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Abstract. We introduce a new set of algorithmic tools capa-
ble of producing scalable, low-rank decompositions of global
spatiotemporal atmospheric chemistry data. By exploiting
emerging randomized linear algebra algorithms, a suite of
decompositions are proposed that extract the dominant fea-
tures from big data sets (i.e., global atmospheric chemistry
at longitude, latitude, and elevation) with improved inter-
pretability. Importantly, our proposed algorithms scale with
the intrinsic rank of the global chemistry space rather than
the ever increasing spatiotemporal measurement space, thus
allowing for the efficient representation and compression of
the data. In addition to scalability, two additional innovations
are proposed for improved interpretability: (i) a nonnegative
decomposition of the data for improved interpretability by
constraining the chemical space to have only positive expres-
sion values (unlike PCA analysis); and (ii) sparse matrix de-
compositions, which threshold small weights to zero, thus
highlighting the dominant, localized spatial activity (again
unlike PCA analysis). Our methods are demonstrated on a
full year of global chemistry dynamics data, showing the
significant improvement in computational speed and inter-
pretability. We show that the decomposition methods pre-
sented here successfully extract known major features of at-
mospheric chemistry, such as summertime surface pollution
and biomass burning activities.

1 Introduction

Dimensionality reduction is a critically enabling aspect of
machine learning and data science in the era of big data.
Specifically, extracting the dominant low-rank features from
a high-dimensional data matrix X allows one to efficiently
perform tasks associated with clustering, classification, re-
construction, and prediction (forecasting). Commonly used
linear dimensionality reduction methods are typically based
upon singular value decomposition (SVD) which allows one
to exploit covariances manifest in the data (Cunningham and
Ghahramani, 2015). Thus, the analysis of big data, such as
the atmospheric chemistry data considered here, relies on
a variety of matrix decomposition methods which seek to
exploit low-rank features exhibited by the high-dimensional
data. Despite our ever-increasing computational power, the
emergence of large-scale data sets has severely challenged
our ability to analyze data using traditional matrix algo-
rithms, especially for ever increasing refinements of compu-
tational models.

In this work, we are specifically concerned with time-
series measurements of the concentration of chemical species
collected from spatial locations in the atmosphere, illustrated
in Fig. 1. On a global scale (longitude, latitude, and eleva-
tion), this data can be exceptionally high-dimensional so as
to be not computationally tractable. Thus, computationally
scalable methods are required for the analysis of atmospheric
chemistry dynamics. Indeed, atmospheric chemistry is an
exceptionally high-dimensional problem as it involves hun-
dreds of chemical species that are coupled with each other
via a set of ordinary differential equations. Models of atmo-
spheric chemistry that are used to simulate the spatiotem-
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Figure 1. Atmospheric chemistry simulation on a global mesh with discretized longitude, latitude, and elevation (panel a modified from
NOAA). Each illustrated grid cell contains time-series data for the atmospheric chemistry dynamics. Well resolved simulations generate
massive data sets that are often not amenable to diagnostic analysis. Our proposed algorithms offer a scalable architecture for the analysis of
global spatiotemporal data. As shown in the two right panels (b), the original data matrix X ∈ Rm×n, where m is the number of grid points
and n is the number of snapshots, can be downsampled (here via random column sampling) to form the matrix Y ∈ Rm×k , where k� n.
Although random column selection is shown, we can also use a random measurement matrix to sample the data as shown in Sect. 3.

poral evolution of these chemical constituents need to keep
track of each chemical species on a global scale (longitude,
latitude, and elevation) and at each point in time. The result-
ing data sets – used for scientific analysis or required for sub-
sequent restarts of the model – quickly become massive, es-
pecially as the horizontal model resolution steadily increases.
For example, a single snapshot of the chemical state of an at-
mospheric chemistry model at 25 km×25 km horizontal res-
olution requires 60 GB of storage space.

To tackle this challenge, we present a variety of emerg-
ing matrix decomposition methods that can be used for scal-
able diagnostics of global atmospheric chemistry dynam-
ics. Specifically, we use randomized linear algebra methods
(Halko et al., 2011; Mahoney, 2011; Drineas and Mahoney,
2016; Erichson et al., 2016, 2017a) to extract the dominant,
low-rank mode structures from a full three-dimensional at-
mospheric chemistry data set. These methods are highly scal-
able and can thus be used on emerging big data sets de-
scribing global chemistry dynamics, providing a useful tool
for scientific discovery and analysis. Furthermore, they offer
an alternative approach for the storage of large-scale atmo-
spheric chemistry data. Importantly, randomized methods are
an efficient alternative to distributed computing if these com-
putational resources are not available. For instance, Gittens
et al. (2018) can compute the SVD of a 2.2 TB (terabyte)
data set in about 60 s, given a supercomputer with many
nodes. However, if supercomputing is not available, random-
ized methods offer an attractive alternative which does not
require expensive computation hours on a cluster.

The paper is outlined as follows: Sect. 2 gives an overview
of the global chemistry simulation engine used to produce the

data of interest. Section 3 highlights the various decomposi-
tion methods that can be produced using randomized linear
algebra techniques. Section 4 shows the results of the dimen-
sionality reduction procedures, highlighting the effectiveness
of each technique. Section 5 shows how such techniques can
be used for data compression and reduced order models, en-
abling compact representations of the data for a variety of
broader scientific studies. Section 6 provides concluding re-
marks and a brief outlook for data sciences applied to atmo-
spheric dynamics and global chemistry analysis.

2 Atmospheric chemistry model and data

Understanding the composition of the atmosphere is criti-
cal for a wide range of applications, including air quality,
chemistry–climate interactions, and global biogeochemical
cycling. Chemical transport models (CTMs) are used to sim-
ulate the evolution of atmospheric constituents in space and
time (Brasseur and Jacob, 2017). A CTM solves the system
of coupled continuity equations for an ensemble ofm species
with number density vector n= (n1, . . ., nm)

T via operator
splitting of transport and local processes:

∂ni

∂t
=−∇ · (niU)+ (Pi −Li)(n)+Ei −Di i ∈ [1,m], (1)

whereU is the wind vector, (Pi −Li)(n) is the (local) chem-
ical production and loss terms, Ei is the emission rate, and
Di is the deposition rate of species i. The transport operator

∂ni

∂t
=−∇ · (niU) i ∈ [1,m] (2)
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involves spatial coupling across the model domain but no
coupling between chemical species, whereas the chemical
operator

dni
dt
= (Pi −Li)(n)+Ei −Di i ∈ [1,m] (3)

includes no spatial coupling but the species are chemically
linked through a system of ordinary differential equations
(ODEs).

Chemistry models repeatedly solve Eqs. (2) and (3),
which require full knowledge of the chemical state of
the atmosphere at all locations and times. The resulting
four-dimensional data sets (longitude, latitude, levels, and
species) can become massive, which makes it unpractical
to output them at a high temporal frequency. As a conse-
quence, model output is generally restricted to a few selected
species of interest (e.g., ozone), whereas the full model state
is only output very infrequently, e.g., to archive the informa-
tion for future model restarts (“restart file”). Here we show
that the chemical state of a CTM, such as GEOS-Chem, has
distinct low-ranked features and exploiting these properties
using modern diagnostic tools such as variable reduction or
subsampling makes it possible to represent the same amount
of information in a computationally more efficient manner.
While we focus on identifying low-ranked features across the
spatiotemporal dimension (i.e., for each species separately),
the methods presented could similarly (and independently)
be applied across the species domain.

2.1 Global atmospheric chemistry simulations

The reference simulation of atmospheric chemistry was gen-
erated using the GEOS-Chem model. GEOS-Chem (http:
//geos-chem.org, last access: 11 April 2019) is an open-
source global model of atmospheric chemistry that is used
by over a hundred active research groups in 25 countries
around the world for a wide range of applications. The code
is freely available through an open license (http://acmg.seas.
harvard.edu/geos/geos_licensing.html, last access: 11 April
2019). GEOS-Chem can be run in off-line mode as a chemi-
cal transport model (CTM) (Bey et al., 2001; Eastham et al.,
2018) or as an online component within the NASA Goddard
Earth system model (GEOS) (Long et al., 2015; Hu et al.,
2018). In this study we use the off-line version of GEOS-
Chem v11-01, driven by archives of assimilated meteorolog-
ical data from the GEOS Forward Processing (GEOS-FP)
data stream of the NASA Global Modeling and Assimila-
tion Office (GMAO). The model chemistry scheme includes
detailed HOx–NOx–VOC–ozone–BrOx tropospheric chem-
istry as originally described by Bey et al. (2001), with addi-
tion of BrOx chemistry from Parrella et al. (2012), and up-
dates to isoprene oxidation as described by Mao et al. (2013).
Dynamic and chemical time steps are 30 and 20 min, respec-
tively. Stratospheric chemistry is modeled using a linearized
mechanism as described by Murray et al. (2012).

We performed a 1-year simulation of GEOS-Chem (July
2013–June 2014) at 4◦× 5◦ horizontal resolution to gen-
erate a comprehensive set of atmospheric chemistry model
diagnostics. For every chemistry time step, the concentra-
tions of all 143 chemical constituents were archived immedi-
ately before and after chemistry (in units of molecules cm−3).
The difference between these concentration pairs is the
species tendencies due to chemistry (expressed in units of
molecules cm−3 s−1). As the solution of chemical kinetics is
also a function of the environment, we further output key
environmental variables such as temperature, pressure, wa-
ter vapor, and photolysis rates. The latter are computed on-
line by GEOS-Chem using the Fast-JX code of Bian and
Prather (2002) as implemented in GEOS-Chem by Mao et al.
(2010) and Eastham et al. (2014). Thus, at every time step,
the data set consists of nfeatures= 143+91+3+143= 380
data points at every grid location. We restrict our analysis
to the lowest 30 model levels to avoid influence from the
stratosphere. The resulting data set has the following dimen-
sions: nlong×nlat×nlev×ntimes×nfeatures= 72×46×
30× 26280× 380= 9.9× 1011.

2.2 Data preprocessing

Many dimensionality reduction techniques rely on an un-
derlying singular value decomposition of the data that ex-
tracts correlated patterns in the data. A fundamental weak-
ness of such SVD-based approaches is the inability to ef-
ficiently handle invariance in the data. Specifically, transla-
tional and/or rotational invariance of low-rank features in the
data are not well captured (Kutz, 2013; Kutz et al., 2016).
One of the key environmental variables driving the chem-
istry is photolysis rate; therefore, the absolute concentrations
of many chemicals of interest accordingly “turn on” and are
nonzero during daytime, and “turn off” or go to zero dur-
ing the night. The time series of absolute chemical concen-
trations exhibit a translating wave traversing the globe from
east to west with constant velocity. The time series for the
chemical species OH (hydroxyl radical) is plotted with re-
spect to UTC time for one latitude/elevation and three differ-
ent longitudes on bottom left in Fig. 2, highlighting the trans-
lational invariance in the absolute concentration data. Any
SVD-based approach will be unable to capture this transla-
tional invariance and correlate across snapshots in time, pro-
ducing an artificially high dimensionality, i.e., a higher num-
ber of modes would be needed to characterize the dynamics
due to translation (Kutz, 2013). To overcome this issue the
time series for each grid point are shifted to align with the lo-
cal GMT time, as shown on bottom right in Fig. 2. With the
local times for each grid point aligned, SVD-based dimen-
sionality reduction techniques can now identify and isolate
coherent low-dimensional features in the data.
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Figure 2. Shifting the data for each cell in time to align the local
time zones across a latitude to the prime meridian (Long= 0) LT,
shown here for the OH absolute concentration for Lat= 30.

3 Scalable matrix decompositions for diagnostics

The following subsections detail a probabilistic framework
for matrix decompositions that includes a nonnegative matrix
factorization as well as a sparsity-promoting technique. The
mathematical architectures proposed provide scalable com-
putational tools for the analysis of global chemistry dynam-
ics. Moreover, by providing three different dimensionality ar-
chitectures, a more nuanced objective analysis of the domi-
nant spatiotemporal patterns that emerge in the global chem-
istry dynamics is achieved. The standard analysis would be a
simple randomized SVD decomposition, whereby the domi-
nant correlated structures are computed. A more refined ap-
proach to computing the dominant correlated structures in-
volves restricting the dominant spatiotemporal structures to
reasonable physical considerations. Specifically, the nonneg-
ative matrix factorization restricts all chemicals to positive
concentrations, a restriction which is physically motivated
and especially important for diagnostics when physical in-
terpretation is required. The randomized SVD will gener-
ally produce a negative concentration of chemicals in indi-
vidual modes, but the overall concentration is positive when
the modes are summed together. Likewise, the sparse PCA
analysis zeroes out very small concentrations so that the
modes extracted highlight only nonzero contributions to the
dynamics. This is an important modification of the random-
ized SVD, as it generally produces all nonzero entries in the
modal structures, regardless if it is physical. This is due to
the least-square nature of the SVD algorithm. Again, a spar-
sification penalty produces modes where only the dominant
coefficients are nonzero. What one chooses to use may de-
pend strongly on the intended application. Regardless, the
suite of methods allows for a more nuanced view of the data.

3.1 Probabilistic framework for low-rank
approximations

Assume that the data matrix X ∈ Rm×n has rank r , where
r ≤min {m,n}. The objective of a low-rank matrix approxi-
mation to the input data matrix X is to find two smaller ma-
trices

X ≈ E F
m× n m× r r × n

, (4)

where the columns of E span the column space of X, and
the rows of F span the row space of X. These factors can
be stored much more efficiently, and can be used to ap-
proximate the massive input data matrix and summarize the
interesting low-dimensional features which are often inter-
pretable. Probabilistic algorithms have been established over
the past 2 decades to compute such computationally tractable
smaller matrix approximations. We seek a near-optimal low-
dimensional approximation of the input data matrix X using a
probabilistic framework as formulated by Halko et al. (2011).
Conceptually, the probabilistic framework splits the task of
computing a near-optimal low-rank approximation into two
logical stages:

– Stage A. Compute a low-dimensional subspace that
approximates the column space of X. We aim to
find a near-optimal basis Q ∈ Rm×k with orthonormal
columns such that

X≈QQTX (5)

is satisfied, where k is the desired target rank. Ran-
dom projections are used to sample the column space
of the input matrix X. Random projections are data ag-
nostic, and are constructed by first drawing a set of k
independent random vectors {ωi}ki=1, for instance, from
the standard normal distribution; X is then mapped to
the low-dimensional space to obtain the random sam-
ple projections yi := Xωi for i = 1, . . ., k. Define a ran-
dom test matrix �= [ω1, . . ., ωk] ∈ Rn×k , where the
sample random projections form the sampling matrix
Y ∈ Rm×k are given by

Y := X� (6)

Y is denoted as the sketch matrix. The columns of Yare
now orthonormalized using the QR-decomposition Y=
QR, where Q is the near-optimal low-dimensional ba-
sis that approximates the column space of the input data
matrix. For most real-world data matrices with a grad-
ually decaying singular value spectrum, this basis ma-
trix Q does not provide a good approximation for the
column space of the input data matrix. A much better
approximation is obtained by the following:

– Oversampling. For target rank k, for most data
matrices we may have nonzero singular values
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{σi}
min(m,n)
i=k+1 . As a consequence, the sketch Y ob-

tained above does not exactly span the column
space of the input data matrix. Oversampling, i.e.,
using l = k+p random projections to form the
sketch overcomes this issue, and a small number
of additional projections p = {5,10} is often suffi-
cient to obtain a good basis comparable to the best
possible basis (Martinsson, 2016).

– Power iteration scheme. The quality of Q can be
improved by the concept of power sampling iter-
ations (Halko et al., 2011; Rokhlin et al., 2010).
An improved sketch is defined under this concept
as Y := X(q)�, where q is an integer specifying
the number of power iterations. This process en-
forces a more rapid decrease of the singular val-
ues, enabling the algorithm to sample the relevant
information related to the dominant singular val-
ues while the unwanted information is suppressed.
As few as q = {1,2,3} power iterations can consid-
erably improve the accuracy of the approximation.
Orthogonalizing the sketch between each iteration
further improves the numerical stability of the algo-
rithm.

– Stage B. At this stage, we form a smaller matrix B

B := QTX ∈ Rl×n (7)

In other words, we restrict the high-dimensional input
matrix to the low-dimensional space spanned by the
near-optimal basis Q obtained in Stage A. Geometri-
cally, this is a projection which takes points in a high-
dimensional measurement space to a low-dimensional
space while maintaining the structure in a Euclidean
sense.

The probabilistic framework detailed above is referred to as
the QB decomposition of the input data matrix X, and yields
the following low-rank approximation:

X ≈ Q B
m× n m× l l× n

(8)

Note that the randomized algorithm outlined here requires
two passes over the entire data matrix to construct the ba-
sis matrix Q. The near-optimal low-rank approximation B ∈
Rl×n, where l�min(m,n), can now be used instead of the
data matrix X to compute traditional deterministic matrix de-
compositions for data analysis. The QB decomposition can
also be extended to distributed and parallel computing, see
Voronin and Martinsson (2015).

3.2 Randomized singular value decomposition

The data matrix X ∈ Rm×n has a singular value decomposi-
tion (SVD) of the form

X= U6VT (9)

with unitary matrices U= [u1, . . ., um] ∈ Rm×m and V=
[v1, . . ., vn] ∈ Rn×n orthonormal such that UTU= I and
VTV= I. The left singular vectors in U provide a basis for
the range (column space), and the right singular vectors in V
provide a basis for the domain (row space) of the data matrix
X. The rectangular diagonal matrix 6 ∈ Rm×n has the cor-
responding nonnegative singular values σ1 ≥ . . .≥ σn ≥ 0,
which describe the spectrum of the data. Low-rank matri-
ces have rank r that is much smaller than the dimension of
the measurement space, i.e., r �m,n and the singular val-
ues {σi :≥ r + 1} are zero. The corresponding singular vec-
tors span the left and right null spaces of the matrix. In prac-
tical applications the data matrix are often contaminated by
errors making its effective rank smaller than the exact rank
r . In such cases the matrix can be well approximated by only
those singular vectors which correspond to the singular val-
ues of a significant magnitude, and a reduced version of the
SVD is computed:

Xk := Uk6kVk
= [u1, . . ., uk] diag(σ1, . . ., σk) [v1, . . ., vk]T, (10)

where k denotes the desired target rank of the approximation.
Choosing an optimal k is highly dependent on the task. If a
highly accurate reconstruction of the original data is desired,
then k should be chosen closer to the effective rank of the
data matrix. Conversely, if a very low-dimensional represen-
tation of dominant features is desired, then k might be chosen
to be much smaller. The Eckart–Young theorem (Eckart and
Young, 1936) states that the low-rank SVD provides the op-
timal rank-k reconstruction of a matrix in the least-squares
sense

Xk := argmin
rank(X′k)

∥∥X−X′k
∥∥ (11)

with the reconstruction error in the spectral and Frobenius
norm given by

‖X−Xk‖2 = σk+1 (X) (12)

and

‖X−Xk‖F =

√√√√min(m,n)∑
j=k+1

σ 2
j (X) (13)

For massive data sets, however, the cost of computing the full
SVD of the data matrix X is order O

(
mn2), from which the

first k components can then be extracted to form Xk . Ran-
domized algorithms are computationally efficient and ‘sur-
prisingly’ reliable; these techniques can be used to obtain
an approximate rank-k SVD at a substantially more efficient
cost of O (mnk).

The probabilistic framework is used to obtain a near-
optimal low-rank approximation B ∈ Rl×n, where l�
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Figure 3. Illustration of the randomized matrix decomposition tech-
nique. The random sampling matrix� is used to produce a new ma-
trix Y which can be decomposed using a QR decomposition. This
leads to the construction of the matrix B which is used for approxi-
mating the left and right singular vectors.

min(m,n). This can now be used instead of the data matrix
X, and a full SVD of B is computed

B= Ũ6V T (14)

to give the first l right singular vectors V ∈ Rn×l and the cor-
responding singular values 6 ∈ Rl×l . The left singular vec-
tors U ∈ Rm×l are recovered from the approximate left sin-
gular vectors Ũ ∈ Rl×l using the near-optimal basis matrix
Q

U ≈QŨ (15)

For the absolute concentration data matrix, note that the right
singular vectors V are temporal and the left singular vectors
U are the spatial dominant features of the system. We also
compute a cumulative energy spectrum from the singular val-
ues, the energy in the first j dominant modes is given by∑j

i=1σ
2
i

Total energy in the data
, (16)

where the total energy in the data is computed using the
Frobenius norm as ‖X‖2F.

The algorithm architecture is conceptually outlined in
Fig. 3. This shows the basic architecture and the structure
which allows for a rapid approximation of the left and right
singular values and eigenvectors.

3.3 Randomized nonnegative matrix factorization

A significant drawback of commonly used dimensionality re-
duction techniques, such as SVD based principal component
analysis (PCA), is that they permit both positive and nega-
tive terms in their components. In many data applications,
such as in the absolute concentration, negative terms fail to
be interpretable in a physically meaningful sense, i.e., chem-
ical concentrations are not negative. To address this prob-
lem the set of basis vectors are constrained to nonnegative
terms (Lee and Seung, 1999; Paatero and Tapper, 1994) –
this paradigm is the nonnegative matrix factorization (NMF).
NMF has emerged as a powerful dimension reduction tool
that allows the computation of a sparse, parts-based repre-
sentation of physically meaningful additive factors that de-
scribe coherent structures within the data. Given the data ma-
trix X ∈ Rm×n, the NMF has to find two matrices of a much
lower rank

X ≈ W H
m× n m× k k× n

, (17)

where k is the target rank. The SVD finds an exact solution of
this problem in the least-squares sense, as detailed in the pre-
vious section, but the resulting factors are not guaranteed to
be physically meaningful, i.e., positive values. NMF, in com-
parison, gives an additive parts-based representation of the
data that preserves useful properties such as sparsity and non-
negativity by imposing additional nonnegativity constraints:
W≥ 0 and H≥ 0. The sparse parts-based features have an
intuitive interpretation which has been exploited in environ-
mental modeling (Paatero and Tapper, 1994). In environmen-
tal data, the error estimates of data can be widely varying and
nonnegativity is often an essential feature of the underlying
models (Juntto and Paatero, 1994; Lee et al., 1999; Paterson
et al., 1999; Xie et al., 1999). Traditionally, the NMF prob-
lem is formulated as the following optimization problem:

minimize f (W, H) = ‖X−WH‖2F
subject to W≥ 0 and H≥ 0

(18)

This optimization problem is nonconvex and ill-posed. As no
convexification exists to simplify the optimization, no exact
or unique solution is guaranteed (Gillis, 2017). Therefore,
different NMF algorithms can produce distinct decomposi-
tions that minimize the objective function. As the problem is
nonconvex with respect to both factors W and H, most NMF
algorithms divide the problem into simpler subproblems that
have closed form solutions. The convex subproblem is solved
by keeping one factor fixed while updating the other, and al-
ternating and iterating until convergence. The hierarchical al-
ternating least squares (HALS) is one variant of this method,
proved to be highly efficient (Cichocki and Phan, 2009), and
this is the algorithm employed here for computing the NMF.

Block coordinate descent (BCD) iterative methods fix a
block of components and optimize with respect to the re-
maining components. The factors W and H are initialized
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and updated by fixing most terms except for the block com-
prised of the j th column W(:,j) and the j th row H(j,:). HALS
approximately minimizes the cost function in Eq. (18) with
respect to the remaining k− 1 components

minimize Jj
(
W(:, j),H(j, :)

)
=

∥∥∥R(j)−W(:, j)H(j, :)

∥∥∥2

F
, (19)

where R(j) is the j th residual

R(j) := X−
k∑
i 6=j

W(:, i)H(i, :) (20)

Gradients are derived to find the stationary points for both
components, for details see Cichocki and Phan (2009).

For massive data sets randomness is again employed to
replace the high-dimensional input data matrix X ∈ Rm×n
by its near-optimal low-rank approximation B ∈ Rl×n, where
l�min(m,n), with the exception that the entries of � are
drawn independently from the uniform distribution with sup-
port ω ∈ [0,1]. We now have the following optimization
problem:

minimize f̃
(
W̃,H

)
=

∥∥B− W̃H
∥∥2

F
subject to QW̃≥ 0 and H≥ 0,

(21)

where the nonnegativity constraints need apply to the high-
dimensional factor matrix W, but not necessarily to W̃, as W̃
can be rotated back to high-dimensional space using the ap-
proximate relation W≈QW̃. As QQT

6= I, Eq. (21) can only
be solved approximately. The randomized HALS algorithm
is formulated as

minimize Jj
(
W̃(:, j),H(j, :)

)
=

∥∥∥R̃(j)− W̃(:, j)H(j, :)

∥∥∥2

F
, (22)

where R(j) is the j th compressed residual

R̃(j) := B−
k∑
i 6=j

W̃(:, i)H(i, :) (23)

The components are updated again by deriving the gradients.
For further details, such as initialization techniques, stop-
ping criterion, and variants of randomized HALS we refer
to Erichson et al. (2018a).

For the absolute chemistry concentration data matrix, the
columns of the factor W are the spatial modes while those
of factor H are the temporal modes. The randomized NMF
algorithm starts with an initial guess derived from a SVD of
the data matrix, and returns the W, H factors with columns
that are not ordered. The 2-norm of the columns is computed,
and the columns are normalized and ordered. A product of
the ordered column-wise 2-norms gives the ”spectrum” for
the decomposition. From this spectrum a cumulative energy
spectrum is computed similar to Eq. (16).

3.4 Sparse randomized principal component analysis

Principal component analysis is a prevalent technique for
dimensionality reduction, it exploits relationships among
points in high-dimensional space to construct a new set of
uncorrelated low-dimensional variables or principal compo-
nents (PCs). The first PC explains most of the variation in
the data, the second PC accounts for the second greatest vari-
ance in the data, and so on. For the data matrix X ∈ Rm×n,
which has now been centered with zero mean, with m being
the number of observations and n being the number of vari-
ables, the PCs zi ∈ Rm are constructed as a weighted linear
combination of the original variables

zi = Xwi, (24)

where wi ∈ Rn is a vector of the corresponding weights, also
denoted as modes or basis functions. Expressed concisely,

Z= XW (25)

with Z= [z1, . . ., zn] ∈ Rm×n and W= [w1, . . ., wn] ∈
Rn×n. In most dimensionality reduction applications only the
first k PCs will be of interest to visualize the data in a low-
dimensional space, and as the relevant features used for data
clustering, classification and regression. The problem of find-
ing the PCs can be formulated as a variance maximization
problem or as a least-squares problem, i.e., minimizing the
sum of squared residual errors with orthogonality constraints
on the weight matrix as

minimize
W

f (W) =
1
2

∥∥X−XWWT∥∥2
F

subject to WTW = I
(26)

The classic PCA approach outlined above generates global
PCs as a linear combination of all n variables; hence, this ap-
proach tends to mix or blend various spatiotemporal scales
and fails to identify and isolate underlying governing dynam-
ics acting at each scale. Sparse principal component anal-
ysis (SPCA) is a variant which provides interpretable PCs
with localized spatial support, providing a “parsimonious”
decomposition through sparsity promoting regularizers on
the weights W. Each of the sparse weight vectors wi have
only a few nonzero values; therefore, we get a linear combi-
nation of only a few of the original variables. The SPCA is
mathematically formulated as a variant of PCA outlined in
Eq. (26) as

minimize
A,W

f (A,W) = 1
2

∥∥X−XWAT∥∥2
F+ψ (W)

subject to ATA = I,
(27)

where W is now a sparse weight matrix, and A is an orthonor-
mal inverse transform matrix, i.e., the data can be approxi-
mately constructed as X̃= ZAT, where Z is the PC matrix
given by Eq. (25). In Eq. (27), ψ is a sparsity inducing regu-
larizer such as
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– `0 norm defined as the number of nonzero elements in a
vector x, which is constrained to be� n

ψ0 (x)= ‖x‖0. (28)

– `1 norm, in this case the regularization problem is also
known as LASSO (least absolute shrinkage and selec-
tion operator) (Trendafilov et al., 2003)

ψ1 (x)= α‖x‖1, (29)

where α controls the degree of sparsity.

– The elastic net (Zou and Hastie, 2003) which is a com-
bination of the `1 norm and quadratic penalty

ψE (x)= α‖x‖1+β‖x‖22, (30)

where α and β control the degree of sparsity.

Note that the optimization problem in Eq. (27) is noncon-
vex and is solved similar to the NMF optimization problem
by keeping one factor fixed while updating the other, and al-
ternating and iterating until convergence. For further details
refer to Erichson et al. (2018b).

For massive data sets, randomization using the probabilis-
tic framework is employed again, where the original input
data matrix X is projected to the range of Y defined in Eq. (6)
so that we can reformulate Eq. (27) as

minimize
A,W

f (A,W) = 1
2

∥∥X̃− X̃WAT∥∥2
F+ψ (W)

subject to ATA I
(31)

The absolute concentration data matrix is first scaled to
have mean zero. The spatial modes are the columns of ma-
trix W. The temporal modes or the PCs are the columns of Z
computed from X= ZAT. The minimization algorithm also
formulates the problem as an eigenvalue problem, and re-
turns the eigenvalues λj associated with the j th mode of the
decomposition, which help compute the energy spectrum of
the decomposition. The energy captured by the first j modes
of the decomposition is computed as∑j

i=1λi × (n− 1)
Total energy in the scaled data

, (32)

where n is the total number of snapshots in time.

4 Data diagnostics

In this section we illustrate results from the decomposition of
the GEOS-Chem model output using absolute concentration
of ozone (O3) as an example. The Supplement provides diag-
nostics for five additional chemicals known to dominate the
global atmospheric chemistry dynamics. The additional five
chemical species, including NO, NO2, OH, isoprene (ISOP),

and CO, are known to be equally important to O3. To keep
the paper succinct, we only present O3 here, and the other
species are presented in the Supplement. Overall, there are
close to 2 hundred chemicals that interact dynamically. Each
chemical of interest can be diagnostic in a similar fashion
to O3 in order to determine its dominant global variability.
However, how the interactions across the entire chemical
space ultimately drive the observed variability remains an
open research question. The scalable diagnostics advocated
here provide a computational architecture allowing scientists
to explore this further by providing global diagnostics for all
chemicals in a computationally tractable manner.

O3 is a key oxidant of the atmosphere, and high surface
concentrations of this species are harmful to human health
and vegetation (Avnery et al., 2011; Silva et al., 2013). O3
production involves the photochemical oxidation of volatile
organic compounds (VOCs) and carbon monoxide (CO) in
the presence of nitrogen oxide radicals (NOx ≡NO+NO2
). The chemistry of O3 is highly complex, involving hun-
dreds of chemical species. This makes O3 a challenging com-
pound for chemistry models (e.g., Stevenson et al., 2006;
Sherwen et al., 2017; Mao et al., 2018). We find that despite
the underlying complexity of the chemistry, the O3 concen-
tration fields produced by GEOS-Chem exhibit prominent,
low-ranked features.

For a given chemical species of interest the absolute con-
centration data matrix X ∈ Rm×n has dimensionsm= nlon×
nlat× nlev= 72× 46× 30 spatial cells, and n= number of
time snapshots= 26208 for the yearlong data (one snapshot
every 20 min).

4.1 Taking a logarithm of the data

For some chemical species the absolute concentration values
in a small localized region dominate over the values in the
rest of the grid cells. For instance, the absolute concentration
values of nitric oxide (NO) are several orders of magnitude
higher over China and eastern Russia compared with those
over oceans and less populated regions if the world. Corre-
spondingly the dominant spatial modes are very localized as
exhibited in the top panel of Fig. 4, with only one nonzero
peak over eastern Russia for the second most dominant spa-
tial mode. SVD is unable to resolve the underlying global
low-order spatial features. To resolve this issue a logarithm
of the data values is used instead, to bring all the concentra-
tion values to the same scale and prevent smaller signals from
being damped out. The data matrix now is Xlog = log(X+1).
The second most dominant mode of the logarithm of the data,
as shown in the bottom panel of Fig. 4, now exhibits global
low-order features of the data. Thus, the SVD and other ma-
trix decomposition techniques will be able to identify and
isolate global dominant low-order structure in the system for
chemical species exhibiting localized dominant values.

Normalization of data is a common practice in data sci-
ence. Indeed, the ubiquitous PCA analysis requires that each
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Figure 4. Dominant spatial mode 2 at the surface for the NO abso-
lute concentration preprocessed data before and after taking a log-
arithm of the preprocessed data. Taking a logarithm scales the pre-
processed data so that the corresponding spatial modes exhibit the
global low-dimensional features, instead of only picking up on the
dominant chemistry in one localized region.

measurement type in the data have mean zero and unit vari-
ance. If this is not enforced, then those signals that are mea-
sured with large numbers will simply drown out the signals
measured in small numbers. Thus, the units of the different
measurements are neutralized by requiring a mean zero and
unit variance. Similarly here, the large spike in the data is so
large that the rest of the data are like noise comparatively. By
normalizing with the logarithm, a more balanced global view
of the chemistry dynamics can be extracted from the modal
structures.

4.2 Modes from randomized SVD

We begin by considering the singular value spectrum and the
dominant four temporal modes from the randomized SVD
of the absolute concentration of O3 (O3). These are pre-
sented in the top panel of Fig. 5. The amount of energy ex-
plained by the most dominant singular values gives a good
indication regarding the low-rank nature of the underlying
data. Figure 5a shows the cumulative energy explained by
the 150 most dominant singular values, as derived from ran-
domized SVD. If all 2.7× 1011 model output data points
were perfectly independent, each singular value would repre-
sent 1.0/2.7× 1011

= 3.7× 10−10 % of the total energy. In-
stead, we find that the first 4 singular values combined ex-
plain 97 % of the total field energy, and the first 150 singu-
lar values capture almost 100 % of the total energy. Thus, it
is possible to explain 99 % of the spatiotemporal structure
of the highly complex O3 field with just 20 modes. These
modes reveal many of the dominant features of atmospheric
O3. Figure 5b illustrates the structure of the four dominant
temporal modes. The most dominant mode (blue line) has

a flat temporal structure, i.e., its importance is independent
of the time of the year. The next three dominant modes all
have distinct temporal patterns, i.e., they capture periodical
features of atmospheric O3. Modes 2 and 3 (red and yellow,
respectively) both exhibit a frequency of 1 year, capturing
features occurring on an annual basis. The fourth most dom-
inant mode (purple) has a frequency of 6 months. Geophys-
ical interpretation of these modes is easiest when combining
the temporal pattern with the corresponding spatial features,
the latter of which are shown in Fig. 6. Shown are the spa-
tial pattern of the eight most dominant modes for the surface.
It should be emphasized that the spatial patterns change with
altitude, as illustrated in the Supplement. Surface O3 exhibits
distinct seasonal patterns, which are captured by the first four
modes: the first mode (top left panel in Fig. 6) resembles the
annual average surface concentration of O3. It can be inter-
preted as the time-invariant “average O3” field from which
all other modes add or subtract to describe the spatiotempo-
ral variability of O3 in greater detail. The second singular
value (top right panel) shows a strong gradient at the Equator
as well as a distinct urban pattern over the Northern Hemi-
sphere (NH). The seasonal variability of this mode (peaking
in August, see Fig. 5) broadly follows observed O3 burdens
in the Southern Hemisphere (SH) (Cooper et al., 2014), and
O3 is known to increase during summertime in urban areas in
the NH as a result of increased photochemical activity. Sin-
gular mode 3 can be seen as an additional “forcing” to this
seasonality for NH O3: it shows dominant features over pol-
luted areas (Europe and East China) and its seasonal ampli-
tude complements that of singular mode 2. The most distinct
feature of mode 4 is the strong pattern over Africa. We inter-
pret this as biomass burning signal. This is supported by the
frequency pattern of this mode, which shows two peaks in
January–February and July–August, which is in agreement
with the two biomass burning seasons over Africa (Roberts
et al., 2009).

To summarize, inspection of the spatial and temporal pat-
terns of the dominant modes of O3 shows that randomized
SVD successfully reveals prominent features of tropospheric
O3 chemistry, such as elevated summertime O3 over pol-
luted urban areas or the two biomass burning seasons over
Africa. While the data set used in this study is too short to
generalize the findings, these results demonstrate the poten-
tial of randomized SVD for pattern discovery of atmospheric
chemistry model output. In particular, the extent and tempo-
ral variability of the singular values can help identify highly
correlated “chemical domains” within the model, which has
practical applications for model reduction considerations.

4.3 Modes from randomized NMF

A drawback of the SVD solution presented in Sect. 4.2 is that
it accepts both negative and positive solutions, which can re-
sult in physically unrealistic negative species concentrations.
As discussed in Sect. 3.3, positive solutions can be enforced
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Figure 5. Cumulative energy spectrum (and inset detail) of the sin-
gular value decomposition (a) and the corresponding four dominant
temporal modes (b) for the O3 absolute concentration preprocessed
data.

Figure 6. First eight dominant spatial modes at the surface for the
O3 absolute concentration preprocessed data. Mode 1 is the con-
stant or mean value mode, its corresponding temporal behavior is
the blue trend in Fig. 5b. Global low-dimensional spatial features
for this chemical species are exhibited in order of dominance in
modes 2 through 8.

using NMF. The results from NMF for the O3 absolute con-
centration data are presented in Figs. 7 and 8. The cumulative
energy spectrum exhibited in Fig. 7a shows a much slower
decay than the spectrum from the SVD decomposition. This
is to be expected, as NMF computes an additive parts-based
representation of the low-order features in the data, which
preserves sparsity in the data but requires more modes to
capture the same level of energy compared with the SVD.
The four dominant temporal modes are presented in Fig. 7b.
These now capture approximately 20 % of the total energy

Figure 7. Cumulative energy spectrum from the nonnegative ma-
trix factorization (a) and the corresponding first four columns of the
ordered H temporal factor for the O3 absolute concentration pre-
processed data (b).

spectrum, compared with 97 % for the SVD. This is, in large
part, due to the fact that the positivity-constraint prevents the
NMF from creating a mode for annual mean O3 that can ex-
plain most of the energy spectrum – akin to mode 1 for SVD
– but that requires both additions and subtractions from this
mean field to describe O3 variations in more detail. As a re-
sult, none of the NMF modes reflects a distinct representa-
tion of the global average O3 field. This is supported by the
lack of a time-invariant mode (see Fig. 7) and also becomes
apparent from the corresponding spatial patterns shown in
Fig. 8. None of those resemble the average mean O3 con-
centration field as, e.g., SVD mode 1 (see Fig. 6). Still, the
first four spatial and temporal modes of NMF reflect some
well known features of O3 chemistry, albeit less obvious than
for SVD. The most dominant NMF mode shows a pattern
comparable to the second mode of SVD, and also has an
almost identical temporal structure with a distinct peak in
July–August. The second mode is almost a mirror image of
the first mode, with a strong, broad-based signal in the NH
that is most dominant during March–May but that also con-
tributes during most other months except January. Mode 3
peaks during September–October but contributes meaning-
fully until February. Its spatial pattern is strongest over South
America, India, eastern China, and southern Africa, and thus
captures some of the increased O3 concentrations due to
fire activities (e.g., the South American burning season in
August–September–October and the Indian burning season
in October–November). Mode 4 is similar to mode 3 of the
SVD, with strong signals over Europe and eastern China that
peak during boreal spring.

Similar to SVD, the spatiotemporal modes of surface O3
derived from NMF reveal many of the characteristics of O3
chemistry, such as increased O3 concentrations over urban
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Figure 8. First eight columns of the ordered W spatial factor from
NMF at the surface for the O3 absolute concentration preprocessed
data. These modes lend themselves to easy interpretation; the most
dominant mode w1 indicates that the O3 absolute concentration is
most active near eastern coastal urban China, North America, and
the western coastal African continent around the region of Congo.

areas and biomass burning regions, as well as the season-
ality of these events. Due to the strict positiveness of the
solution, the signal is more muted than SVD, and signifi-
cantly more modes are needed to reproduce the spatiotem-
poral pattern of O3 in detail. This makes SVD better suited
for off-line pattern discovery applications. However, for the
practical employment of reduced-order modeling techniques
within an Earth system model, we consider NMF to be supe-
rior as it still realistically captures O3 patterns with relatively
few (tens of) modes but its concentrations are guaranteed to
be positive.

4.4 Modes from randomized SPCA

Spatial modes computed from the randomized SPCA are
shown in Fig. 10. Note the localized features isolated by
SPCA in these dominant spatial modes compared with the
modes computed by the full SVD. We impose the spar-
sity regularizer given by Eq. (30) with α = 1× 10−4 and
β = 1× 10−12. Reducing the value of α gives a less sparse
decomposition. The cumulative energy spectrum in the top
panel of Fig. 9 again demonstrates much slower decay than
the SVD and more modes are needed to capture the same
amount of energy due to the sparsity constraint. In terms of
energy explained and interpretability of the modes, the SPCA
results for O3 sit in between the results for SVD and NMF
discussed above. The first four SPCA modes capture more
than 50 % of the total energy (Fig. 9), which is more than
NMF but significantly less than SVD. As for NMF, the lower
amount of energy compared with the SVD can be attributed
to the fact that the SPCA does not compute a dominant mode

Figure 9. Cumulative energy spectrum from the sparse principal
component analysis (a) and the corresponding four dominant tem-
poral modes (b) for the O3 absolute concentration preprocessed
data.

for the mean annual O3 concentration. This is expected as
SPCA is designed to capture spatially distinct features, rather
than broad-based patterns. Thus, it “assembles” total O3 con-
centrations from a series of modes that all show distinct spa-
tial features. Of the dominant four modes shown here, the
fourth mode most closely resembles a generic mean concen-
tration field that contributes to the signal throughout the year
(even though the signal is stronger during boreal winter). The
SPCA reveals many features that are also apparent in the
SVD and NMF results. The SPCA mode 1 is almost identi-
cal to mode 2 of SVD, both in spatial extent and its temporal
variability. Mode 2 acts to lower O3 over Europe and eastern
China, but at a muted rate during March–May and also July–
August. Therefore, it has a similar effect to mode 3 of the
SVD, but with the opposite sign. Mode 3 can be interpreted
as a biomass burning signal, with its distinct hot spot over
Africa and the two seasonal peaks.

5 Data compression and reduced order modeling

Scalable diagnostic analysis is only one critically enabling
aspect of the randomized decomposition methods. Indeed,
the various randomized algorithms can be used to compute
low-rank embeddings of the data that can be used for data
compression. Thus, an accurate approximation of the data
can be stored with a fraction of the memory requirements of
the full, high-fidelity simulation. Compression is exploited
in most portable electronic formats (e.g., smart phones) by
representing the data using a basis which is amenable to a
sparse representation (Kutz, 2013). For instance, images can
be massively compressed using wavelet or Fourier basis ele-
ments as natural images are sparse in these basis elements.
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Figure 10. First eight principal components from SPCA at the
surface for the O3 absolute concentration preprocessed data. With
the sparsity constraint these spatial modes exhibit only localized
low-dimensional features compared with those from the SVD of
the data. Compare the SVD mean value mode 1 u1 from Fig. 6,
which exhibits a more or less constant field as the dominant low-
dimensional global feature, with SPCA mode 1 w1 here, which
picks up on localized dominant features in the data. The correspond-
ing temporal SPCA mode 1 also exhibits a seasonal variation.

Compression formats such as JPEG2000 are critically en-
abling for the electronics industry and allow for electronic
devices to hold an exceptionally large number of video, au-
dio, and image files.

Specifically, the compression advocated here is achieved
by producing a low-rank representation for constructing the
high-dimensional data, i.e., it should not be confused with
standard data compression algorithms. The scalable decom-
position methods advocated in this paper simply require a
fraction of the data to be stored in the Q matrix and the rank-
r embedding columns of Ũ , 6, and V .

As an illustrative example, Fig. 11a shows a reconstruc-
tion of the absolute concentration of surface O3 at a ran-
domly selected time using the first 5, 50, and 100 of the SVD
modes, respectively, as computed from the randomized al-
gorithm. These reconstructions only require the storage of
0.025 %, 0.25 %, and 0.5 % of the data, respectively, as op-
posed to the 87 million data points of the original annual sur-
face O3 data (see Fig. 11b). The reconstruction with as few
as five modes already shows that the dominant features are
readily captured. It is also noted that there is virtually no dif-
ference between using 50 and 100 modes. The compression
of the data with r modes can be computed from the first r
columns of the U and V matrices along with the first r di-
agonal terms of 6. This gives a data compression ratio of
(m× n)/(m× r + r × n+ r) (see Fig. 3). The compression
ratio is over 4000 for 5 modes, and approximately 200 for
100 modes.

Figure 11. (a) Single snapshot of the surface O3 absolute concen-
tration reference data (top left) and its reconstruction using 5, 50,
and 100 SVD modes, respectively. Using five modes, only the most
dominant features are reconstructed successfully, but as the number
of modes used for reconstruction increases more of the finer local
features in the original data are picked up. Similar results hold for
both SPCA and NMF. (b) Compression percentage of the original
data (%) as a function of the rank of the modes retained. For the
5, 50, and 100 modes illustrated in (a), the data can be compressed
into as little as 0.025 % for five modes, and 0.5 % for 100 modes.

This simple example shows that the compression of modes
using our randomized architecture can serve as a critically
enabling tool for the storage of numerical simulations and
atmospheric chemistry data, with compression rates of up to
a thousand fold. This allows the real-time analysis of simula-
tions and data sets to be performed on laptop level computing
platforms. Moreover, data can be much more easily shared
for collaborative purposes as file sizes can be compressed
from a terabyte to only a few hundred megabytes (5 modes)
to a few gigabytes (100 modes). Such compression allows
the data to be easily stored and shared on USB thumb drives.

In addition to data storage and diagnostics, the low-rank
embedding spaces computed in our scalable algorithms can
be used for projection-based reduced order models (ROMs)
(Benner et al., 2015). ROMs are an important emerging com-
putational framework for solving high-fidelity, complex sys-
tems in computationally tractable ways. ROMs are espe-
cially useful for enabling Monte Carlo simulations of high-
dimensional systems that have stochastic variability, such as
turbulent flows. The ROMs enable computation of statistical
quantities like lift and drag in turbulent flows at fraction of
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the computational cost. Indeed, Monte Carlo computations of
many high-dimensional problems of interest are currently in-
tractable even with supercomputers; this highlights the need
for proxy models that can be computed at a reduced cost.
In future work, we will aim to develop ROMs that exploit
the low-rank embeddings computed with our scalable algo-
rithms.

6 Conclusions

Global environmental monitoring is becoming realizable
through modern sensor technologies and emerging diagnos-
tic algorithms. Despite tremendous advances and innova-
tions, the data collection process can quickly produce vol-
umes of data that cannot be analyzed and diagnosed in
real-time, especially for applications like global atmospheric
chemistry modeling which must integrate knowledge on hun-
dreds of chemical species across a global longitude, latitude,
and elevation grid. This emerging big data era requires diag-
nostic tools that can scale to meet the rapidly increasing in-
formation acquired from new monitoring technologies which
are producing more fine-scale spatial and temporal measure-
ments. We demonstrate a new set of diagnostic tools that are
capable of extracting the dominant global features of global
atmospheric chemistry dynamics. Not only are the methods
scalable for both current and future sensor networks, they
also have critical innovations allowing for improved inter-
pretability, feature extraction, and data compression.

As demonstrated in this paper, emerging randomized lin-
ear algebra algorithms are critically enabling for scalable big
data applications. The randomized algorithms exploit the fact
that the data itself has low-rank features. Indeed, the method
scales with the intrinsic rank of the dynamics rather than
the dimension of the measurements/sensor space. Analysis
of global atmospheric chemistry data shows that low-rank
features indeed dominate the data. Thus, full spatial mode
structures can be extracted (longitude, latitude, and eleva-
tion). This is in contrast to standard PCA reductions which
do not scale well with the data size so that one is forced, due
to computational constraints, to only analyze the data at fixed
spatial features, such as only looking at a certain elevation.
Alternatively, one can think of the scalable methods as being
critically enabling for producing real-time analysis of emerg-
ing, streaming big data sets from the atmospheric chemistry
community. Moreover, the dominant features of the data can
be used for an efficient compression of the data for storage or
reduced order modeling applications. Randomized tensor de-
compositions (Erichson et al., 2017b; Battaglino et al., 2018)
are also viable for producing scalable diagnostic features of
the global chemistry data. However, for the specific data con-
sidered here, little or no improvement was achieved. Never-
theless, in future work, we will consider such tensor decom-
positions across space, time, and chemicals where the ran-

domized tensor decomposition is ideally suited for extracting
higher-dimensional features.

An important aspect of this work is that simulation data,
through the GEOS-Chem model, can be used to approximate
the dominant global patterns of spatiotemporal activity for
individual chemicals, a collection of chemicals, or the entire
chemical space. The spatiotemporal features extracted pro-
vide new possibilities for understanding the interaction dy-
namics and relevant spatial regions where various chemical
dynamics are important. This gives new possibilities for sci-
entific discovery and the understanding of the complex pro-
cesses driving the global chemistry profile.
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