) phase 1: project overview and Arctic winter forecast evaluation
Evaluating CHASER V4.0 global formaldehyde (HCHO) simulations using satellite, aircraft, and ground-based remote-sensing observations
Global variable-resolution simulations of extreme precipitation over Henan, China, in 2021 with MPAS-Atmosphere v7.3
The CHIMERE chemistry-transport model v2023r1
tobac v1.5: introducing fast 3D tracking, splits and mergers, and other enhancements for identifying and analysing meteorological phenomena
Merged Observatory Data Files (MODFs): an integrated observational data product supporting process-oriented investigations and diagnostics
Simulation of marine stratocumulus using the super-droplet method: numerical convergence and comparison to a double-moment bulk scheme using SCALE-SDM 5.2.6-2.3.1
Modeling of PAHs From Global to Regional Scales: Model Development and Investigation of Health Risks from 2013 to 2018 in China
WRF-Comfort: simulating microscale variability in outdoor heat stress at the city scale with a mesoscale model
Representing effects of surface heterogeneity in a multi-plume eddy diffusivity mass flux boundary layer parameterization
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024, https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary
Short summary
Chemical transport model simulations are combined with ozone observations to estimate the bias in ozone attributable to US anthropogenic sources and individual sources of US background ozone: natural sources, non-US anthropogenic sources, and stratospheric ozone. Results indicate a positive bias correlated with US anthropogenic emissions during summer in the eastern US and a negative bias correlated with stratospheric ozone during spring.
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024, https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary
Short summary
Model evaluations against ground observations are usually unfair. The former simulates mean status over coarse grids and the latter the surrounding atmosphere. To solve this, we proposed the new land-use-based representative (LUBR) operator that considers intra-grid variance. The LUBR operator is validated to provide insights that align with satellite measurements. The results highlight the importance of considering fine-scale urban–rural differences when comparing models and observation.
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024, https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
Short summary
The ensemble Kalman filter (EnKF) improves dust storm forecasts but faces challenges with position errors. The valid time shifting EnKF (VTS-EnKF) addresses this by adjusting for position errors, enhancing accuracy in forecasting dust storms, as proven in tests on 2021 events, even with smaller ensembles and time intervals.
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024, https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
Short summary
Inadequate representation of surface–atmosphere interaction processes is a major source of uncertainty in numerical weather prediction models. Here, an effort has been made to improve the Weather Research and Forecasting (WRF) model version 4.2.2 by introducing a unique theoretical framework under convective conditions. In addition, to enhance the potential applicability of the WRF modeling system, various commonly used similarity functions under convective conditions have also been installed.
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024, https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
Short summary
Supercooled liquid clouds (liquid clouds colder than 0°C) are common at higher latitudes (especially over the Southern Ocean) and are critical for constraining climate projections. We compare a single-column version of a weather model to observations with two different cloud schemes and find that both the dynamical environment and atmospheric aerosols are important for reproducing observations.
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024, https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Short summary
This study updates the CESM's aerosol schemes, focusing on dust, marine aerosol emissions, and secondary organic aerosol (SOA) . Dust emission modifications make deflation areas more continuous, improving results in North America and the sub-Arctic. Humidity correction to sea-salt emissions has a minor effect. Introducing marine organic aerosol emissions, coupled with ocean biogeochemical processes, and adding aqueous reactions for SOA formation advance the CESM's aerosol modelling results.
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024, https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Short summary
Marine cloud brightening (MCB) is a climate intervention technique to potentially cool the climate. Climate models used to gauge regional climate impacts associated with MCB often assume large areas of the ocean are uniformly perturbed. However, a more realistic representation of MCB application would require information about how an injected particle plume spreads. This work aims to develop such a plume-spreading model.
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024, https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Short summary
Data-driven models are becoming a viable alternative to physics-based models for weather forecasting up to 15 d into the future. However, it is unclear whether they are as reliable as physics-based models when forecasting weather extremes. We evaluate their performance in forecasting near-surface cold, hot, and windy extremes globally. We find that data-driven models can compete with physics-based models and that the choice of the best model mainly depends on the region and type of extreme.
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024, https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Short summary
This work describe how we linked the meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction at a global scale. This new model scales well in high-performance computing environments and performs well with respect to ground surface networks in terms of ozone and PM2.5.
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024, https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary
Short summary
In recent years, several studies focused their attention on the disposition of convection. Lots of methods, called indices, have been developed to quantify the amount of convection clustering. These indices are evaluated in this study by defining criteria that must be satisfied and then evaluating the indices against these standards. None of the indices meet all criteria, with some only partially meeting them.
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024, https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary
Short summary
The Global Forest Fire Emissions Prediction System (GFFEPS) is a model that predicts smoke and carbon emissions from wildland fires. The model calculates emissions from the ground up based on satellite-detected fires, modelled weather and fire characteristics. Unlike other global models, GFFEPS uses daily weather conditions to capture changing burning conditions on a day-to-day basis. GFFEPS produced lower carbon emissions due to the changing weather not captured by the other models.
Samiha Binte Shahid, Forrest G. Lacey, Christine Wiedinmyer, Robert J. Yokelson, and Kelley C. Barsanti
Geosci. Model Dev., 17, 7679–7711, https://doi.org/10.5194/gmd-17-7679-2024, https://doi.org/10.5194/gmd-17-7679-2024, 2024
Short summary
Short summary
The Next-generation Emissions InVentory expansion of Akagi (NEIVA) v.1.0 is a comprehensive biomass burning emissions database that allows integration of new data and flexible querying. Data are stored in connected datasets, including recommended averages of ~1500 constituents for 14 globally relevant fire types. Individual compounds were mapped to common model species to allow better attribution of emissions in modeling studies that predict the effects of fires on air quality and climate.
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024, https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Short summary
Computer models are essential for improving our understanding of how gases and particles move in the atmosphere. We present an update of the atmospheric transport model FLEXPART. FLEXPART 11 is more accurate due to a reduced number of interpolations and a new scheme for wet deposition. It can simulate non-spherical aerosols and includes linear chemical reactions. It is parallelised using OpenMP and includes new user options. A new user manual details how to use FLEXPART 11.
Jaroslav Resler, Petra Bauerová, Michal Belda, Martin Bureš, Kryštof Eben, Vladimír Fuka, Jan Geletič, Radek Jareš, Jan Karel, Josef Keder, Pavel Krč, William Patiño, Jelena Radović, Hynek Řezníček, Matthias Sühring, Adriana Šindelářová, and Ondřej Vlček
Geosci. Model Dev., 17, 7513–7537, https://doi.org/10.5194/gmd-17-7513-2024, https://doi.org/10.5194/gmd-17-7513-2024, 2024
Short summary
Short summary
Detailed modeling of urban air quality in stable conditions is a challenge. We show the unprecedented sensitivity of a large eddy simulation (LES) model to meteorological boundary conditions and model parameters in an urban environment under stable conditions. We demonstrate the crucial role of boundary conditions for the comparability of results with observations. The study reveals a strong sensitivity of the results to model parameters and model numerical instabilities during such conditions.
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
David Ho, Michał Gałkowski, Friedemann Reum, Santiago Botía, Julia Marshall, Kai Uwe Totsche, and Christoph Gerbig
Geosci. Model Dev., 17, 7401–7422, https://doi.org/10.5194/gmd-17-7401-2024, https://doi.org/10.5194/gmd-17-7401-2024, 2024
Short summary
Short summary
Atmospheric model users often overlook the impact of the land–atmosphere interaction. This study accessed various setups of WRF-GHG simulations that ensure consistency between the model and driving reanalysis fields. We found that a combination of nudging and frequent re-initialization allows certain improvement by constraining the soil moisture fields and, through its impact on atmospheric mixing, improves atmospheric transport.
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev., 17, 7285–7315, https://doi.org/10.5194/gmd-17-7285-2024, https://doi.org/10.5194/gmd-17-7285-2024, 2024
Short summary
Short summary
We use a comprehensive approach to select a subset of CMIP6 models for dynamical downscaling over Southeast Asia, taking into account model performance, model independence, data availability and the range of future climate projections. The standardised benchmarking framework is applied to assess model performance through both statistical and process-based metrics. Ultimately, we identify two independent model groups that are suitable for dynamical downscaling in the Southeast Asian region.
Ingrid Super, Tia Scarpelli, Arjan Droste, and Paul I. Palmer
Geosci. Model Dev., 17, 7263–7284, https://doi.org/10.5194/gmd-17-7263-2024, https://doi.org/10.5194/gmd-17-7263-2024, 2024
Short summary
Short summary
Monitoring greenhouse gas emission reductions requires a combination of models and observations, as well as an initial emission estimate. Each component provides information with a certain level of certainty and is weighted to yield the most reliable estimate of actual emissions. We describe efforts for estimating the uncertainty in the initial emission estimate, which significantly impacts the outcome. Hence, a good uncertainty estimate is key for obtaining reliable information on emissions.
Álvaro González-Cervera and Luis Durán
Geosci. Model Dev., 17, 7245–7261, https://doi.org/10.5194/gmd-17-7245-2024, https://doi.org/10.5194/gmd-17-7245-2024, 2024
Short summary
Short summary
RASCAL is an open-source Python tool designed for reconstructing daily climate observations, especially in regions with complex local phenomena. It merges large-scale weather patterns with local weather using the analog method. Evaluations in central Spain show that RASCAL outperforms ERA20C reanalysis in reconstructing precipitation and temperature. RASCAL offers opportunities for broad scientific applications, from short-term forecasts to local-scale climate change scenarios.
Sun-Young Park, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, and Jason A. Milbrandt
Geosci. Model Dev., 17, 7199–7218, https://doi.org/10.5194/gmd-17-7199-2024, https://doi.org/10.5194/gmd-17-7199-2024, 2024
Short summary
Short summary
We enhance the WDM6 scheme by incorporating predicted graupel density. The modification affects graupel characteristics, including fall velocity–diameter and mass–diameter relationships. Simulations highlight changes in graupel distribution and precipitation patterns, potentially influencing surface snow amounts. The study underscores the significance of integrating predicted graupel density for a more realistic portrayal of microphysical properties in weather models.
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024, https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary
Short summary
We present a summary of enabling high-performance computing of the Community Multiscale Air Quality Model (CMAQ) – a state-of-the-science community multiscale air quality model – on two cloud computing platforms through documenting the technologies, model performance, scaling and relative merits. This may be a new paradigm for computationally intense future model applications. We initiated this work due to a need to leverage cloud computing advances and to ease the learning curve for new users.
Peter A. Bogenschutz, Jishi Zhang, Qi Tang, and Philip Cameron-Smith
Geosci. Model Dev., 17, 7029–7050, https://doi.org/10.5194/gmd-17-7029-2024, https://doi.org/10.5194/gmd-17-7029-2024, 2024
Short summary
Short summary
Using high-resolution and state-of-the-art modeling techniques we simulate five atmospheric river events for California to test the capability to represent precipitation for these events. We find that our model is able to capture the distribution of precipitation very well but suffers from overestimating the precipitation amounts over high elevation. Increasing the resolution further has no impact on reducing this bias, while increasing the domain size does have modest impacts.
Manu Anna Thomas, Klaus Wyser, Shiyu Wang, Marios Chatziparaschos, Paraskevi Georgakaki, Montserrat Costa-Surós, Maria Gonçalves Ageitos, Maria Kanakidou, Carlos Pérez García-Pando, Athanasios Nenes, Twan van Noije, Philippe Le Sager, and Abhay Devasthale
Geosci. Model Dev., 17, 6903–6927, https://doi.org/10.5194/gmd-17-6903-2024, https://doi.org/10.5194/gmd-17-6903-2024, 2024
Short summary
Short summary
Aerosol–cloud interactions occur at a range of spatio-temporal scales. While evaluating recent developments in EC-Earth3-AerChem, this study aims to understand the extent to which the Twomey effect manifests itself at larger scales. We find a reduction in the warm bias over the Southern Ocean due to model improvements. While we see footprints of the Twomey effect at larger scales, the negative relationship between cloud droplet number and liquid water drives the shortwave radiative effect.
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024, https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary
Short summary
AMD’s heterogeneous-compute interface for portability was implemented to port the piecewise parabolic method solver from NVIDIA GPUs to China's GPU-like accelerators. The results show that the larger the model scale, the more acceleration effect on the GPU-like accelerator, up to 28.9 times. The multi-level parallelism achieves a speedup of 32.7 times on the heterogeneous cluster. By comparing the results, the GPU-like accelerators have more accuracy for the geoscience numerical models.
Ruyi Zhang, Limin Zhou, Shin-ichiro Shima, and Huawei Yang
Geosci. Model Dev., 17, 6761–6774, https://doi.org/10.5194/gmd-17-6761-2024, https://doi.org/10.5194/gmd-17-6761-2024, 2024
Short summary
Short summary
Solar activity weakly ionises Earth's atmosphere, charging cloud droplets. Electro-coalescence is when oppositely charged droplets stick together. We introduce an analytical expression of electro-coalescence probability and use it in a warm-cumulus-cloud simulation. Results show that charge cases increase rain and droplet size, with the new method outperforming older ones. The new method requires longer computation time, but its impact on rain justifies inclusion in meteorology models.
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024, https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Short summary
Satellite observations provide crucial information about atmospheric constituents in a global distribution that helps to better predict the weather over sparsely observed regions like the Arctic. However, the use of satellite data is usually conservative and imperfect. In this study, a better spatial representation of satellite observations is discussed and explored by a so-called footprint function or operator, highlighting its added value through a case study and diagnostics.
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-129, https://doi.org/10.5194/gmd-2024-129, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Orbital-radar is a Python tool transferring sub-orbital radar data (ground-based, airborne, and forward-simulated NWP) into synthetical space-borne cloud profiling radar data mimicking the platform characteristics, e.g. EarthCARE or CloudSat CPR. The novelty of orbital-radar is the simulation platform characteristic noise floors and errors. By this long time data sets can be transformed into synthetic observations for Cal/Valor sensitivity studies for new or future satellite missions.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024, https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Short summary
The forecast error growth of atmospheric phenomena is caused by initial and model errors. When studying the initial error growth, it may turn out that small-scale phenomena, which contribute little to the forecast product, significantly affect the ability to predict this product. With a negative result, we investigate in the extended Lorenz (2005) system whether omitting these phenomena will improve predictability. A theory explaining and describing this behavior is developed.
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024, https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
Short summary
In this study, we present VERT (Vehicular Emissions from Road Traffic), an R package designed to estimate transport emissions using traffic estimates and vehicle fleet composition data. Compared to other tools available in the literature, VERT stands out for its user-friendly configuration and flexibility of user input. Case studies demonstrate its accuracy in both urban and regional contexts, making it a valuable tool for air quality management and transport scenario planning.
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024, https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Short summary
A Python successor to the aerosol module of the OPAC model, named AeroMix, has been developed, with enhanced capabilities to better represent real atmospheric aerosol mixing scenarios. AeroMix’s performance in modeling aerosol mixing states has been evaluated against field measurements, substantiating its potential as a versatile aerosol optical model framework for next-generation algorithms to infer aerosol mixing states and chemical composition.
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024, https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary
Short summary
The width of the tropical rain belt affects many aspects of our climate, yet we do not understand what controls it. To better understand it, we present a method to change it in numerical model experiments. We show that the method works well in four different models. The behavior of the width is unexpectedly simple in some ways, such as how strong the winds are as it changes, but in other ways, it is more complicated, especially how temperature increases with carbon dioxide.
Tianning Su and Yunyan Zhang
Geosci. Model Dev., 17, 6319–6336, https://doi.org/10.5194/gmd-17-6319-2024, https://doi.org/10.5194/gmd-17-6319-2024, 2024
Short summary
Short summary
Using 2 decades of field observations over the Southern Great Plains, this study developed a deep-learning model to simulate the complex dynamics of boundary layer clouds. The deep-learning model can serve as the cloud parameterization within reanalysis frameworks, offering insights into improving the simulation of low clouds. By quantifying biases due to various meteorological factors and parameterizations, this deep-learning-driven approach helps bridge the observation–modeling divide.
Siyuan Chen, Yi Zhang, Yiming Wang, Zhuang Liu, Xiaohan Li, and Wei Xue
Geosci. Model Dev., 17, 6301–6318, https://doi.org/10.5194/gmd-17-6301-2024, https://doi.org/10.5194/gmd-17-6301-2024, 2024
Short summary
Short summary
This study explores strategies and techniques for implementing mixed-precision code optimization within an atmosphere model dynamical core. The coded equation terms in the governing equations that are sensitive (or insensitive) to the precision level have been identified. The performance of mixed-precision computing in weather and climate simulations was analyzed.
Sam O. Owens, Dipanjan Majumdar, Chris E. Wilson, Paul Bartholomew, and Maarten van Reeuwijk
Geosci. Model Dev., 17, 6277–6300, https://doi.org/10.5194/gmd-17-6277-2024, https://doi.org/10.5194/gmd-17-6277-2024, 2024
Short summary
Short summary
Designing cities that are resilient, sustainable, and beneficial to health requires an understanding of urban climate and air quality. This article presents an upgrade to the multi-physics numerical model uDALES, which can simulate microscale airflow, heat transfer, and pollutant dispersion in urban environments. This upgrade enables it to resolve realistic urban geometries more accurately and to take advantage of the resources available on current and future high-performance computing systems.
Allison A. Wing, Levi G. Silvers, and Kevin A. Reed
Geosci. Model Dev., 17, 6195–6225, https://doi.org/10.5194/gmd-17-6195-2024, https://doi.org/10.5194/gmd-17-6195-2024, 2024
Short summary
Short summary
This paper presents the experimental design for a model intercomparison project to study tropical clouds and climate. It is a follow-up from a prior project that used a simplified framework for tropical climate. The new project adds one new component – a specified pattern of sea surface temperatures as the lower boundary condition. We provide example results from one cloud-resolving model and one global climate model and test the sensitivity to the experimental parameters.
Philip G. Sansom and Jennifer L. Catto
Geosci. Model Dev., 17, 6137–6151, https://doi.org/10.5194/gmd-17-6137-2024, https://doi.org/10.5194/gmd-17-6137-2024, 2024
Short summary
Short summary
Weather fronts bring a lot of rain and strong winds to many regions of the mid-latitudes. We have developed an updated method of identifying these fronts in gridded data that can be used on new datasets with small grid spacing. The method can be easily applied to different datasets due to the use of open-source software for its development and shows improvements over similar previous methods. We present an updated estimate of the average frequency of fronts over the past 40 years.
Kelly M. Núñez Ocasio and Zachary L. Moon
Geosci. Model Dev., 17, 6035–6049, https://doi.org/10.5194/gmd-17-6035-2024, https://doi.org/10.5194/gmd-17-6035-2024, 2024
Short summary
Short summary
TAMS is an open-source Python-based package for tracking and classifying mesoscale convective systems that can be used to study observed and simulated systems. Each step of the algorithm is described in this paper with examples showing how to make use of visualization and post-processing tools within the package. A unique and valuable feature of this tracker is its support for unstructured grids in the identification stage and grid-independent tracking.
Irene C. Dedoussi, Daven K. Henze, Sebastian D. Eastham, Raymond L. Speth, and Steven R. H. Barrett
Geosci. Model Dev., 17, 5689–5703, https://doi.org/10.5194/gmd-17-5689-2024, https://doi.org/10.5194/gmd-17-5689-2024, 2024
Short summary
Short summary
Atmospheric model gradients provide a meaningful tool for better understanding the underlying atmospheric processes. Adjoint modeling enables computationally efficient gradient calculations. We present the adjoint of the GEOS-Chem unified chemistry extension (UCX). With this development, the GEOS-Chem adjoint model can capture stratospheric ozone and other processes jointly with tropospheric processes. We apply it to characterize the Antarctic ozone depletion potential of active halogen species.
Sylvain Mailler, Sotirios Mallios, Arineh Cholakian, Vassilis Amiridis, Laurent Menut, and Romain Pennel
Geosci. Model Dev., 17, 5641–5655, https://doi.org/10.5194/gmd-17-5641-2024, https://doi.org/10.5194/gmd-17-5641-2024, 2024
Short summary
Short summary
We propose two explicit expressions to calculate the settling speed of solid atmospheric particles with prolate spheroidal shapes. The first formulation is based on theoretical arguments only, while the second one is based on computational fluid dynamics calculations. We show that the first method is suitable for virtually all atmospheric aerosols, provided their shape can be adequately described as a prolate spheroid, and we provide an implementation of the first method in AerSett v2.0.2.
Hejun Xie, Lei Bi, and Wei Han
Geosci. Model Dev., 17, 5657–5688, https://doi.org/10.5194/gmd-17-5657-2024, https://doi.org/10.5194/gmd-17-5657-2024, 2024
Short summary
Short summary
A radar operator plays a crucial role in utilizing radar observations to enhance numerical weather forecasts. However, developing an advanced radar operator is challenging due to various complexities associated with the wave scattering by non-spherical hydrometeors, radar beam propagation, and multiple platforms. In this study, we introduce a novel radar operator named the Accurate and Efficient Radar Operator developed by ZheJiang University (ZJU-AERO) which boasts several unique features.
Jonathan J. Day, Gunilla Svensson, Barbara Casati, Taneil Uttal, Siri-Jodha Khalsa, Eric Bazile, Elena Akish, Niramson Azouz, Lara Ferrighi, Helmut Frank, Michael Gallagher, Øystein Godøy, Leslie M. Hartten, Laura X. Huang, Jareth Holt, Massimo Di Stefano, Irene Suomi, Zen Mariani, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Teresa Remes, Rostislav Fadeev, Amy Solomon, Johanna Tjernström, and Mikhail Tolstykh
Geosci. Model Dev., 17, 5511–5543, https://doi.org/10.5194/gmd-17-5511-2024, https://doi.org/10.5194/gmd-17-5511-2024, 2024
Short summary
Short summary
The YOPP site Model Intercomparison Project (YOPPsiteMIP), which was designed to facilitate enhanced weather forecast evaluation in polar regions, is discussed here, focussing on describing the archive of forecast data and presenting a multi-model evaluation at Arctic supersites during February and March 2018. The study highlights an underestimation in boundary layer temperature variance that is common across models and a related inability to forecast cold extremes at several of the sites.
Hossain Mohammed Syedul Hoque, Kengo Sudo, Hitoshi Irie, Yanfeng He, and Md Firoz Khan
Geosci. Model Dev., 17, 5545–5571, https://doi.org/10.5194/gmd-17-5545-2024, https://doi.org/10.5194/gmd-17-5545-2024, 2024
Short summary
Short summary
Using multi-platform observations, we validated global formaldehyde (HCHO) simulations from a chemistry transport model. HCHO is a crucial intermediate in the chemical catalytic cycle that governs the ozone formation in the troposphere. The model was capable of replicating the observed spatiotemporal variability in HCHO. In a few cases, the model's capability was limited. This is attributed to the uncertainties in the observations and the model parameters.
Zijun Liu, Li Dong, Zongxu Qiu, Xingrong Li, Huiling Yuan, Dongmei Meng, Xiaobin Qiu, Dingyuan Liang, and Yafei Wang
Geosci. Model Dev., 17, 5477–5496, https://doi.org/10.5194/gmd-17-5477-2024, https://doi.org/10.5194/gmd-17-5477-2024, 2024
Short summary
Short summary
In this study, we completed a series of simulations with MPAS-Atmosphere (version 7.3) to study the extreme precipitation event of Henan, China, during 20–22 July 2021. We found the different performance of two built-in parameterization scheme suites (mesoscale and convection-permitting suites) with global quasi-uniform and variable-resolution meshes. This study holds significant implications for advancing the understanding of the scale-aware capability of MPAS-Atmosphere.
Laurent Menut, Arineh Cholakian, Romain Pennel, Guillaume Siour, Sylvain Mailler, Myrto Valari, Lya Lugon, and Yann Meurdesoif
Geosci. Model Dev., 17, 5431–5457, https://doi.org/10.5194/gmd-17-5431-2024, https://doi.org/10.5194/gmd-17-5431-2024, 2024
Short summary
Short summary
A new version of the CHIMERE model is presented. This version contains both computational and physico-chemical changes. The computational changes make it easy to choose the variables to be extracted as a result, including values of maximum sub-hourly concentrations. Performance tests show that the model is 1.5 to 2 times faster than the previous version for the same setup. Processes such as turbulence, transport schemes and dry deposition have been modified and updated.
G. Alexander Sokolowsky, Sean W. Freeman, William K. Jones, Julia Kukulies, Fabian Senf, Peter J. Marinescu, Max Heikenfeld, Kelcy N. Brunner, Eric C. Bruning, Scott M. Collis, Robert C. Jackson, Gabrielle R. Leung, Nils Pfeifer, Bhupendra A. Raut, Stephen M. Saleeby, Philip Stier, and Susan C. van den Heever
Geosci. Model Dev., 17, 5309–5330, https://doi.org/10.5194/gmd-17-5309-2024, https://doi.org/10.5194/gmd-17-5309-2024, 2024
Short summary
Short summary
Building on previous analysis tools developed for atmospheric science, the original release of the Tracking and Object-Based Analysis (tobac) Python package, v1.2, was open-source, modular, and insensitive to the type of gridded input data. Here, we present the latest version of tobac, v1.5, which substantially improves scientific capabilities and computational efficiency from the previous version. These enhancements permit new uses for tobac in atmospheric science and potentially other fields.
Taneil Uttal, Leslie M. Hartten, Siri Jodha Khalsa, Barbara Casati, Gunilla Svensson, Jonathan Day, Jareth Holt, Elena Akish, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Laura X. Huang, Robert Crawford, Zen Mariani, Øystein Godøy, Johanna A. K. Tjernström, Giri Prakash, Nicki Hickmon, Marion Maturilli, and Christopher J. Cox
Geosci. Model Dev., 17, 5225–5247, https://doi.org/10.5194/gmd-17-5225-2024, https://doi.org/10.5194/gmd-17-5225-2024, 2024
Short summary
Short summary
A Merged Observatory Data File (MODF) format to systematically collate complex atmosphere, ocean, and terrestrial data sets collected by multiple instruments during field campaigns is presented. The MODF format is also designed to be applied to model output data, yielding format-matching Merged Model Data Files (MMDFs). MODFs plus MMDFs will augment and accelerate the synergistic use of model results with observational data to increase understanding and predictive skill.
Chongzhi Yin, Shin-ichiro Shima, Lulin Xue, and Chunsong Lu
Geosci. Model Dev., 17, 5167–5189, https://doi.org/10.5194/gmd-17-5167-2024, https://doi.org/10.5194/gmd-17-5167-2024, 2024
Short summary
Short summary
We investigate numerical convergence properties of a particle-based numerical cloud microphysics model (SDM) and a double-moment bulk scheme for simulating a marine stratocumulus case, compare their results with model intercomparison project results, and present possible explanations for the different results of the SDM and the bulk scheme. Aerosol processes can be accurately simulated using SDM, and this may be an important factor affecting the behavior and morphology of marine stratocumulus.
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1437, https://doi.org/10.5194/egusphere-2024-1437, 2024
Short summary
Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional scales. The model can well reproduce the distribution of PAHs. The concentration of BaP (indicator species for PAHs) could exceed the target values of 1 ng m-3 over some areas (e.g., in central Europe, India, and eastern China). The change of BaP is less than PM2.5 from 2013 to 2018. China still faces significant potential health risks posed by BaP although "the Action Plan" has been implemented.
Alberto Martilli, Negin Nazarian, E. Scott Krayenhoff, Jacob Lachapelle, Jiachen Lu, Esther Rivas, Alejandro Rodriguez-Sanchez, Beatriz Sanchez, and José Luis Santiago
Geosci. Model Dev., 17, 5023–5039, https://doi.org/10.5194/gmd-17-5023-2024, https://doi.org/10.5194/gmd-17-5023-2024, 2024
Short summary
Short summary
Here, we present a model that quantifies the thermal stress and its microscale variability at a city scale with a mesoscale model. This tool can have multiple applications, from early warnings of extreme heat to the vulnerable population to the evaluation of the effectiveness of heat mitigation strategies. It is the first model that includes information on microscale variability in a mesoscale model, something that is essential for fully evaluating heat stress.
Nathan P. Arnold
Geosci. Model Dev., 17, 5041–5056, https://doi.org/10.5194/gmd-17-5041-2024, https://doi.org/10.5194/gmd-17-5041-2024, 2024
Short summary
Short summary
Earth system models often represent the land surface at smaller scales than the atmosphere, but surface–atmosphere coupling uses only aggregated surface properties. This study presents a method to allow heterogeneous surface properties to modify boundary layer updrafts. The method is tested in single column experiments. Updraft properties are found to reasonably covary with surface conditions, and simulated boundary layer variability is enhanced over more heterogeneous land surfaces.
Cited articles
Allen, H. M., Crounse, J. D., Bates, K. H., Teng, A. P., Krawiec-Thayer, M.
P., Rivera-Rios, J. C., Keutsch, F. N., St. Clair, J. M., Hanisco, T. F.,
Moller, K. H., Kjaergaard, H. G., and Wennberg, P. O.: Kinetics and product
yields of the OH initiated oxidation of hydroxymethyl hydroperoxide, J. Phys.
Chem. A, 122, 6292–6302, 2018. a, b, c, d
Anderson, D. C., Loughner, C. P., Diskin, G., Weinheimer, A., Canty, T. P.,
Salawitch, R. J., Worden, H. M., Fried, A., Mikoviny, T., Wisthaler, A., and
Dickerson, R. R.: Measured and modeled CO and NOy in
DISCOVER-AQ: An evaluation of emissions and chemistry over the eastern US,
Atmos. Environ., 96, 78–87, 2014. a
Andrews, D., Heazlewood, B. R., Maccarone, A. T., Conroy, T., Payne, R. J.,
Jordan, M. J. T., and Kable, S. H.: Photo-tautomerization of acetaldehyde to
vinyl alcohol: A potential route to tropospheric acids, Science, 337,
1203–1208, 2012. a
Archibald, A., R., M. M., Taatjes, C. A., Percival, C. J., and Shallcross, D.
E.: Atmospheric transformation of enols: A potential secondary source of
carboxylic acids in the urban troposphere, Geophys. Res. Lett., 34, L21801, https://doi.org/10.1029/2007GL031032,
2007. a
Arey, J., Aschmann, , S. M., Kwok, E. S. C., and Atkinson, R.: Alkyl nitrate,
hydroxyalkyl nitrate, and hydroxycarbonyl formation from the NOx-air
photooxidations of C5-C8 n-alkanes, J. Phys. Chem. A, 105,
1020–1027, 2001. a
Arneth, A., Schurgers, G., Lathiere, J., Duhl, T., Beerling, D. J., Hewitt,
C. N., Martin, M., and Guenther, A.: Global terrestrial isoprene emission
models: sensitivity to variability in climate and vegetation, Atmos. Chem.
Phys., 11, 8037–8052, https://doi.org/10.5194/acp-11-8037-2011, 2011. a
Asatryan, R., da Silva, G., and Bozzelli, J. W.: Quantum chemical study of
the acrolein reactions, J. Phys. Chem. A,
114, 8302–8311, 2010. a
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F.,
Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee:
Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II
– gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055,
https://doi.org/10.5194/acp-6-3625-2006, 2006. a, b, c, d, e, f
Baeza-Romero, M. T., Glowacki, D. R., Blitz, M. A., Heard, D. E., Pilling, M.
J., Rickard, A. R., and Seakins, P. W.: A combined experimental and
theoretical study of the reaction between methylglyoxal and OH/OD radical: OH
regeneration, Phys. Chem. Chem. Phys., 9, 4114–4128, 2007. a
Barnes, I., Becker, K. H., and Zhu, T.: Near UV absorption spectra and
photolysis products of difunctional organic nitrates: Possible importance as
NOx reservoirs, J. Atmos. Chem., 17, 353–373, 1993. a
Baulch, D. L., Bowman, C. T., Cobos, C. J., Cox, R. A., Just, T., Kerr, J.
A., Pilling, M. J., Stocker, D., Troe, J., Tsang, W., Welker, R. W., and
Warnatz, J.: Evaluated kinetic data for combustion modeling: Supplement II,
J. Phys. Chem. Ref. Data, 34, 757–1397, 2005. a
Bauwens, M., Stavrakou, T., Müller, J.-F., De Smedt, I., Van Roozendael,
M., van der Werf, G. R., Wiedinmyer, C., Kaiser, J. W., Sindelarova, K., and
Guenther, A.: Nine years of global hydrocarbon emissions based on source
inversion of OMI formaldehyde observations, Atmos. Chem. Phys., 16,
10133–10158, https://doi.org/10.5194/acp-16-10133-2016, 2016. a, b
Bauwens, M., Stavrakou, T., Müller, J.-F., Van Schaeybroeck, B., De Cruz,
L., De Troch, R., Giot, O., Hamdi, R., Termonia, P., Laffineur, Q., Amelynck,
C., Schoon, N., Heinesch, B., Holst, T., Arneth, A., Ceulemans, R.,
Sanchez-Lorenzo, A., and Guenther, A.: Recent past (1979–2014) and future
(2070–2099) isoprene fluxes over Europe simulated with the MEGAN–MOHYCAN
model, Biogeosciences, 15, 3673–3690,
https://doi.org/10.5194/bg-15-3673-2018, 2018. a
Berndt, T., Jokinen, T., Sipilä, M., Mauldin III, R. L., Herrmann, H.,
Stratmann, F., Junninen, H., and Kulmala, M.: H2SO4 formation from
the gas-phase reaction of stabilized Criegee In
ediate with SO2:
Influence of water vapour content and temperature, Atmos. Environ., 89,
603–612, 2014. a
Bloss, C., Wagner, V., Jenkin, M. E., Volkamer, R., Bloss, W. J., Lee, J. D.,
Heard, D. E., Wirtz, K., Martin-Reviejo, M., Rea, G., Wenger, J. C., and
Pilling, M. J.: Development of a detailed chemical mechanism (MCMv3.1) for
the atmospheric oxidation of aromatic hydrocarbons, Atmos. Chem. Phys., 5,
641–664, https://doi.org/10.5194/acp-5-641-2005, 2005. a
Bossolasco, A., Farago, E. P., Schoemaker, C., and Fittschen, C.: Rate
constant of the reaction between CH3O2 and OH radicals, Chem. Phys.
Lett., 593, 7–13, 2014. a
Bottorff, B., Lew, M., Rickly, P., and Stevens, P. S.: HOx
radical chemistry in a forested environment during PROPHET-AMOS 2016: Model
comparisons and radical budget, AGU (American Geophysical Union) Fall
Meeting, 10–14 December 2018, Washington D. C., USA, 2018. a
Browne, E. C., Min, K.-E., Wooldridge, P. J., Apel, E., Blake, D. R., Brune,
W. H., Cantrell, C. A., Cubison, M. J., Diskin, G. S., Jimenez, J. L.,
Weinheimer, A. J., Wennberg, P. O., Wisthaler, A., and Cohen, R. C.:
Observations of total RONO2 over the boreal forest:
NOx sinks and HNO3 sources, Atmos. Chem. Phys.,
13, 4543–4562, https://doi.org/10.5194/acp-13-4543-2013, 2013. a
Browne, E. C., Wooldridge, P. J., Min, K.-E., and Cohen, R. C.: On the role
of monoterpene chemistry in the remote continental boundary layer, Atmos.
Chem. Phys., 14, 1225–1238, https://doi.org/10.5194/acp-14-1225-2014, 2014. a, b
Burkholder, J. B., Sander, S. P., Abbatt, J. P. D., Barker, J. R., Huie, R.
E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., and Wine, P.
H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies,
Evaluation number 18. JPL Publication 15–10, Jet Propulsion Laboratory,
Pasadena, USA, 2015. a, b, c, d, e
Butkovskaya, N. I., Pouvesle, N., Kukui, A., Mu, Y., and Le Bras, G.:
Mechanism of the OH-initiated oxidation of hydroxyacetone over the
temperature range 236–298 K, J. Phys Chem. A, 110, 6833–6843, 2006a. a
Butkovskaya, N. I., Pouvesle, N., Kukui, A., and Bras, G. L.: Mechanism of
the OH-initiated oxidation of glycolaldehyde over the temperature Range
233–296 K, J. Phys. Chem., 110, 13492–13499, 2006b. a
Cady-Pereira, K. E., Chaliyakunnel, S., Shephard, M. W., Millet, D. B., Luo,
M., and Wells, K. C.: HCOOH measurements from space: TES retrieval algorithm
and observed global distribution, Atmos. Meas. Tech., 7, 2297–2311,
https://doi.org/10.5194/amt-7-2297-2014, 2014. a
Capouet, M., Peeters, J., Nozière, B., and Müller, J.-F.:
Alpha-pinene oxidation by OH: simulations of laboratory experiments, Atmos.
Chem. Phys., 4, 2285–2311, https://doi.org/10.5194/acp-4-2285-2004, 2004. a, b, c
Caravan, R. L., Khan, M. A. H., Z'ador, J., Sheps, L., Antonov, I. O.,
Rotavera, B., Ramasesha K. Au, K., Chen, M.-W., Rösch, D., Osborn, D. L.,
Fittschen, C., Schoemaecker, C., Duncianu, M., Frira, A., Dusanter, S.,
Tomas, A., Percival, C. J., Shallcross, D. E., and Taatjes, C. A.: The
reaction of hydroxyl and methylperoxy radicals is not a major source of
atmospheric methanol, Nat. Commun., 9, 4343, https://doi.org/10.1038/s41467-018-06716-x, 2018. a, b
Carlton, A. G., de Gouw, J., Jimenez, J. L., Ambrose, J. L., Attwood, A. R.,
Brown, S., Baker, K. R., Cohen, R. C., Edgerton, S., Farkas, C. M., Farmer,
D., Goldstein, A. H., Gratz, L., Guenther, A., Hunt, S., Jaeglé, L., Jaffe,
D. A., Mak, J., McClure, C., Nenes, A., Nguyen, T. K., Pierce, J. R., de Sa,
S., Selin, N. E., Shah, V., Shaw, S., Shepson, P. B., Song, S., Stutz, J.,
Surratt, J. D., Turpin, B. J., Warneke, C., Washenfelder, R. A., Wennberg, P.
O., and Zhou, X.: Synthesis of the Southeast Atmosphere Studies:
Investigating fundamental atmospheric chemistry questions, B. Am. Meterol.
Soc., 99, 547–567, 2018. a
Carter, W. P. L. and Atkinson, R.: Alkyl nitrate formation from the
atmospheric photooxidation of alkanes; a revised estimation method, J. Atmos.
Chem., 8, 165–173, 1989. a
Cazorla, M., Wolfe, G. M., Bailey, S. A., Swanson, A. K., Arkinson, H. L.,
and Hanisco, T. F.: A new airborne laser-induced fluorescence instrument for
in situ detection of formaldehyde throughout the troposphere and lower
stratosphere, Atmos. Meas. Tech., 8, 541–552,
https://doi.org/10.5194/amt-8-541-2015, 2015. a
Chan Miller, C., Jacob, D. J., González Abad, G., and Chance, K.: Hotspot
of glyoxal over the Pearl River delta seen from the OMI satellite instrument:
implications for emissions of aromatic hydrocarbons, Atmos. Chem. Phys., 16,
4631–4639, https://doi.org/10.5194/acp-16-4631-2016, 2016. a
Chan Miller, C., Jacob, D. J., Marais, E. A., Yu, K., Travis, K. R., Kim, P.
S., Fisher, J. A., Zhu, L., Wolfe, G. M., Hanisco, T. F., Keutsch, F. N.,
Kaiser, J., Min, K.-E., Brown, S. S., Washenfelder, R. A., González Abad,
G., and Chance, K.: Glyoxal yield from isoprene oxidation and relation to
formaldehyde: chemical mechanism, constraints from SENEX aircraft
observations, and interpretation of OMI satellite data, Atmos. Chem. Phys.,
17, 8725–8738, https://doi.org/10.5194/acp-17-8725-2017, 2017. a, b, c
Chao, W., Hsieh, J.-T., Chang, C.-H., and Lin, J. J.-M.: Direct kinetic
measurement of the reaction of the simplest Criegee intermediate with water
vapor, Science, 347, 751–754, 2015. a
Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V.,
Cafmeyer, J., Guyon, P., Andreae, M. O., Artaxo, P., and Maenhaut, W.:
Formation of secondary organic aerosols through photooxidation of isoprene,
Science 303, 1173–1176, 2004. a
Compernolle, S., Ceulemans, K., and Müller, J.-F.: EVAPORATION: a new
vapour pressure estimation methodfor organic molecules including
non-additivity and intramolecular interactions, Atmos. Chem. Phys., 11,
9431–9450, https://doi.org/10.5194/acp-11-9431-2011, 2011. a, b, c
Coote, M. L., Collins, M. A., and Radom, L.: Calculation of accurate
imaginary frequencies and tunneling coefficients for hydrogen abstraction
reactions using IRCmax, Mol. Phys., 101, 1329–1338, 2003. a
D'Ambro, E. L., Møller, K. H., Lopez-Hilfiker, F. D., Schobesberger, S.,
Liu, J., Shilling, J. E., Kjaergaard, H. G., and Thornton, J. A.:
Isomerization of second-generation isoprene peroxy radicals: Epoxide
formation and implications for Secondary Organic Aerosol yields, Environ.
Sci. Technol., 51, 4978–7987, 2017. a, b, c, d
D'Ambro, E. L., Schobesberger, S., Gaston, C. J., Lopez-Hilfiker, F. D., Lee,
B. H., Liu, J., Zelenyuk, A., Bell, D., Cappa, C. D., Helgestad, T., Li, Z.,
Guenther, A., Wang, J., Wise, M., Caylor, R., Surratt, J. D., Riedel, T.,
Hyttinen, N., Salo, V.-T., Hasan, G., Kurtén, T., Shilling, J. E., and
Thornton, J. A.: Chamber-based insights into the factors controlling IEPOX
SOA yield, composition, and volatility, Atmos. Chem. Phys. Discuss.,
https://doi.org/10.5194/acp-2019-271, in review, 2019. a
da Silva, G.: Carboxylic acid catalyzed keto-enol tautomerizations in the gas
phase, Angew. Chem., 122, 7685–7687, 2010. a
Dee, D. P., Uppala, Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S.,
Andae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars,
A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R.,
Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm,
E. V., Isaksen, L., K P., Köhler, M., Matricardi, M., McNally, A. P.,
Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P.,
Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q. J. Roy.
Meteor. Soc, 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Dibble, T. S.: Intramolecular hydrogen bonding and double H-Atom transfer in
peroxy and alkoxy radicals from isoprene, J. Phys. Chem. A, 108, 2199–2207,
2004. a
Fischer, E. V., Jacob, D. J., Millet, D. B., Yantosca, R. M., and Mao, J.:
The role of the ocean in the global atmospheric budget of acetone, Geophys.
Res. Lett., 39, L01807, https://doi.org/10.1029/2011GL050086, 2012. a
Fisher, J. A., Jacob, D. J., Travis, K. R., Kim, P. S., Marais, E. A., Chan
Miller, C., Yu, K., Zhu, L., Yantosca, R. M., Sulprizio, M. P., Mao, J.,
Wennberg, P. O., Crounse, J. D., Teng, A. P., Nguyen, T. B., St. Clair, J.
M., Cohen, R. C., Romer, P., Nault, B. A., Wooldridge, P. J., Jimenez, J. L.,
Campuzano-Jost, P., Day, D. A., Hu, W., Shepson, P. B., Xiong, F., Blake, D.
R., Goldstein, A. H., Misztal, P. K., Hanisco, T. F., Wolfe, G. M., Ryerson,
T. B., Wisthaler, A., and Mikoviny, T.: Organic nitrate chemistry and its
implications for nitrogen budgets in an isoprene- and monoterpene-rich
atmosphere: constraints from aircraft (SEAC4RS) and ground-based (SOAS)
observations in the Southeast US, Atmos. Chem. Phys., 16, 5969–5991,
https://doi.org/10.5194/acp-16-5969-2016, 2016. a, b, c, d, e, f, g, h, i, j
Flocke, F., Atlas, E., Madronich, S., Schauffler, S. M., Aikin, K., Margitan,
J. J., and Bui, T. P.: Observations of methyl nitrate in the lower
stratosphere during STRAT: Implications for its gas phase production
mechanisms, Geophys. Res. Lett., 25, 1891–1894, 1998. a
Fu, T.-M., Jacob, D. J., Wittrock, F., Burrows, J. P., Vrekoussis, M., and
Henze, D. K.: Global budgets of atmospheric glyoxal and methylglyoxal, and
implications for formation of secondary organic aerosols, J. Geophys. Res.,
113, D15303, https://doi.org/10.1029/2007JD009505, 2008. a, b
Fuchs, H., Hofzumahaus, A., Rohrer, F., Brauers, T., Dorn, H.-P., Häseler,
R., Holland, F., Kaminski, M., Li, X., Lu, K., Nehr, S., Tillmann, R.,
Wegener, R., and Wahner, A.: Experimental evidence for efficient hydroxyl
radical regeneration in isoprene oxidation, Nat. Geosci., 6, 1023–1026,
2013. a, b
Galloway, M. M., Huisman, A. J., Yee, L. D., Chan, A. W. H., Loza, C. L.,
Seinfeld, J. H., and Keutsch, F. N.: Yields of oxidized volatile organic
compounds during the OH radical initiated oxidation of isoprene, methyl vinyl
ketone, and methacrolein under high-NOx conditions, Atmos.
Chem. Phys., 11, 10779–10790, https://doi.org/10.5194/acp-11-10779-2011,
2011. a, b, c, d
Gross, C. B. M., Dillon, T. J., Schuster, G., Lelieveld, J., and Crowley, J.
N.: Direct kinetic study of OH and O3 formation in the reaction of
CH3C(O)O2 with HO2, J. Phys. Chem. A, 118, 974–985,
2014. a
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T.,
Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols
from Nature version 2.1 (MEGAN2.1): an extended and updated framework for
modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492,
https://doi.org/10.5194/gmd-5-1471-2012, 2012. a, b, c, d
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D.,
Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H.,
Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M.
E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel,
Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D.,
Szmigielski, R., and Wildt, J.: The formation, properties and impact of
secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys.,
9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009. a
Huang, G., Brook, R., Crippa, M., Janssens-Maenhout, G., Schieberle, C.,
Dore, C., Guizzardi, D., Muntean, M., Schaaf, E., and Friedrich, R.:
Speciation of anthropogenic emissions of non-methane volatile organic
compounds: a global gridded data set for 1970–2012, Atmos. Chem. Phys., 17,
7683–7701, https://doi.org/10.5194/acp-17-7683-2017, 2017. a
Jacobs, M. I., Burke, W. J., and Elrod, M. J.: Kinetics of the reactions of
isoprene-derived hydroxynitrates: gas phase epoxide formation and solution
phase hydrolysis, Atmos. Chem. Phys., 14, 8933–8946,
https://doi.org/10.5194/acp-14-8933-2014, 2014. a, b
Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M.,
Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., Denier
van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi,
B., and Li, M.: HTAP_v2.2: a mosaic of regional and global emission grid
maps for 2008 and 2010 to study hemispheric transport of air pollution,
Atmos. Chem. Phys., 15, 11411–11432,
https://doi.org/10.5194/acp-15-11411-2015, 2015. a
Jenkin, M. E., Boyd, A. A., and Lesclaux, R.: Peroxy radical kinetics
resulting from the OH-initiated oxxidation of 1,3-butadiene,
2,3-dimethyl-1,3-butadiene and isoprene, J. Atmos. Chem., 29, 267–298, 1998. a
Jokinen, T., Sipilä, M., Richters, S., Kerminen, V.-M., Paasonen, P.,
Stratmann, F., Worsnop, D., Kulmala, M., Ehn, M., Herrmann, H., and Berndt,
T.: Rapid autoxidation forms highly oxidized RO2 radicals in the
atmosphere, Angew. Chem. Int. Ed., 53, 1–6, 2014. a
Jokinen, T., Berndt, T., Makkonen, R., Kerminen, V.-M., Junninen, H.,
Paasonen, P., Stratmann, F., Herrmann, H., Guenther, A. B., Worsnop, D. R.,
Kulmala, M., Ehn, M., and Sipilä, M.: Production of extremely low volatile
organic compounds from biogenic emissions: Measured yields and atmospheric
implications, P. Nat. Acad. Sci. USA, 112, 7123–7128, 2015. a
Jorand, F., Kerhoas, L., Heiss, A., Einhorn, J., and Sahetchian, K.:
Determination of the ultraviolet absorption cross section of
hexyl-ketohydroperoxides in solution in acetonitrile, J. Photochem.
Photobiol. A, 134, 119–125, 2000. a
Khan, M. A. H., Lyons, K., Chhantyal-Pun, R., McGillen, M. R., Caravan, R.
L., Taatjes, C. A., Orr-Ewing, A. J., Percival, C. J., and Shallcross, D. E.:
Investigating the tropospheric chemistry of acetic acid using the global 3-D
chemistry transport model, STOCHEM-CRI, J. Geophys., 123, 6267–6281, 2018. a, b
Kjaergaard, H. G., Knap, H. C., Ørnsø, K. B., Jørgensen, S.,
Crounse, J. D., Paulot, F., and Wennberg, P. O.: Atmospheric fate of
methacrolein. 2. Formation of lactone and implications for organic aerosol
production, J. Phys. Chem. A, 116, 5763–5768, 2012. a
Knap, H. C., Schmidt, J. A., and Jorgensen, S.: Hydrogen shift reactions in
four methyl-buten-ol (MBO) peroxy radicals and their impact on the
atmosphere, Atmos. Environ., 147, 79–87, 2016. a
Kwan, A. J., Chan, A. W. H., Ng, N. L., Kjaergaard, H. G., Seinfeld, J. H.,
and Wennberg, P. O.: Peroxy radical chemistry and OH radical production
during the NO3-initiated oxidation of isoprene, Atmos. Chem. Phys.,
12, 7499–7515, https://doi.org/10.5194/acp-12-7499-2012, 2012. a, b, c
Lei, X., Chen, D., Wang, W., Liu, F., and Wang, W.: Quantum chemical studies
of the OH-initiated oxidation reactions of propenols in the presence of
O2, Mol. Phys., 117, 682–692, https://doi.org/10.1080/00268976.2018.1537527,
2018. a, b
Lelieveld, J., Gromov, S., Pozzer, A., and Taraborrelli, D.: Global
tropospheric hydroxyl distribution, budget and reactivity, Atmos. Chem.
Phys., 16, 12477–12493, https://doi.org/10.5194/acp-16-12477-2016, 2016. a
Lewis, T. R., Blitz, M. A., Heard, D. E., and Seakins, P. W.: Direct evidence
for a substantive reaction between the Criegee intermediate, CH2OO,
and the water vapour dimer, Phys. Chem. Chem. Phys., 17, 4859–4863, 2015. a
Li, J., Mao, J., Min, K.-E., Washenfelder, R., Brown, S. S., Kaiser, J.,
Keutsch, F. N., Volkamer, R., Wolfe, G. M., Hanisco, T. F., Pollack, I. B.,
Ryerson, T. B., Graus, M., Gilman, J. B., Lerner, B. M., Warneke, C., de
Gouw, J. A., Middlebrook, A. M., Liao, J., Welti, A., Henderson, B. H.,
McNeill, V. F., Hall, S. R., Ullmann, K., Donner, L. J., Paulot, F., and
Horowitz, L. W.: Observational constraints on glyoxal production from
isoprene oxidation and its contribution to organic aerosol over the Southeast
United States, J. Geophys. Res., 121, 9849–9861, https://doi.org/10.1002/2016JD025331,
2016. a, b, c
Li, J., Mao, J., Fiore, A. M., Cohen, R. C., Crounse, J. D., Teng, A. P.,
Wennberg, P. O., Lee, B. H., Lopez-Hilfiker, F. D., Thornton, J. A., Peischl,
J., Pollack, I. B., Ryerson, T. B., Veres, P., Roberts, J. M., Neuman, J. A.,
Nowak, J. B., Wolfe, G. M., Hanisco, T. F., Fried, A., Singh, H. B., Dibb,
J., Paulot, F., and Horowitz, L. W.: Decadal changes in summertime reactive
oxidized nitrogen and surface ozone over the Southeast United States, Atmos.
Chem. Phys., 18, 2341–2361, https://doi.org/10.5194/acp-18-2341-2018, 2018. a, b
Liggio, J., Li, S.-M., and McLaren, R.: Reactive uptake of glyoxal by
particulate matter, J. Geophys. Res., 110, D10304, https://doi.org/10.1029/2004JD005113, 2005. a
Lin, Y.-H., Zhang, Z., Docherty, K. S., Zhang, H., Budisulistiorini, S. H.,
Rubitschun, C. L., Shaw, S. L., Knipping, E. M., Edgerton, E. S.,
Kleindienst, T. E., Gold, A., and Surratt, J. D.: Isoprene epoxydiols as
precursors to secondary organic aerosol formation: acid-catalyzed reactive
uptake studies with authentic compounds, Environ. Sci., 46, 250–258, 2012. a, b, c
Lin, Y.-H., Zhang, H., Pye, H. O. T., Zhang, Z., Marth, W. J., Park, S.,
Arashiro, M., Cui, T., Budisulistiorini, S. H., Sexton, K. G., Vizuete, W.,
Xie, Y., Luecken, D. J., Piletic, I. R., Edney, E. O., Bartolotti, L. J.,
Glod, A., and Surratt, J. D.: Epoxide as a precursor to secondary organic
aerosol formation from isoprene photooxidation in the presence of nitrogen
oxides, P. Nat. Acad. Sci. USA, 110, 6718–6723, 2013. a, b
Liu, J. M., D'Ambro, E., Lee, B. H., Lopez-Hilfiker, F. D., Zaveri, R. A.,
Rivera-Rios, J. C., Keutsch, F. N., Iyer, S., Kurten, T., Zhang, Z. F., Gold,
A., Surratt, J. D., Shilling, J. E., and Thornton, J. A.: Efficient isoprene
secondary organic aerosol formation from a non-IEPOX pathway, Environ. Sci
Technol., 50, 9872–9880, 2016. a
Liu, Y. J., Herdlinger-Blatt, I., McKinney, K. A., and Martin, S. T.:
Production of methyl vinyl ketone and methacrolein via the hydroperoxyl
pathway of isoprene oxidation, Atmos. Chem. Phys., 13, 5715–5730,
https://doi.org/10.5194/acp-13-5715-2013, 2013. a
Magneron, I., Mellouki, A., and Le Bras, G.: Photolysis and OH-initiated
oxidation of glycolaldehyde under atmospheric conditions, J. Phys. Chem. A,
109, 4552–4561, 2005. a
Malecha, K. T. and Niskodorov, S. A.: Photodegradation of secondary organic
aerosol particles as a source of small, oxygenated volatile organic
compounds, Environ. Sci. Technol., 50, 9990–9997, 2016. a
Mao, J., Carlton, A., Cohen, R. C., Brune, W. H., Brown, S. S., Wolfe, G. M.,
Jimenez, J. L., Pye, H. O. T., Lee Ng, N., Xu, L., McNeill, V. F.,
Tsigaridis, K., McDonald, B. C., Warneke, C., Guenther, A., Alvarado, M. J.,
de Gouw, J., Mickley, L. J., Leibensperger, E. M., Mathur, R., Nolte, C. G.,
Portmann, R. W., Unger, N., Tosca, M., and Horowitz, L. W.: Southeast
Atmosphere Studies: learning from model-observation syntheses, Atmos. Chem.
Phys., 18, 2615–2651, https://doi.org/10.5194/acp-18-2615-2018, 2018. a, b
Marais, E. A., Jacob, D. J., Jimenez, J. L., Campuzano-Jost, P., Day, D. A.,
Hu, W., Krechmer, J., Zhu, L., Kim, P. S., Miller, C. C., Fisher, J. A.,
Travis, K., Yu, K., Hanisco, T. F., Wolfe, G. M., Arkinson, H. L., Pye, H. O.
T., Froyd, K. D., Liao, J., and McNeill, V. F.: Aqueous-phase mechanism for
secondary organic aerosol formation from isoprene: application to the
southeast United States and co-benefit of SO2 emission controls,
Atmos. Chem. Phys., 16, 1603–1618, https://doi.org/10.5194/acp-16-1603-2016,
2016. a, b, c
Millet, D. B., Guenther, A., Siegel, D. A., Nelson, N. B., Singh, H. B., de
Gouw, J. A., Warneke, C., Williams, J., Eerdekens, G., Sinha, V., Karl, T.,
Flocke, F., Apel, E., Riemer, D. D., Palmer, P. I., and Barkley, M.: Global
atmospheric budget of acetaldehyde: 3-D model analysis and constraints from
in-situ and satellite observations, Atmos. Chem. Phys., 10, 3405–3425,
https://doi.org/10.5194/acp-10-3405-2010, 2010. a, b
Millet, D. B., Baasandorj, M., Farmer, D. K., Thornton, J. A., Baumann, K.,
Brophy, P., Chaliyakunnel, S., de Gouw, J. A., Graus, M., Hu, L., Koss, A.,
Lee, B. H., Lopez-Hilfiker, F. D., Neuman, J. A., Paulot, F., Peischl, J.,
Pollack, I. B., Ryerson, T. B., Warneke, C., Williams, B. J., and Xu, J.: A
large and ubiquitous source of atmospheric formic acid, Atmos. Chem. Phys.,
15, 6283–6304, https://doi.org/10.5194/acp-15-6283-2015, 2015. a, b, c, d
Müller, J.-F. and Peeters, J.: MAGRITTE model code and data,
https://doi.org/10.18758/71021042, 2018. a
Müller, J.-F., Stavrakou, T., Wallens, S., De Smedt, I., Van Roozendael,
M., Potosnak, M. J., Rinne, J., Munger, B., Goldstein, A., and Guenther, A.
B.: Global isoprene emissions estimated using MEGAN, ECMWF analyses and a
detailed canopy environment model, Atmos. Chem. Phys., 8, 1329–1341,
https://doi.org/10.5194/acp-8-1329-2008, 2008. a, b
Müller, J.-F., Stavrakou, T., Bauwens, M., Compernolle, S., and Peeters,
J.: Chemistry and deposition in the Model of Atmospheric composition at
Global and Regional scales using Inversion Techniques for Trace gas Emissions
(MAGRITTE v1.0). Part B. Dry deposition, Geosci. Model Dev. Discuss.,
https://doi.org/10.5194/gmd-2018-317, in review, 2018. a, b, c, d, e, f
Neu, J. L., Lawler, M. J., Prather, M. J., and Saltzmann, E. S.: Oceanic
alkyl nitrates as a natural source of tropospheric ozone, Geophys. Res.
Lett., 35, L13814, https://doi.org/10.1029/2008GL034189, 2008. a
Nguyen, T. B., Bates, K. H., Crounse, J., Schwantes, R. H., Zhang, X.,
Kjaergaard, H. G., D., S. J., Lin, P., Laskin, A., H., S. J., and Wennberg,
P. O.: Mechanism of the hydroxyl radical oxidation of methacryloyl
peroxynitrate (MPAN) and its pathway toward secondary organic aerosol
formation in the atmosphere, Phys. Chem. Chem. Phys., 17, 17914–17926,
2015a. a, b
Nguyen, T. B., Tyndall, G. S., Crounse, J. D., Teng, A. P., Bates, K. H.,
Schwantes, R. H., Coggon, M. M., Zhang, L., Feiner, P., Miller, D. O., Skog,
K. M., Rivera-Rios, J. C., Dorris, M., Olson, K. F., Koss, A., Wild, R. J.,
Brown, S. B., Goldstein, A., de Gouw, J. A., Brune, B. H., Keutsch, F. N.,
Seinfeld, J. H., and Wennberg, P. O.: Atmospheric fates of Criegee
intermediates in the ozonolysis of isoprene, Phys. Chem. Chem. Phys., 18,
10241–10254, 2016. a, b, c, d
Novelli, A., Kaminski, M., Rolletter, M., Acir, I.-H., Bohn, B., Dorn, H.-P.,
Li, X., Lutz, A., Nehr, S., Rohrer, F., Tillmann, R., Wegener, R., Holland,
F., Hofzumahaus, A., Kiendler-Scharr, A., Wahner, A., and Fuchs, H.:
Evaluation of OH and HO2 concentrations and their budgets during
photooxidation of 2-methyl-3-butene-2-ol (MBO) in the atmospheric simulation
chamber SAPHIR, Atmos. Chem. Phys., 18, 11409–11422,
https://doi.org/10.5194/acp-18-11409-2018, 2018a. a
Novelli, A., Bohn, B., Dorn, H. P., Hofzumahaus, A., Holland, F., Li, X.,
Kaminski, M., Yu, Z., Rosanka, S., Reimer, D., Gkatzelis, G. I.,
Taraborrelli, D., Vereecken, L., Rohrer, F., Tillmann, R., Wegener, R.,
Kiendler-Scharr A., Wahner, A., and Fuchs, H.: The atmosphere of a tropical
forest simulated in a chamber: experiments, theory and global significance of
OH regeneration in isoprene oxidation, iCACGP-IGAC 2018 Conference, 25–29 September 2018,
Takamatsu, Japan, 2018b. a, b, c
Novelli, A., Vereecken, L., Bohn, B., Dorn, H.-P., Hofzumahaus, A., Holland,
F., Li, X., Kaminski, M., Yu, Z., Rosanka, S., Reimer, D., Gkatzelis, G. I.,
Taraborrelli, D., Rohrer, F., Tillmann, R., Wegener, R., Kiendler-Scharr, A.,
Wahner, A., and Fuchs, H.: The impact of the aldehyde-hydrogen shift on the
OH radical budget in the isoprene oxidation mechanism in pristine
environments, Atmospheric CHemical Mechanism (ACM) Conference, 5–7 December 2018,
Davis, USA, 2018c. a
Orlando, J., Tyndall, G., and Taraborrelli, D.: Atmospheric oxidation
mechanism for glycolaldehyde (and hydroxyacetone), Abstract A33L-0315, AGU
(American Geophysical Union) Fall Meeting, 3–7 December 2012, San Francisco,
Calif., USA, 2012. a
Paulot, F., Wunch, D., Crounse, J. D., Toon, G. C., Millet, D. B., DeCarlo,
P. F., Vigouroux, C., Deutscher, N. M., González Abad, G., Notholt, J.,
Warneke, T., Hannigan, J. W., Warneke, C., de Gouw, J. A., Dunlea, E. J., De
Mazière, M., Griffith, D. W. T., Bernath, P., Jimenez, J. L., and
Wennberg, P. O.: Importance of secondary sources in the atmospheric budgets
of formic and acetic acids, Atmos. Chem. Phys., 11, 1989–2013,
https://doi.org/10.5194/acp-11-1989-2011, 2011. a, b, c, d, e, f, g, h
Paulot, F., Henze, D. K., and Wennberg, P. O.: Impact of the isoprene
photochemical cascade on tropical ozone, Atmos. Chem. Phys., 12, 1307–1325,
https://doi.org/10.5194/acp-12-1307-2012, 2012. a, b, c
Peeters, J., Müller, J.-F., Stavrakou, T., and Nguyen, S. V.: Hydroxyl
radical recycling in isoprene oxidation driven by hydrogen bonding and
hydrogen tunneling: the upgraded LIM1 mechanism, J. Phys. Chem. A, 118,
8625–8643, 2014. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z
Pinho, P., Pio, C., and Jenkin, M.: Evaluation of isoprene degradation in the
detailed tropospheric chemical mechanism, MCM v3, using environmental chamber
data, Atmos. Environ., 39, 1303–1322, 2005. a
Praske, E., Otkjaer, R. V., Crounse, J. D., Hethcox, J. C., Stoltz, B. M.,
Kjaergaard, H. G., and Wennberg, P. O.: Atmospheric autoxidation is
increasingly important in urban and suburban North America, P. Nat. Acad.
Sci. USA, 115, 64–69, 2018. a
Pugh, T. A. M., MacKenzie, A. R., Langford, B., Nemitz, E., Misztal, P. K.,
and Hewitt, C. N.: The influence of small-scale variations in isoprene
concentrations on atmospheric chemistry over a tropical rainforest, Atmos.
Chem. Phys., 11, 4121–4134, https://doi.org/10.5194/acp-11-4121-2011, 2011. a
Read, K. A., Carpenter, L. J., Arnold, S. R., Beale, R., Nightingale, P. D.,
Hopkins, J. R., Lewis, A. C., Lee, J. D., Mendes, L., and Pickering, S. J.:
Multiannual observations of acetone, methanol, and acetaldehyde in remote
Tropical Atlantic air: Implications for atmospheric OVOC budgets and
oxidative capacity, Envrion. Sci. Technol., 46, 11028–11039, 2012. a
Richter, D., Weibring, P., Walega, J. G., Fried, A., Spuler, S. M., and
Taubman, M. S.: Compact highly sensitive multi-species airborne mid-IR
spectrometer, Appl. Phys. B, 119, 119–131, 2015. a
Rindelaub, J. D., McAvey, K. M., and Shepson, P. B.: The photochemical
production of organic nitrates from α-pinene and loss via
acid-dependent particle phase hydrolysis, Atmos. Environ., 100, 193–201,
2015. a
Romer, P. S., Duffey, K. C., Wooldridge, P. J., Allen, H. M., Ayres, B. R.,
Brown, S. S., Brune, W. H., Crounse, J. D., de Gouw, J., Draper, D. C.,
Feiner, P. A., Fry, J. L., Goldstein, A. H., Koss, A., Misztal, P. K.,
Nguyen, T. B., Olson, K., Teng, A. P., Wennberg, P. O., Wild, R. J., Zhang,
L., and Cohen, R. C.: The lifetime of nitrogen oxides in an
isoprene-dominated forest, Atmos. Chem. Phys., 16, 7623–7637,
https://doi.org/10.5194/acp-16-7623-2016, 2016. a, b, c, d
Röth, E.-P. and Ehhalt, D. H.: A simple formulation of the CH2O
photolysis quantum yields, Atmos. Chem. Phys., 15, 7195–7202,
https://doi.org/10.5194/acp-15-7195-2015, 2015. a
Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol
for the development of the Master Chemical Mechanism, MCM v3 (Part A):
tropospheric degradation of non-aromatic volatile organic compounds, Atmos.
Chem. Phys., 3, 161–180, https://doi.org/10.5194/acp-3-161-2003, 2003. a, b, c, d, e, f, g, h
Schwantes, R. H., Teng, A. P., Nguyen, T. B., Coggon, M. M., Crounse, J. D.,
St. Clair, J., Zhang, X., Schilling, K. A., Seinfeld, J. H., and Wennberg, P.
O.: Isoprene NO3 oxidation products from the RO2+HO2
pathway, J. Phys. Chem. A, 119, 10158–10171, 2015. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p
Scribano, Y., Goldman, N., Saykally, R. J., and Leforestier, C.: Water dimers
in the atmosphere III: Equilibrium constant from a flexible potential, J.
Phys. Chem. A., 110, 5411–5419, 2006. a
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From
Air Pollution to Climate Change, 2nd ed., John Wiley, Hoboken, N.J., USA,
2006. a
Shaw, M. F., Sztáray, B., Whalley, L. K., Heard, D. E., Millet, D. B.,
Jordan, M. J. T., Osborn, D. L., and Kable, S. H.: Photo-tautomerization of
acetaldehyde as a photochemical source of formic acid in the troposphere,
Nat. Commun., 9, 2584, https://doi.org/10.1038/s41467-018-04824-2, 2018. a, b
Simpson, I. J., Akagi, S. K., Barletta, B., Blake, N. J., Choi, Y., Diskin,
G. S., Fried, A., Fuelberg, H. E., Meinardi, S., Rowland, F. S., Vay, S. A.,
Weinheimer, A. J., Wennberg, P. O., Wiebring, P., Wisthaler, A., Yang, M.,
Yokelson, R. J., and Blake, D. R.: Boreal forest fire emissions in fresh
Canadian smoke plumes: C1−C10 volatile organic compounds (VOCs),
CO2, CO, NO2, NO, HCN and CH3CN, Atmos. Chem.
Phys., 11, 6445–6463, https://doi.org/10.5194/acp-11-6445-2011, 2011. a
Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S.,
Stavrakou, T., Müller, J.-F., Kuhn, U., Stefani, P., and Knorr, W.:
Global data set of biogenic VOC emissions calculated by the MEGAN model over
the last 30 years, Atmos. Chem. Phys., 14, 9317–9341,
https://doi.org/10.5194/acp-14-9317-2014, 2014. a
Smith, M. C., Chang, C.-H., Chao, W., Lin, L.-C., Takahashi, K., Boering, K.
A., and Lin, J. J.: Strong negative temperature dependence of the simplest
Criegee Intermediate CH2OO reaction with water dimer, J. Phys. Chem.
Lett., 6, 2708–2713, 2015. a
Sofiev, M., Vankevich, R., Ermakova, T., and Hakkarainen, J.: Global mapping
of maximum emission heights and resulting vertical profiles of wildfire
emissions, Atmos. Chem. Phys., 13, 7039–7052,
https://doi.org/10.5194/acp-13-7039-2013, 2013. a
Squire, O. J., Archibald, A. T., Griffiths, P. T., Jenkin, M. E., Smith, D.,
and Pyle, J. A.: Influence of isoprene chemical mechanism on modelled changes
in tropospheric ozone due to climate and land use over the 21st century,
Atmos. Chem. Phys., 15, 5123–5143, https://doi.org/10.5194/acp-15-5123-2015,
2015. a
Stadtler, S., Kühn, T., Schröder, S., Taraborrelli, D., Schultz, M.
G., and Kokkola, H.: Isoprene-derived secondary organic aerosol in the global
aerosol–chemistry–climate model ECHAM6.3.0-HAM2.3-MOZ1.0, Geosci. Model
Dev., 11, 3235–3260, https://doi.org/10.5194/gmd-11-3235-2018, 2018. a, b, c, d
Stavrakou, T., Müller, J.-F., De Smedt, I., Van Roozendael, M., van der
Werf, G. R., Giglio, L., and Guenther, A.: Evaluating the performance of
pyrogenic and biogenic emission inventories against one decade of space-based
formaldehyde columns, Atmos. Chem. Phys., 9, 1037–1060,
https://doi.org/10.5194/acp-9-1037-2009, 2009a. a, b
Stavrakou, T., Müller, J.-F., De Smedt, I., Van Roozendael, M.,
Kanakidou, M., Vrekoussis, M., Wittrock, F., Richter, A., and Burrows, J. P.:
The continental source of glyoxal estimated by the synergistic use of
spaceborne measurements and inverse modelling, Atmos. Chem. Phys., 9,
8431–8446, https://doi.org/10.5194/acp-9-8431-2009, 2009b. a, b, c, d, e, f, g
Stavrakou, T., Peeters, J., and Müller, J.-F.: Improved global modelling
of HOx recycling in isoprene oxidation: evaluation against the GABRIEL and
INTEX-A aircraft campaign measurements, Atmos. Chem. Phys., 10, 9863–9878,
https://doi.org/10.5194/acp-10-9863-2010, 2010. a
Stavrakou, T., Guenther, A., Razavi, A., Clarisse, L., Clerbaux, C., Coheur,
P.-F., Hurtmans, D., Karagulian, F., De Mazière, M., Vigouroux, C.,
Amelynck, C., Schoon, N., Laffineur, Q., Heinesch, B., Aubinet, M., Rinsland,
C., and Müller, J.-F.: First space-based derivation of the global
atmospheric methanol emission fluxes, Atmos. Chem. Phys., 11, 4873–4898,
https://doi.org/10.5194/acp-11-4873-2011, 2011. a, b
Stavrakou, T., Müller, J.-F., Peeters, J., Razavi, A., Clarisse, L.,
Clerbaux, C., Coheur, P.-F., Hurtmans, D., De Mazière, M., Vigouroux, C.,
Deutscher, N. M., Griffith, D. W. T., Jones, N., and Paton-Walsh, C.:
Satellite evidence for a large source of formic acid from boreal and tropical
forests, Nat. Geosci., 5, 26–30, 2012. a, b, c, d
Stavrakou, T., Müller, J.-F., Boersma, K. F., van der A, R. J., Kurokawa,
J., Ohara, T., and Zhang, Q.: Key chemical NOx sink
uncertainties and how they influence top-down emissions of nitrogen oxides,
Atmos. Chem. Phys., 13, 9057–9082, https://doi.org/10.5194/acp-13-9057-2013,
2013. a
Stavrakou, T., Müller, J.-F., Bauwens, M., De Smedt, I., Van Roozendael,
M., De Mazière, M., Vigouroux, C., Hendrick, F., George, M., Clerbaux,
C., Coheur, P.-F., and Guenther, A.: How consistent are top-down hydrocarbon
emissions based on formaldehyde observations from GOME-2 and OMI?, Atmos.
Chem. Phys., 15, 11861–11884, https://doi.org/10.5194/acp-15-11861-2015,
2015. a, b
St. Clair, J. M., Rivera-Rios, J., Crounse, J. D., Knap, H. C., Bates, K. H.,
Teng, A. P., Jorgensen, S., Kjaergaard, H. G., Keutsch, F. N., and Wennberg,
P. O.: Kinetics and products of the reaction of the first-generation isoprene
hydroxy hydroperoxide (ISOPOOH) with OH, J. Phys. Chem. A, 120, 1441–1451,
2016. a, b, c
Tadic, J., Juranic, I., and Moortgat, G. K.: Pressure dependence of the
photooxidation of selected carbonyl compounds in air: n-butanal and
n-pentanal, J. Photochem. Photobiol. A, 143, 169–179, 2001a. a
Tadic, J., Juranic, I., and Moortgat, G. K.: Photooxidation of n-hexanal in
air, Molecules, 6, 287–299, 2001b. a
Teng, A. P., Crounse, J. D., Lee, L., St. Clair, J. M., Cohen, R. C., and
Wennberg, P. O.: Hydroxy nitrate production in the OH-initiated oxidation of
alkenes, Atmos. Chem. Phys., 15, 4297–4316,
https://doi.org/10.5194/acp-15-4297-2015, 2015. a
Thuner, L. P., Rea, G., and Wenger, J. C.: Photolysis of butenedial and
4-oxopent-2-enal, in The European Photoreactor EUPHORE 4th Report 2001, ed.
I. Barnes, Bergische Universitat Wuppertal, Wuppertal, Germany, 41–46, 2003. a
Toon, O. B., Maring, H., Dibb, J., Ferrare, R., Jacob, D. J., Jensen, E. J.,
J., Z., Mace, G. G., Pan, L. L., Pfister, L., Rosenlof, K. H., Redemann, J.,
Reid, J. S., Singh, H. B., Yokelson, R., Minnis, P., Chen, G., Jucks, K. W.,
and Pszenny, A.: Planning, implementation and scientific goals of the Studies
of Emissions and Atmospheric Composition, Clouds and Climate Coupling by
Regional SSurvey (SEAC4RS) field mission, J. Geophys. Res., 121, 4967–5009,
2016. a, b
Trainer, M., Williams, E. J., Parrish, D. D., Buhr, M. P., Allwine, E. J.,
Westberg, H. H., Fehsenfeld, F. C., and Liu, S. C.: Models and observations
of the impact of natural hydrocarbons on rural ozone, Nature, 329, 705–707,
1987. a
Travis, K. R., Jacob, D. J., Fisher, J. A., Kim, P. S., Marais, E. A., Zhu,
L., Yu, K., Miller, C. C., Yantosca, R. M., Sulprizio, M. P., Thompson, A.
M., Wennberg, P. O., Crounse, J. D., St. Clair, J. M., Cohen, R. C.,
Laughner, J. L., Dibb, J. E., Hall, S. R., Ullmann, K., Wolfe, G. M.,
Pollack, I. B., Peischl, J., Neuman, J. A., and Zhou, X.: Why do models
overestimate surface ozone in the Southeast United States?, Atmos. Chem.
Phys., 16, 13561–13577, https://doi.org/10.5194/acp-16-13561-2016, 2016. a, b, c, d
Tuazon, E. C. and Atkinson, R. A.: A product study of the gas-phase reaction
of methyl vinyl ketone with the OH radical in the presence of
NOx, Int. J. Chem. Kinet., 21, 1141–1152, 1989. a
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen,
Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G.
J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates
during 1997–2016, Earth Syst. Sci. Data, 9, 697–720,
https://doi.org/10.5194/essd-9-697-2017, 2017. a
Vasquez, K. T., Allen, H. M., Crounse, J. D., Praske, E., Xu, L., Noelscher,
A. C., and Wennberg, P. O.: Low-pressure gas chromatography with chemical
ionization mass spectrometry for quantification of multifunctional organic
compounds in the atmosphere, Atmos. Meas. Tech., 11, 6815–6832,
https://doi.org/10.5194/amt-11-6815-2018, 2018. a
Vu, N. D., Khamaganov, V., Nguyen, V. S., Carl, S. A., and Peeters, J.:
Absolute rate coefficient of the gas-phase reaction between hydroxyl radical
(OH) and hydroxyacetone: Investigating the effects of temperature and
pressure, J. Phys. Chem. A, 117, 12208–12215, 2013. a
Wennberg, P. O., Bates, K. H., Crounse, J. D., Dodson, L. G., McVay, R.,
Mertens, L. A., Nguyen, T. B., Praske, E., Schwantes, R. H., Smarte, M. D.,
St Clair, J. M., Teng, A. P., Zhang, X., and Seinfeld, J. H.: Gas-phase
reactions of isoprene and its major oxidation products, Chem. Rev., 118,
3337–3390, https://doi.org/10.1021/acs.chemrev.7b00439, 2018. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, aa, ab, ac, ad, ae, af, ag, ah, ai, aj, ak, al, am, an, ao, ap, aq, ar, as, at, au, av, aw, ax, ay, az, ba, bb, bc
Wolfe, G. M., Hanisco, T. F., Arkinson, H. L., Bui, T. P., Crounse, J. D.,
Dean-Day, J., Goldstein, A., Guenther, A., Hall, S. R., Huey, G., Jacob, D.
J., Karl, T., Kim, P. S., Liu, X., Marvin, M. R., Mikoviny, T., Misztal, P.,
Nguyen, T. B., Peischl, J., Pollack, I., Ryerson, T., St. Clair, J. M., Teng,
A., Travis, K. R., Ullmann, K., Wennberg, P. O., and Wisthaler, A.:
Quantifying sources and sinks of reactive gases in the lower atmosphere using
airborne flux observations, Geophys. Res. Lett., 42, 8231–8240, 2015. a
Yan, C., Kocevska, S., and Krasnoperov, L. N.: Kinetics of the reaction of
CH3O2 radicals with OH studied over the 292–526 K temperature
range, J. Phys. Chem. A, 120, 6111–6121, 2016.
a
Yoon M.-C., Choi Y. S., and Kim, S. K.: The OH production from the transition
of acetylacetone, Chem. Phys. Lett., 300, 207–212, 1999. a
Short summary
A new oxidation mechanism for biogenic volatile organic compounds is presented and implemented in the large-scale chemistry transport model MAGRITTE. The mechanism accounts for all major recent advances regarding isoprene oxidation. Evaluation against airborne measurements over the US demonstrates a good overall agreement. The mechanism incorporates newly-proposed pathways for formic and acetic acid formation, representing ~ 20 % of their global identified source.
A new oxidation mechanism for biogenic volatile organic compounds is presented and implemented...