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Abstract. We introduce a new set of algorithmic tools capa-
ble of producing scalable, low-rank decompositions of global
spatio-temporal atmospheric chemistry data. By exploiting
emerging randomized linear algebra algorithms, a suite of
decompositions are proposed that extract the dominant fea-5

tures from big data sets (i.e. global atmospheric chemistry
at longitude, latitude and elevation) with improved inter-
pretability. Importantly, our proposed algorithms scale with
the intrinsic rank of the global chemistry space rather than
the ever increasing spatio-temporal measurement space, thus10

allowing for efficient representation and compression of the
data. In addition to scalability, two additional innovations are
proposed for improved interpretability: (i) a non-negative de-
composition of the data for improved interpretability by con-
straining the chemical space to have only positive expres-15

sion values (unlike PCA analysis), and (ii) sparse matrix de-
compositions, which thresholds small weights to zero, thus
highlighting the dominant, localized spatial activity (again
unlike PCA analysis). Our methods are demonstrated on a
full year of global chemistry dynamics data, showing its20

significant improvement in computational speed and inter-
pretability. We show that the here presented decomposition
methods successfully extract known major features of atmo-
spheric chemistry, such as summertime surface pollution and
biomass burning activities.25

1 Introduction

Dimensionality reduction is a critically enabling aspect of
machine learning and data science in the era of big data.
Specifically, extracting the dominant low-rank features from
a high-dimensional data matrix X allows one to efficiently30

perform tasks associated with clustering, classification, re-
construction and prediction (forecasting). Commonly used
linear dimensionality reduction methods are typically based
upon the singular value decomposition (SVD) which allows
one to exploit covariances manifest in the data (Cunningham 35

and Ghahramani, 2015). Thus the analysis of big data, such
as the atmospheric chemistry data considered here, relies on
a variety of matrix decomposition methods which seek to
exploit low-rank features exhibited by the high-dimensional
data. Despite our ever-increasing computational power, the 40

emergence of large-scale datasets has severely challenged
our ability to analyze data using traditional matrix algo-
rithms, especially for ever increasing refinements of compu-
tational models.

In this work, we are specifically concerned with time- 45

series measurements of the concentration of chemical species
collected from spatial locations in the atmosphere, illustrated
in Fig. 1. On a global scale (longitude, latitude and eleva-
tion), this data can be exceptionally high-dimensional so as to
be not computationally tractable. Thus computationally scal- 50

able methods are required for the analysis of atmospheric
chemistry dynamics. Indeed, atmospheric chemistry is an
exceptionally high-dimensional problem as it involves hun-
dreds of chemical species that are coupled with each other
via a set of ordinary differential equations. Models of at- 55

mospheric chemistry that are used to simulate the spatio-
temporal evolution of these chemical constituents need to
keep track of each chemical species on a global scale (lon-
gitude, latitude, elevation) and at each point in time. The re-
sulting data sets - used for scientific analysis or required for 60

subsequent restarts of the model - quickly become massive,
especially as horizontal model resolution steadily increases.
For example, a single snap shot of the chemical state of an
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X∈Rm×n Y∈Rm×k

Figure 1. Atmospheric chemistry simulation on a global mesh with discretized longitude, latitude and elevation (left panel modified from
NOAA). Each illustrated grid cell contains time-series data for the atmospheric chemistry dynamics. Well resolved simulations generate
massive data sets that are often not amenable to diagnostic analysis. Our proposed algorithms offer a scalable architecture for the analysis
of global spatio-temporal data. As shown in the two right panels, the original data matrix X ∈ Rm×n, where m is the number of grid points
and n is the number of snapshots, can be downsampled (here via random column sampling) to form the matrix Y ∈ Rm×k where k� n.
Although random column selection is shown, we can also use a random measurement matrix to sample the data as shown in Sec. 3.

atmospheric chemistry model at 25× 25km2 horizontal res-
olution requires 60 GB of storage space.

To tackle this challenge, we present a variety of emerg-
ing matrix decomposition methods that can be used for scal-
able diagnostics of global atmospheric chemistry dynamics.5

Specifically, we use here randomized linear algebra meth-
ods (Halko et al., 2011; Mahoney et al., 2011; Drineas and
Mahoney, 2016; Erichson et al., 2016, 2017a) to extract
the dominant, low-rank mode structures from a full three-
dimensional data set of atmospheric chemistry. These meth-10

ods are highly scalable and can thus be used on emerging big
data sets describing global chemistry dynamics, providing a
useful tool for scientific discovery and analysis. They further
offer an alternative approach for storage of large-scale atmo-
spheric chemistry data. Importantly, randomized methods are15

an efficient alternative to distributed computing if these com-
putational resources are not available. For instance, Gittens
et al. (2018) can compute the SVD of a 2.2 TB terabyte data-
set in about 60 seconds, given a super computer with many
nodes. However, if super computing is not available, random-20

ized method offers an attractive alternative which does not
require expensive compute hours on a cluster.

The paper is outlined as follows: Sec. 2 gives an overview
of the global chemistry simulation engine used to produce the
data of interest. Section 3 highlights the various decomposi- 25

tion methods that can be produced using randomized linear
algebra techniques. Section 4 shows the results of the dimen-
sionality reduction procedures, highlighting the effectiveness
of each technique. Section 5 shows how such techniques can
be used for data compression and reduced order models, en- 30

abling compact representations of the data for a variety of
broader scientific studies. Section 6 provides concluding re-
marks and a brief outlook for data sciences applied to atmo-
spheric dynamics and global chemistry analysis.

2 Atmospheric Chemistry Model and Data 35

Understanding the composition of the atmosphere is criti-
cal for a wide range of applications, including air quality,
chemistry-climate interactions, and global biogeochemical
cycling. Chemical transport models (CTM) are used to sim-
ulate the evolution of atmospheric constituents in space and 40

time (Brasseur and Jacob, 2017). A CTM solves the system
of coupled continuity equations for an ensemble ofm species
with number density vector n = (n1, . . . ,nm)

T via operator
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splitting of transport and local processes:

∂ni
∂t

=−∇· (niU)+ (Pi−Li)(n)+Ei−Di i ∈ [1,m]

(1)

with U being the wind vector, (Pi−Li)(n) the (local) chem-
ical production and loss terms, Ei the emission rate, and Di

the deposition rate of species i. The transport operator,5

∂ni
∂t

=−∇ · (niU) i ∈ [1,m] (2)

involves spatial coupling across the model domain but no
coupling between chemical species, while the chemical op-
erator,

dni
dt

= (Pi−Li)(n)+Ei−Di i ∈ [1,m] (3)10

includes no spatial coupling but the species are chemically
linked through a system of ordinary differential equations
(ODEs).

Chemistry models repeatedly solve equations (2) and (3),
which requires full knowledge of the chemical state of15

the atmosphere at all locations and times. The resulting 4-
dimensional data sets (longitude,latitude,levels,species) can
become massive, which makes it unpractical to output them
at high temporal frequency. As a consequence, model out-
put is generally restricted to a few selected species of in-20

terest (e.g. ozone), while the full model state is only output
very infrequently, e.g. to archive the information for future
model restarts (‘restart file’). We show here that the chem-
ical state of a CTM such as GEOS-Chem has distinct low-
ranked features and exploiting these properties using modern25

diagnostic tools such as variable reduction or sub-sampling
makes it possible to represent the same amount of infor-
mation in a computationally more efficient manner. While
we focus here on identifying low-ranked features across the
spatio-temporal dimension (i.e., for each species separately)30

the presented methods could similarly (and independently)
be applied across the species domain.

2.1 Global Atmospheric Chemistry Simulations

The reference simulation of atmospheric chemistry was gen-
erated using the GEOS-Chem model. GEOS-Chem (http:35

//geos-chem.org) is an open-source global model of atmo-
spheric chemistry that is used by over a hundred active
research groups in 25 countries around the world for a
wide range of applications. The code is freely available
through an open license (http://acmg.seas.harvard.edu/geos/40

geos_licensing.html). GEOS-Chem can be run in offline
mode as a chemical transport model (CTM) (Bey, 2001;
Eastham et al., 2018) or as an online component within the
NASA Goddard Earth System Model (GEOS) (Long et al.,
2015; Hu et al., 2018). We use here the offline version of45

GEOS-Chem v11-01, driven by archives of assimilated mete-
orological data from the GEOS Forward Processing (GEOS-
FP) data stream of the NASA Global Modeling and As-
similation Office (GMAO). The model chemistry scheme
includes detailed HOx-NOx-VOC-ozone-BrOx tropospheric 50

chemistry as originally described by Bey (2001) and with
addition of BrOx chemistry by Parrella et al. (2012) and up-
dates to isoprene oxidation as described by Mao et al. (2013).
Dynamic and chemical time steps are 30 and 20 minutes, re-
spectively. Stratospheric chemistry is modelled using a lin- 55

earized mechanism as described by Murray et al. (2012).
We performed a one-year simulation of GEOS-Chem (July

2013 - June 2014) at 4◦× 5◦ horizontal resolution to gen-
erate a comprehensive set of atmospheric chemistry model
diagnostics. For every chemistry time step, the concentra- 60

tions of all 143 chemical constituents were archived immedi-
ately before and after chemistry in units of molecules/cm3.
The difference between these concentration pairs are the
species tendencies due to chemistry (expressed in units of
molecules/cm3/s). Since the solution of chemical kinetics is 65

also a function of the environment, we further output key
environmental variables such as temperature, pressure, wa-
ter vapor, and photolysis rates. The latter are computed on-
line by GEOS-Chem using the Fast-JX code of Bian and
Prather (2002) as implemented in GEOS-Chem by Mao 70

et al. (2010) and Eastham et al. (2014). At every time
step, the data set thus consists of nfeatures = 143+91+
3+143 = 380 data points at every grid location. We restrict
our analysis to the lowest 30 model levels to avoid influ-
ence from the stratosphere. The resulting data set has dimen- 75

sions nlon×nlat×nlev×ntimes×nfeatures = 72×46×30×
26280× 380 = 9.9× 1011.

2.2 Data preprocessing

Many dimensionality reduction techniques rely on an un-
derlying singular value decomposition of the data that ex- 80

tracts correlated patterns in the data. A fundamental weak-
ness of such SVD-based approaches is the inability to ef-
ficiently handle invariances in the data. Specifially, transla-
tional and/or rotational invariances of low-rank features in
the data are not well captured (Kutz, 2013; Kutz et al., 85

2016). One of the key environmental variables driving the
chemistry is photolysis rate, the absolute concentrations of
many chemicals of interest accordingly ‘turn on’ and are non
zero during day time, and ‘turn off’ or go to zero during the
night. The time series of absolute chemical concentrations 90

exhibit a translating wave traversing the globe from east to
west with constant velocity. The time series for the chem-
ical species OH (hydroxyl radical) is plotted with respect
to UTC time for one latitude/elevation and three different
longitudes on bottom left in Fig. 2, highlighting the trans- 95

lational invariance in the absolute concentration data. Any
SVD-based approach will be unable to capture this transla-
tional invariance and correlate across snapshots in time, pro-

http://geos-chem.org
http://geos-chem.org
http://geos-chem.org
http://acmg.seas.harvard.edu/geos/geos_licensing.html
http://acmg.seas.harvard.edu/geos/geos_licensing.html
http://acmg.seas.harvard.edu/geos/geos_licensing.html
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Figure 2. Shifting the data for each cell in time to align the local
time zones across a latitude to the prime meridian(Lon = 0) local
time, shown here for OH absolute concentration for Lat = 30

ducing an artificially high dimensionality, i.e., higher number
of modes would be needed to characterize the dynamics due
to translation (Kutz, 2013). To overcome this issue the time
series for each grid point are shifted to align with the local
GMT time, as shown on bottom right in Fig. 2. With the local5

times for each grid point aligned SVD-based dimensionality
reduction techniques can now identify and isolate coherent
low-dimensional features in the data.

3 Scalable Matrix Decompositions for Diagnostics10

The following subsections detail a probabilistic framework
for matrix decompositions that includes a nonnegative matrix
factorization as well as a sparsity-promoting technique. The
mathematical architectures proposed provide scalable com-
putational tools for the analysis of global chemistry dynam-15

ics. Moreover, by providing three different dimensionality ar-
chitectures, a more nuanced objective analysis of the domi-
nant spatio-temporal patterns that emerge in the global chem-
istry dynamics is achieved. The standard analysis would be a
simple randomized SVD decomposition whereby the domi-20

nant correlated structures are computed. A more refined ap-
proach to computing the dominant correlated structures in-
volves restricting the dominant spatio-temporal structures to
reasonable physical considerations. Specifically, the nonneg-
ative matrix factorization restricts all chemicals to positive25

concentrations, a restriction which is physically motivated
and especially important for diagnostics when physical in-
terpretation is required. The randomized SVD will gener-
ally produce negative concentration of chemicals in individ-
ual modes, but the overall concentration is positive when the30

modes are summed together. Likewise, the sparse PCA anal-
ysis zeroes out very small concentrations so that the modes
extracted highlight only nonzero contributions to the dynam-
ics. This is an important modification of the randomized
SVD since it generally produces all nonzero entries in the 35

modal structures, regardless if it is physical. This is due to
the least-square nature of the SVD algorithm. Again, a spar-
sification penalty produces modes where only the dominant
coefficients are nonzero. What one chooses to use may de-
pend strongly on the application intended. Regardless, the 40

suite of methods allows for a more nuanced view of the data.

3.1 Probabilistic framework for low-rank
approximations

Assume that the data matrix X ∈ Rm×n has rank r, where 45

r ≤min{m,n}. The objective of a low-rank matrix approx-
imation to the input data matrix X is to find two smaller ma-
trices

X ≈ E F
m×n m× r r×n (4)

where the columns of E spans the column space of X, 50

and the rows of F spans the row space of X. These fac-
tors can be stored much more efficiently, and can be used
to approximate the massive input data matrix and summa-
rize the interesting low-dimensional features which are of-
ten interpretable. Probabilistic algorithms have been estab- 55

lished over the past two decades to compute such compu-
tationally tractable smaller matrix approximations. We seek
a near-optimal low dimensional approximation of the input
data matrix X using a probabilistic framework as formulated
by Halko et al. (2011). Conceptually, the probabilistic frame- 60

work splits the task of to computing a near-optimal low rank
approximation into two logical stages:

– Stage A: Compute a low dimensional subspace that
approximates the column space of X. We aim to
find a near-optimal basis Q ∈ Rm×k with orthonormal 65

columns such that

X≈QQTX (5)

is satisfied, where k is the desired target rank. Random 70

projections are used to sample the column space of the
input matrix X. Random projections are data agnostic,
constructed by first drawing a set of k independent ran-
dom vectors {ωi}ki=1, for instance, from the standard
normal distribution; then mapping X to the low dimen- 75

sional space to obtain the random sample projections
yi := Xωi for i= 1, . . . ,k. Define a random test ma-
trix Ω = [ω1, . . . ,ωk] ∈ Rn×k where the sample ran-
dom projections form the sampling matrix Y ∈ Rm×k
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are given by

Y := XΩ (6)

Y is denoted as the sketch matrix. The columns of Yare5

now orthonormalized using the QR-decomposition Y =
QR, where Q is the near-optimal low dimensional ba-
sis that approximates the column space of the input data
matrix. For most real-world data matrices with gradu-
ally decaying singular value spectrum, this basis matrix10

Q does not provide a good approximation for the col-
umn space of the input data matrix. A much better ap-
proximation is obtained by:

– Oversampling: For target rank k, for most data
matrices we may have non-zero singular values15

{σi}min(m,n)
i=k+1 . As a consequence, the sketch Y ob-

tained above does not exactly span the column
space of the input data matrix. Oversampling, i.e.,
using l = k+ p random projections to form the
sketch overcomes this issue, and a small number20

of additional projections p= {5,10} is often suffi-
cient to obtain a good basis comparable to the best
possible basis (Martinsson, 2016).

– Power iteration scheme: The quality of Q can be
improved by the concept of power sampling iter-25

ations (Halko et al., 2011; Rokhlin et al., 2010).
An improved sketch is defined under this concept
as Y := X(q)Ω, where q is an integer specifying
the number of power iterations. This process en-
forces a more rapid decrease of the singular val-30

ues, enabling the algorithm to sample the relevant
information related to the dominant singular val-
ues while the unwanted information is suppressed.
As few as q = {1,2,3}power iterations can consid-
erably improve the accuracy of the approximation.35

Orthogonalizing the sketch between each iteration
further improves the numerical stability of the algo-
rithm.

– Stage B: At this stage, we form a smaller matrix B
40

B := QTX ∈ Rl×n (7)

i.e., restrict the high-dimensional input matrix to the
low-dimensional space spanned by the near-optimal ba-
sis Q obtained in Stage A. Geometrically, this is a pro-
jection which takes points in a high dimensional mea-45

surement space to a low-dimensional space while main-
taining the structure in a Euclidean sense.

The probabilistic framework detailed above is referred to as
the QB decomposition of the input data matrix X, and yields
the following low-rank approximation 50

X ≈ Q B
m×n m× l l×n (8)

Note that the randomized algorithm outlined here requires
two passes over the entire data matrix to construct the ba-
sis matrix Q. The near-optimal low rank approximation B ∈
Rl×n, where l�min(m,n), can now be used instead of the 55

data matrix X to compute traditional deterministic matrix de-
compositions for data analysis. The QB decomposition can
also be extended to distributed and parallel computing, see
Voronin and Martinsson (2015).

3.2 Randomized Singular Value Decomposition 60

The data matrix X ∈ Rm×n has a singular value decomposi-
tion (SVD) of the form

X = UΣVT (9)

with unitary matrices U = [u1, . . . ,um] ∈ Rm×m and V =
[v1, . . . ,vn] ∈ Rn×n orthonormal such that UTU = I and 65

VTV = I. The left singular vectors in U provide a basis for
the range (column space), and the right singular vectors in V
provide a basis for the domain (row space) of the data matrix
X. The rectangular diagonal matrix Σ ∈ Rm×n has the cor-
responding non-negative singular values σ1 ≥ . . .≥ σn ≥ 0, 70

which describe the spectrum of the data. Low-rank matri-
ces have rank r that is much smaller than the dimension
of the measurement space, i.e., r�m,n and the singu-
lar values{σi :≥ r+1} are zero. The corresponding singular
vectors span the left and right null spaces of the matrix. In 75

practical applications the data matrix are often contaminated
by errors making it’s effective rank smaller than the exact
rank r. In such cases the matrix can be well approximated by
only those singular vectors which correspond to the singular
values of a significant magnitude, and a reduced version of 80

the SVD is computed

Xk : = UkΣkVk

= [u1, . . . ,uk] diag(σ1, . . . ,σk) [v1, . . . ,vk]
T (10)

where k denotes the desired target rank of the approxima-
tion. Choosing an optimal k is highly dependent on the task. 85

If a highly accurate reconstruction of the original data is de-
sired, then k should be chosen closer to the effective rank
of the data matrix. On the other hand if a very low dimen-
sional representation of dominant features is desired, then k
might be chosen to be much smaller. The Eckart-Young theo- 90

rem (Eckart and Young, 1936) states that the low-rank SVD
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Figure 3. Illustration of the randomized matrix decomposition tech-
nique. The random sampling matrix Ω is used to produce a new
matrix Y which can be decomposed using a QR decomposition.
This leads to the construction of the matrix B which is used for
approximating the left and right singular vectors.

provides the optimal rank-k reconstruction of a matrix in the
least-squares sense

Xk := argmin
rank(X′

k)

∥∥∥X−X
′

k

∥∥∥ (11)

with the reconstruction error in the spectral and Frobenius
norm given by5

‖X−Xk‖2=σk+1 (X) (12)

and

‖X−Xk‖F =

√√√√min(m,n)∑
j=k+1

σ2
j (X) (13)

For massive datasets, however, the cost of computing the full
SVD of the data matrix X is order O

(
mn2

)
, from which the10

first k components can then be extracted to form Xk. Ran-
domized algorithms are computational efficient and ‘surpris-
ingly’ reliable, these techniques can be used to obtain an ap-
proximate rank-k SVD at a substantially more efficient cost
of O (mnk).15

The probabilistic framework is used to obtain a near-
optimal low rank approximation B ∈ Rl×n, where l�
min(m,n). This can now be used instead of the data matrix
X, and a full SVD of B is computed

B = ŨΣVT (14)20

to give the first l right singular vectors V ∈ Rn×l and the
corresponding singular values Σ ∈ Rl×l. The left singular
vectors U ∈ Rm×l are recovered from the approximate left
singular vectors Ũ ∈ Rl×l by using the near-optimal basis
matrix Q 25

U≈QŨ (15)

For the absolute concentration data matrix, note that the right
singular vectors V are temporal and the left singular vectors
U are the spatial dominant features of the system. We also
compute a cumulative energy spectrum from the singular val- 30

ues, the energy in the first j dominant modes is given by:

∑j
i=1σ

2
i

Total Energy in the Data
(16)

where the total energy in the data is computed using the
Frobenius norm as ‖X‖2F .

The algorithm architecture is conceptually outlined in 35

Fig. 3. This shows the basic architecture and the structure
which allows for a rapid approximation of the left and right
singular values and eigenvectors.

3.3 Randomized Nonnegative Matrix Factorization

A significant drawback of commonly used dimensionality re- 40

duction techniques, such as SVD based Principal Component
Analysis (PCA), is that they permit both positive and nega-
tive terms in their components. In many data applications,
such as in the absolute concentration, negative terms fail to
be interpretable in a physically meaningful sense, i.e. chem- 45

ical concentrations are not negative. To address this prob-
lem the set of basis vectors are constrained to nonnegative
terms (Lee and Seung, 1999; Paatero and Tapper, 1994),
this paradigm is the nonnegative matrix factorization (NMF).
NMF has emerged as a powerful dimension reduction tool 50

that allows computation of sparse, parts-based representa-
tion of physically meaningful additive factors that describe
coherent structures within the data. Given the data matrix
X ∈ Rm×n, the NMF has to find two matrices of a much
lower rank 55

X ≈ W H
m×n m× k k×n (17)

where k is the target rank. The SVD finds an exact solution
of this problem in the least-squares sense, as detailed in the
previous section, but the resulting factors are not guaranteed
to be physically meaningful, i.e. positive values. NMF on the 60

other hand gives an additive parts-based representation of the
data that preserves useful properties such as sparsity and non-
negativity by imposing additional nonnegativity constraints:
W ≥ 0 and H≥ 0. The sparse parts-based features have an
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intuitive interpretation which have been exploited in environ-
mental modeling (Paatero and Tapper, 1994). In environmen-
tal data, the error estimates of data can be widely varying and
non-negativity is often an essential feature of the underlying
models (Juntto and Paatero, 1994; Lee et al., 1999; Paterson5

et al., 1999; Xie et al., 1999). Traditionally, the NMF prob-
lem is formulated as the following optimization problem:

minimize f (W,H) = ‖X−WH‖2F
subject to W ≥ 0 and H≥ 0

(18)

This optimization problem is nonconvex and ill-posed. Since
no convexification exists to simplify the optimization, no ex-10

act or unique solution is guaranteed (Gillis 2017). Different
NMF algorithms, therefore, can produce distinct decomposi-
tions that minimize the objective function. Since the prob-
lem is nonconvex with respect to both factors W and H,
most NMF algorithms divide the problem into simpler sub-15

problems which have closed form solutions. The convex sub-
problem is solved by keeping one factor fixed while updat-
ing the other, alternating and iterating until convergence. The
Hierarchical Alternating Least Squares (HALS) is one vari-
ant of this method, proved to be highly efficient (Cichocki20

and Phan, 2009), and this is the algorithm employed here for
computing the NMF.

Block coordinate descent (BCD) iterative methods fix a
block of components and optimize with respect to the re-
maining components. The factors W and H are initialized25

and updated by fixing most terms except for the block com-
prised of the jth column W(:,j) and the jth row H(j,:).
HALS approximately minimizes the cost function in equa-
tion (18) with respect to the remaining k− 1 components

minimize Jj
(
W(:,j),H(j,:)

)
=
∥∥∥R(j)−W(:,j)H(j,:)

∥∥∥2
F
,

(19)30

where R(j) is the jth residual

R(j) := X−
k∑

i6=j

W(:,i)H(i,:) (20)

Gradients are derived to find the stationary points for both
components, for details see Cichocki and Phan (2009).

For massive data sets randomness is again employed to re-35

place the high-dimensional input data matrix X ∈ Rm×n by
it’s near-optimal low rank approximation B ∈ Rl×n, where
l�min(m,n), with the exception that the entries of Ω
are drawn independently from the uniform distribution with
support ω ∈ [0,1]. We now have the following optimization40

problem:

minimize f̃
(
W̃,H

)
=

∥∥∥B−W̃H
∥∥∥2
F

subject to QW̃ ≥ 0 and H≥ 0
(21)

where the nonnegativity constraints need apply to the high
dimensional factor matrix W, but not necessarily to W̃,
since W̃ can be rotated back to high dimensional space using 45

the approximate relation W ≈QW̃. Since QQT 6= I, equa-
tion (21) can only be solved approximately. The randomized
HALS algorithm is formulated as

minimize Jj

(
W̃(:,j),H(j,:)

)
=
∥∥∥R̃(j)

−W̃(:,j)H(j,:)

∥∥∥2
F
,

(22)

where R(j) is the jth compressed residual 50

R̃
(j)

:= B−
k∑

i 6=j

W̃(:,i)H(i,:) (23)

The components are updated again by deriving the gradients.
For further details, such as initialization techniques, stopping
criterion and variants of randomized HALS we refer to Erich-
son et al. (2018a). 55

For the absolute chemistry concentration data matrix, the
columns of the factor W are the spatial modes while those
of factor H are the temporal modes. The randomized NMF
algorithm starts with an initial guess derived from a SVD of
the data matrix, and returns the W, H factors with columns 60

that are not ordered. The 2-norm of the columns is computed,
the columns are normalized and ordered. A product of the or-
dered column-wise 2-norms gives the "spectrum" for the de-
composition. From this spectrum a cumulative energy spec-
trum is computed similar to equation (16). 65

3.4 Sparse Randomized Principal Component Analysis

Principal component analysis is a prevalent technique for
dimensionality reduction, it exploits relationships among
points in high-dimensional space to construct a new set of
uncorrelated low-dimensional variables or principal compo- 70

nents (PCs). The first PC explains most of the variation in
the data, the second PC accounts for the second greatest vari-
ance in the data, and so on. For the data matrix X ∈ Rm×n,
which has now been centered with zero-mean, with m being
the number of observations and n being the number of vari- 75

ables, the PCs zi ∈ Rm are constructed as a weighted linear
combination of the original variables

zi = Xwi (24)

where wi ∈ Rnis a vector of the corresponding weights, also
denoted as modes or basis functions. Expressed concisely, 80

Z = XW (25)

with Z = [z1, . . . ,zn] ∈ Rm×n and W = [w1, . . . ,wn] ∈
Rn×n. In most dimensionality reduction applications only
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the first k PCs will be of interest to visualize the data in a
low-dimensional space, and as the relevant features used for
data clustering, classification and regression. The problem of
finding the PCs can be formulated as a variance maximiza-
tion problem or as a least-squares problem, i.e., minimizing5

the sum of squared residual errors with orthogonality con-
straints on the weight matrix as

minimize
W

f (W) = 1
2

∥∥∥X−XWWT
∥∥∥2
F

subject to WTW = I
(26)

The classic PCA approach outlined above generates global
PCs as a linear combination of all n variables, hence tends to10

often mix or blend various spatio-temporal scales and fails to
identify and isolate underlyling governing dynamics acting
at each scale. Sparse principal component analysis (SPCA)
is a variant which provides interpretable PCs with localized
spatial support, providing a ‘parsimonious’ decomposition15

through sparsity promoting regularizers on the weights W.
Each of the sparse weight vectors wi have only a few non-
zero values, hence we get a linear combination of only a few
of the original variables. The SPCA is mathematically for-
mulated as a variant of PCA outlined in equation (26) as20

minimize
A,W

f (A,W) = 1
2

∥∥∥X−XWAT
∥∥∥2
F
+ψ (W)

subject to ATA = I
(27)

where W is now a sparse weight matrix and A is an or-
thonormal inverse transform matrix, i.e., the data can be ap-
proximately constructed as X̃ = ZAT, where Z is the PC
matrix given by equation (25). In (27), ψ is a sparsity induc-25

ing regularizer such as

– `0 norm defined as the number of non-zero elements in
a vector x, which is constrained to be� n

ψ0 (x) = ‖x‖0 (28)

– `1 norm, in this case the regularization problem is also30

known as LASSO (Least Absolute Shrinkage and Se-
lection Operator) (Trendafilov et al., 2003)

ψ1 (x) = α‖x‖1 (29)

35

where α controls the degree of sparsity

– The elactic net (Zou and Hastie, 2003) which is a com-
bination of the `1 norm and quadratic penalty

ψE (x) = α‖x‖1 +β ‖x‖22 (30)40

where α,β control the degree of sparsity

Note that the optimization problem in equation (27) is non-
convex and is solved similar to the NMF optimization prob-
lem by keeping one factor fixed while updating the other, 45

alternating and iterating till convergence. For further details
refer to Erichson et al. (2018b).

For massive data sets, randomization using the probabilis-
tic framework is employed again, where the original input
data matrix X is projected to the range of Y defined in equa- 50

tion (6) so that we can reformulate equation (27) as

minimize
A,W

f (A,W) = 1
2

∥∥∥X̃−X̃WA
T
∥∥∥2
F
+ψ (W)

subject to ATA = I
(31)

The absolute concentration data matrix is first scaled to
have mean 0. The spatial modes are the columns of matrix
W. The temporal modes or the PCs are the columns of Z 55

computed from X = ZAT. The minimization algortihm also
formulates the problem as an eigen value problem, and re-
turns the eigen values λj associated with the jth mode of the
decomposition, which help compute the energy spectrum of
the decomposition. The energy captured by the first j modes 60

of the decomposition is computed as:

∑j
i=1λi× (n− 1)

Total Energy in the scaled Data
(32)

where n is the total number of snapshots in time.

4 Data diagnostics

In this section we illustrate results from the decomposition of 65

the GEOS-Chem model output using absolute concentration
of ozone (O3) as an example. The supplementary material
provides diagnostics for five additional chemicals known to
dominate the global atmospheric chemistry dynamics. The
additional five chemical species, including NO, NO2, OH, 70

Isoprene (ISOP) and CO, are known to be equally important
to ozone. For succinctness of the manuscript, we only present
ozone here and the others in the supplement. Overall, there
are close to two hundred chemicals that are interacting dy-
namically. Each chemical of interest can be diagnostic in a 75

similar fashion to ozone in order to determine its dominant
global variability. It remains an open research question how
the interactions across the entire chemical space ultimately
drive the observed variability. The scalable diagnostics ad-
vocated here provides a computational architecture allowing 80

scientists to explore this further by providing global diagnos-
tics for all chemicals in a computationally tractable manner.

Ozone is a key oxidant of the atmosphere, and high sur-
face concentrations of O3 are harmful to human health and 85

vegetation (Avnery et al., 2011; Silva et al., 2013). Ozone
production involves the photochemical oxidation of volatile
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organic compounds (VOCs) and carbon monoxide (CO) in
the presence of nitrogen oxide radicals (NOx ≡ NO + NO2).
The chemistry of ozone is highly complex, involving hun-
dreds of chemical species. This makes ozone a challenging
compound for chemistry models (e.g. Stevenson et al., 2006;5

Sherwen et al., 2017; Mao et al., 2018). We find that despite
the underlying complexity of the chemistry, the ozone con-
centration fields produced by GEOS-Chem exhibit promi-
nent, low-ranked features.

For a given chemical species of interest the abso-10

lute concentration data matrix X ∈ Rm×n has dimensions
m= nlon×nlat×nlev = 72×46×30 spatial cells, and n=
number of time snapshots = 26208 for the year long data
(one snapshot every 20 minutes).

4.1 Taking a logarithm of the data15

For some chemical species the absolute concentration val-
ues in a small localized region dominate over the values in
the rest of the grid cells. For instance, absolute concentration
values of nitric oxide (NO) is several orders of magnitude
higher over China and eastern Russia, as compared to those20

over oceans and less populated regions in the world. Corre-
spondingly the dominant spatial modes are very localized as
exhibited in the top panel of Figure 4, with only one nonzero
peak over eastern Russia for the second most dominant spa-
tial mode. SVD is unable to resolve the underlying global low25

order spatial features. To resolve this issue a logarithm of the
data values is used instead, to bring all the concentration val-
ues to the same scale and prevent smaller signals from being
damped out. The data matrix now is Xlog = log(X+1). The
second most dominant mode of the logarithm of the data as30

shown in the bottom panel of Figure 4 now exhibits global
low order features of the data. Thus the SVD and other ma-
trix decomposition techniques will able to identify and iso-
late global dominant low-order structure in the system for
chemical species exhibiting localized dominant values.35

Normalization of data is a common practice in data sci-
ence. Indeed, the ubiquitous PCA analysis requires that each
measurement type in the data have mean zero and unit vari-
ance. If this is not enforced, then those signals that are mea-
sured with large numbers will simply drown out the signals40

measured in small numbers. Thus the units of the different
measurements are neutralized by requiring a mean zero and
unit variance. Similarly here, the large spike in the data is so
large that the rest of the data is like noise comparatively. By
normalizing with the logarithm, a more balanced global view45

of the chemistry dynamics can be extracted from the modal
structures.

4.2 Modes from Randomized SVD

We begin by considering the singular value spectrum and the
dominant four temporal modes from the randomized SVD50

of the absolute concentration of ozone (O3). These are pre-

u2; no log

u2; with log
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Figure 4. Dominant spatial mode 2 at surface for NO absolute con-
centration preprocessed data before and after taking a logarithm of
the preprocessed data. Taking a logarithm scales the preprocessed
data so that the corresponding spatial modes exhibit the global low
dimensional features, instead of only picking up on the dominant
chemistry in one localized region.

sented in the top panel of Figure 5. The amount of energy
explained by the most dominant singular values gives a good
indication about the low-rank nature of the underlying data.
The top panel of Figure 5 shows the cumulative energy ex- 55

plained by the 150 most dominant singular values, as derived
from randomized SVD. If all 2.7× 1011 model output data
points were perfectly independent, each singular value would
represent 1.0/2.7×1011 = 3.7×10−10% of the total energy.
Instead, we find that the first 4 singular values combined ex- 60

plain 97% of the total field energy, and the first 150 singular
values capture almost 100% of the total energy. Thus, it is
possible to explain 99% of the spatio-temporal structure of
the highly complex ozone field with just 20 modes. These
modes reveal many of the dominant features of atmospheric 65

ozone. The bottom panel of Figure 5 illustrates the structure
of the 4 dominant temporal modes. The most dominant mode
(blue line) has a flat temporal structure, i.e. its importance is
independent of the time of the year. The next three dominant
modes all have distinct temporal patterns, i.e. they capture 70

periodical features of atmospheric ozone. Modes 2 and 3 (red
and yellow, respectively) both exhibit a frequency of 1 year,
capturing features occurring on an annual basis. The 4th most
dominant mode (purple) has a frequency of 6 months. Geo-
physical interpretation of these modes is easiest when com- 75

bining the temporal pattern with the corresponding spatial
features, the latter of which are shown in Figure 6. Shown are
the spatial pattern of the 8 most dominant modes for the sur-
face. It should be emphasized that the spatial patterns change
with altitude, as illustrated in the supplemental material. 80

Surface ozone exhibits distinct seasonal patterns, which are
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captured by the first four modes: the first mode (top left panel
in Figure 6) resembles the annual average surface concentra-
tion of ozone. It can be interpreted as time-invariant ’average
ozone’ field from which all other modes add or subtract to
describe the spatio-temporal variability of ozone in greater5

detail. The second singular value (top right panel) shows a
strong gradient at the equator as well as a distinct urban pat-
tern over the Northern hemisphere (NH). The seasonal vari-
ability of this mode (peaking in August, see Figure 5) broadly
follows observed ozone burdens in the Southern hemisphere10

(SH) (Cooper et al., 2014), and ozone is known to increase
during summertime in urban areas in the NH as a result of in-
creased photo-chemical activity. Singular mode 3 can be seen
as an additional ’forcing’ to this seasonality for NH ozone:
it shows dominant features over polluted areas (Europe, East15

China) and its seasonal amplitude complements that of singu-
lar mode 2. The most distinct feature of mode 4 is the strong
pattern over Africa. We interpret this as biomass burning sig-
nal. This is supported by the frequency pattern of this mode,
which shows two peaks in Jan/Feb and Jul/Aug, which is in20

agreement with the two biomass burning seasons over Africa
(Roberts et al., 2009).
To summarize, inspection of the spatial and temporal pat-
terns of the dominant modes of ozone shows that randomized
SVD successfully reveals prominent features of tropospheric25

ozone chemistry, such as elevated summertime ozone over
polluted urban areas or the two biomass burning seasons over
Africa. While the data set used in this study is too short to
generalize the findings, these results demonstrate the poten-
tial of randomized SVD for pattern discovery of atmospheric30

chemistry model output. In particular, the extent and tempo-
ral variability of the singular values can help identify highly
correlated ‘chemical domains’ within the model, which has
practical applications for model reduction considerations.

4.3 Modes from Randomized NMF35

A drawback of the SVD solution presented in Section 4.2
is that it accepts both negative and positive solutions, which
can result in physically unrealistic negative species concen-
trations. As discussed in Section 3.3, positive solutions can
be enforced using NMF. The results from NMF of the ozone40

absolute concentration data are presented in Figures 7, 8. The
cumulative energy spectrum exhibited in the top panel of Fig-
ure 7 shows a much slower decay as compared to the spec-
trum from the SVD decomposition. This is to be expected,
as NMF computes an additive parts-based representation of45

the low-order features in the data, which preserves sparsity
in the data but requires more modes to capture the same level
of energy as compared to the SVD. The four dominant tem-
poral modes are presented in the bottom panel of Figure 7.
These now capture approximately 20% of the total energy50

spectrum, as compared to 97% for the SVD. This is in large
parts because the positivity-constraint prevents the NMF to
create a mode for annual mean ozone that can explain most
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Figure 5. Cumulative energy spectrum (and inset detail) of the Sin-
gular Value Decomposition (top) and the corresponding 4 domi-
nant temporal modes (bottom) for O3 absolute concentration pre-
processed data.
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Figure 6. First 8 dominant spatial modes at surface for O3 absolute
concentration preprocessed data. Mode 1 is the constant or mean
value mode, it’s corresponding temporal behavior is the blue trend
in bottom panel of 5. Global low dimensional spatial features for
this chemical species are exhibited in order of dominance in Modes
2 through 8.

of the energy spectrum - akin to mode one for SVD - but
that requires both additions and subtractions from this mean 55

field to describe ozone variations in more detail. As a result,
none of the NMF modes reflects a distinct representation of
the global average ozone field. This is supported by the lack
of a time-invariant mode (see Figure 7) and also becomes
apparent from the corresponding spatial patterns shown in 60

Figure 8. None of those resemble the average mean ozone
concentration field, as e.g. SVD mode one (see Figure 6).
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Figure 7. Cumulative energy spectrum from the Nonnegative Ma-
trix Factorization (top) and the corresponding first four columns of
the ordered H temporal factor for O3 absolute concentration pre-
processed data (bottom).
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Figure 8. First 8 columns of ordered W spatial factor from NMF
at surface for O3 absolute concentration preprocessed data. These
modes lend themselves to easy interpretation, the most dominant
mode w1 indicates that O3 absolute concentration is most active
near eastern coastal urban China, North America and western
coastal African continent around the region of Congo.

Still, the first four spatial and temporal modes of NMF re-
flect some well known features of ozone chemistry, albeit
less obvious than for SVD. The most dominant NMF mode
shows a pattern comparable to the second mode of SVD, and
also has an almost identical temporal structure with a dis-5

tinct peak in July/August. The second mode is almost a mir-
ror image of the first mode, with a strong, broad-based signal
in the NH that is most dominant during Mar-May but that
also contributes during most other months except Jan. Mode

three peaks during Sep/Oct but contributes meaningfully un- 10

til February. Its spatial pattern is strongest over South Amer-
ica, India, Eastern China and Southern Africa, and thus cap-
tures some of the increased ozone concentrations due to fire
activities (e.g. South America burning season Aug/Sep/Oct,
India Oct/Nov). Mode four is similar to mode three of the 15

SVD, with strong signals over Europe and Eastern China that
peak during boreal spring.

Similar to SVD, the spatio-temporal modes of surface
ozone derived from NMF reveal many of the characteristics
of ozone chemistry, such as increased ozone concentrations 20

over urban areas and biomass burning regions, as well as the
seasonality of these events. Due to the strict positiveness of
the solution, the signal is more muted compared to SVD, and
significantly more modes are needed to reproduce the spatio-
temporal pattern of ozone in detail. This makes SVD better 25

suited for offline pattern discovery applications. However, for
practical employment of reduced-order modeling techniques
within an Earth System Model, we consider NMF superior
since it still realistically captures ozone patterns with rela-
tively few (10’s) of modes but its concentrations are guaran- 30

teed to be positive.

4.4 Modes from Randomized SPCA

Spatial modes computed from the randomized SPCA are
shown in Figure 10. Note the localized features isolated
by SPCA in these dominant spatial modes as compared to 35

the modes computed by the full SVD. We impose the spar-
sity regularizer given by equation (30) with α= 1e− 4,β =
1e− 12. Reducing the value of α gives a less sparse decom-
position. The cumulative energy spectrum in the top panel
of Figure 9 again demonstrates the much slower decay as 40

compared to the SVD and more modes are needed to capture
the same amount of energy due to the sparsity constraint. In
terms of energy explained and interpretability of the modes,
the SPCA results for ozone sit in between the results for SVD
and NMF discussed above. The first four SPCA modes cap- 45

ture more than 50% of the total energy (Figure 9), more than
NMF but significantly less than SVD. As for NMF, the lower
amount of energy compared to the SVD can be attributed to
the fact that the SPCA does not compute a dominant mode
for the mean annual ozone concentration. This is expected 50

since SPCA is designed to capture spatially distinct features,
rather than broad-based patterns. It thus ’assembles’ total
ozone concentrations from a series of modes that all show
distinct spatial features. Of the dominant four modes shown
here, the fourth one most closely resembles a generic mean 55

concentration field that contributes to the signal throughout
the year (even though the signal is stronger during boreal
winter). The SPCA reveals many features that are also ap-
parent in the SVD and NMF results. The SPCA mode 1 is
almost identical to mode 2 of SVD, both in spatial extent and 60

its temporal variability. Mode 2 acts to lower ozone over Eu-
rope and Eastern China, but at a muted rate during Mar-May
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Figure 9. Cumulative energy spectrum from the Sparse Principal
Component Anaylsis (top) and the corresponding 4 dominant tem-
poral modes (bottom) for O3 absolute concentration preprocessed
data.
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Figure 10. First 8 principal components from SPCA at surface
for O3 absolute concentration preprocessed data. With the spar-
sity constraint these spatial modes exhibit only localized low di-
mensional features as compared to those from the SVD of the data.
Compare the SVD mean value Mode 1 u1 from 6 which exhibits a
more or less constant field as the dominant low dimensional global
feature, to SPCA Mode 1 w1 here which picks up on localized dom-
inant features in the data. The corresponding temporal SPCA mode
1 also exhibits a seasonal variation.

and also Jul/Aug. It thus has a similar effect as mode 3 of the
SVD, but with opposite sign. Mode 3 can be interpreted as
biomass burning signal, with its distinct hot spot over Africa
and the two seasonal peaks.

5 Data Compression and Reduced Order Modeling 5

Scalable diagnostic analysis is only one critically enabling
aspect of the randomized decomposition methods. Indeed,
the various randomized algorithms can be used to compute
low-rank embeddings of the data that can be used for data
compression. Thus an accurate approximation of the data can 10

be stored at a fraction of the memory requirements of the full,
high-fidelity simulation. Compression is exploited in most
portable electronic formats (e.g. smart phones) by represent-
ing the data in a basis which is amenable to a sparse represen-
tation (Kutz, 2013). For instance, images can be massively 15

compressed by using wavelet or Fourier basis elements since
natural images are sparse in these basis elements. Compres-
sion formats such as JPEG2000 are critically enabling for the
electronics industry and allowing for our electronic devices
to hold an exceptionally large number of video, audio and 20

picture files.
Specifically, the compression advocated here is achieved

by producing a low-rank representation for constructing the
high-dimensional data, i.e. it should not be confused with
standard data compression algorithms. The scalable decom- 25

position methods advocated here simply require a fraction of
the data to be stored in the Q matrix and the rank-r embed-
ding columns of Ũ, Σ and V.

As an illustrative example, Figure 11(a) shows a recon-
struction of the absolute concentration of surface O3 at a ran- 30

domly selected time using the first 5, 50 and 100 of the SVD
modes, respectively, as computed from the randomized al-
gorithm. These reconstructions require only storing 0.025%,
0.25% and 0.5% of data, respectively, as opposed to 87 mil-
lion data points of the original annual surface ozone data (See 35

Fig. 11(b)). The reconstruction with as few as 5 modes al-
ready shows that the dominant features are readily captured.
It is also noted that there is virtually no difference between
using 50 and 100 modes. The compression of the data with r
modes can be computed from the first r columns of the U and 40

V matrices along with the first r diagonal terms of Σ. This
gives a data compression ratio of (m×n)/(m×r+r×n+r)
(See Fig. 3). The compression ratio is over 4000 for 5 modes,
and approximately 200 for 100 modes.

This simple example shows that the compression of modes 45

using our randomized architecture can serve as a critically
enabling tool for the storage of numerical simulations and
atmospheric chemistry data, with compression rates of up to
a thousand fold. This allows the real-time analysis of simula-
tions and data sets to be performed on laptop level computing 50

platforms. Moreover, data can be much more easily shared
for collaborative purposes since file sizes can be compressed
from a Terabyte to only a few hundred megabytes (5 modes)
to a few Gigabytes (100 modes). Such compression allows
the data to be easily stored and shared on USB thumb drives. 55

In addition to data storage and diagnostics, the low-
rank embedding spaces computed in our scalable algo-
rithms can be used for projection-based reduced order mod-
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Figure 11. (a) One-time snapshot of surface O3 absolute concen-
tration reference data (top left) and its reconstruction using 5, 50
and 100 SVD modes, respectively. Using 5 modes, only the most
dominant features are reconstructed successfully, but as the number
of modes used for reconstruction increases more of the finer local
features in the original data are picked up. Similar results hold for
both SPCA and NMF. (b) Compression percentage of the original
data (%) as a function of the rank of the modes retained. For the
5, 50 and 100 modes illustrated in (a), the data can be compressed
into as little as 0.025% for five modes, and 0.5% for 100 modes.

els (ROMs) (Benner et al., 2015). ROMs are an important
emerging computational framework for solving high-fidelity,
complex systems in computationally tractable ways. ROMs
are especially useful for enabling Monte-Carlo simulations
of high-dimensional systems that have stochastic variabil-5

ity, such as turbulent flows. The ROMs enable computation
of statistical quantities like lift and drag in turbulent flows
at fraction of the computational cost. Indeed, Monte-Carlo
computations of many high-dimensional problems of inter-
est are currently intractable even with super computers, thus10

highlighting the need for proxy models that can be com-
puted at reduced cost. In future work, we will aim to develop
ROMs that exploit the low-rank embeddings computed with
our scalable algorithms.

6 Conclusions15

Global environmental monitoring is becoming realizable
through modern sensor technologies and emerging diagnos-
tic algorithms. Despite tremendous advances and innova-

tions, the data collection process can quickly produce vol-
umes of data that cannot be analyzed and diagnosed in 20

real-time, especially for applications like global atmospheric
chemistry modeling which must integrate knowledge of hun-
dreds of chemical species across a global longitude, latitude
and elevation grid. This emerging big data era requires diag-
nostic tools that can scale to meet the rapidly increasing in- 25

formation acquired from new monitoring technologies which
are producing more fine scale spatial and temporal measure-
ments. We demonstrate a new set of diagnostic tools that are
capable of extracting the dominant global features of global
atmospheric chemistry dynamics. Not only are the methods 30

scalable for both current and future sensor networks, they
also have critical innovations allowing for improved inter-
pretability, feature extraction, and data compression.

As demonstrated in this manuscript, emerging randomized
linear algebra algorithms are critically enabling for scalable 35

big data applications. The randomized algorithms exploit
the fact that the data itself has low-rank features. Indeed,
the method scales with the intrinsic rank of the dynamics
rather than the dimension of the measurements/sensor space.
Analysis of global atmospheric chemistry data shows that 40

low-rank features indeed dominate the data. Thus full spatial
mode structures can be extracted (longitude, latitude and ele-
vation). This is in contrast to standard PCA reductions which
do not scale well with the data size so that one is forced, due
to computational constraints, to only analyze the data at fixed 45

spatial features, such as looking at only a certain elevation.
Alternatively, one can think of the scalable methods as being
critically enabling for producing real-time analysis of emerg-
ing, streaming big data sets from the atmospheric chemistry
community. Moreover, the dominant features of the data can 50

be used for an efficient compression of the data for storage or
reduced order modeling applications. Randomized tensor de-
compositions (Erichson et al., 2017b; Battaglino et al., 2018)
are also viable for producing scalable diagnostic features of
the global chemistry data. However, for the specific data con- 55

sidered here, little or no improvement was achieved. How-
ever, in future work, we will consider such tensor decomposi-
tions across space, time and chemicals where the randomized
tensor decomposition is ideally suited for extracting higher-
dimensional features. 60

An important aspect of this work is that simulation data,
through the GEOS-Chem model, can be used to approximate
the dominant global patterns of spatio-temporal activity for
individual chemicals, a collection of chemicals, or the entire
chemical space. The spatio-temporal features extracted give 65

new possibilities for understanding the interaction dynamics
and relevant spatial regions where various chemical dynam-
ics are important. This gives new possibilities for scientific
discovery and understanding of the complex processes driv-
ing the global chemistry profile. 70
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Code and data availability. The code to run and generate the re-
sults presented in the manuscript, plot all the figures in the pa-
per, and produce the three randomized matrix decompositions for
Ozone is linked to the github account of Meghana Velager: https:
//github.com/mvelegar/ScalableDiagnostics. The randomized algo-5

rithms used can be found on the github account of Benjamin Erich-
son: https://github.com/erichson/ristretto.
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