Articles | Volume 12, issue 4
https://doi.org/10.5194/gmd-12-1525-2019
https://doi.org/10.5194/gmd-12-1525-2019
Methods for assessment of models
 | 
18 Apr 2019
Methods for assessment of models |  | 18 Apr 2019

Scalable diagnostics for global atmospheric chemistry using Ristretto library (version 1.0)

Meghana Velegar, N. Benjamin Erichson, Christoph A. Keller, and J. Nathan Kutz

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Nathan Kutz on behalf of the Authors (27 Mar 2019)  Author's response   Manuscript 
ED: Publish as is (29 Mar 2019) by Patrick Jöckel
AR by Nathan Kutz on behalf of the Authors (01 Apr 2019)  Manuscript 
Download
Short summary
We introduce a new set of algorithmic tools capable of producing scalable, low-rank decompositions of global spatiotemporal atmospheric chemistry data. By exploiting emerging randomized linear algebra algorithms, a suite of decompositions are proposed that efficiently extract the dominant features from global atmospheric chemistry at longitude, latitude, and elevation with improved interpretability. The algorithms provide a strategy for the global monitoring of atmospheric chemistry.