Articles | Volume 12, issue 4
https://doi.org/10.5194/gmd-12-1387-2019
https://doi.org/10.5194/gmd-12-1387-2019
Model description paper
 | 
09 Apr 2019
Model description paper |  | 09 Apr 2019

Optical flow models as an open benchmark for radar-based precipitation nowcasting (rainymotion v0.1)

Georgy Ayzel, Maik Heistermann, and Tanja Winterrath

Related authors

Transferability of data-driven models to predict urban pluvial flood water depth in Berlin, Germany
Omar Seleem, Georgy Ayzel, Axel Bronstert, and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 23, 809–822, https://doi.org/10.5194/nhess-23-809-2023,https://doi.org/10.5194/nhess-23-809-2023, 2023
Short summary
Meteorological, impact and climate perspectives of the 29 June 2017 heavy precipitation event in the Berlin metropolitan area
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022,https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting
Georgy Ayzel, Tobias Scheffer, and Maik Heistermann
Geosci. Model Dev., 13, 2631–2644, https://doi.org/10.5194/gmd-13-2631-2020,https://doi.org/10.5194/gmd-13-2631-2020, 2020
Short summary
Coupling physically based and data-driven models for assessing freshwater inflow into the Small Aral Sea
Georgy Ayzel and Alexander Izhitskiy
Proc. IAHS, 379, 151–158, https://doi.org/10.5194/piahs-379-151-2018,https://doi.org/10.5194/piahs-379-151-2018, 2018
Short summary
Impact of possible climate changes on river runoff under different natural conditions
Yeugeniy M. Gusev, Olga N. Nasonova, Evgeny E. Kovalev, and Georgy V. Ayzel
Proc. IAHS, 379, 293–300, https://doi.org/10.5194/piahs-379-293-2018,https://doi.org/10.5194/piahs-379-293-2018, 2018
Short summary

Related subject area

Atmospheric sciences
LIMA (v2.0): A full two-moment cloud microphysical scheme for the mesoscale non-hydrostatic model Meso-NH v5-6
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
Geosci. Model Dev., 17, 8773–8798, https://doi.org/10.5194/gmd-17-8773-2024,https://doi.org/10.5194/gmd-17-8773-2024, 2024
Short summary
SLUCM+BEM (v1.0): a simple parameterisation for dynamic anthropogenic heat and electricity consumption in WRF-Urban (v4.3.2)
Yuya Takane, Yukihiro Kikegawa, Ko Nakajima, and Hiroyuki Kusaka
Geosci. Model Dev., 17, 8639–8664, https://doi.org/10.5194/gmd-17-8639-2024,https://doi.org/10.5194/gmd-17-8639-2024, 2024
Short summary
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024,https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024,https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary
Observational operator for fair model evaluation with ground NO2 measurements
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024,https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary

Cited articles

Austin, G. L. and Bellon, A.: The use of digital weather radar records for short-term precipitation forecasting, Q. J. Roy. Meteor. Soc., 100, 658–664, https://doi.org/10.1002/qj.49710042612, 1974. a, b
Ayzel, G.: hydrogo/rainymotion: rainymotion v0.1, Version v0.1, Zenodo, https://doi.org/10.5281/zenodo.2561583, 2019. a
Ayzel, G., Heistermann, M., and Winterrath, T.: rainymotion: python library for radar-based precipitation nowcasting based on optical flow techniques, available at: https://github.com/hydrogo/rainymotion (last access: 28 March 2019), 2019. a, b, c, d
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. a
Bellerby, T. J.: High-resolution 2-D cloud-top advection from geostationary satellite imagery, IEEE T. Geosci. Remote, 44, 3639–3648, https://doi.org/10.1109/TGRS.2006.881117, 2006. a
Download
Short summary
How much will it rain within the next hour? To answer this question, we developed rainymotion – an open source Python software library for precipitation nowcasting. In our benchmark experiments, including a state-of-the-art operational model, rainymotion demonstrated its ability to deliver timely and reliable nowcasts for a broad range of rainfall events. This way, rainymotion can serve as a baseline solution in the field of precipitation nowcasting.