Articles | Volume 12, issue 4
https://doi.org/10.5194/gmd-12-1387-2019
https://doi.org/10.5194/gmd-12-1387-2019
Model description paper
 | 
09 Apr 2019
Model description paper |  | 09 Apr 2019

Optical flow models as an open benchmark for radar-based precipitation nowcasting (rainymotion v0.1)

Georgy Ayzel, Maik Heistermann, and Tanja Winterrath

Related authors

Transferability of data-driven models to predict urban pluvial flood water depth in Berlin, Germany
Omar Seleem, Georgy Ayzel, Axel Bronstert, and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 23, 809–822, https://doi.org/10.5194/nhess-23-809-2023,https://doi.org/10.5194/nhess-23-809-2023, 2023
Short summary
Meteorological, impact and climate perspectives of the 29 June 2017 heavy precipitation event in the Berlin metropolitan area
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022,https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting
Georgy Ayzel, Tobias Scheffer, and Maik Heistermann
Geosci. Model Dev., 13, 2631–2644, https://doi.org/10.5194/gmd-13-2631-2020,https://doi.org/10.5194/gmd-13-2631-2020, 2020
Short summary
Coupling physically based and data-driven models for assessing freshwater inflow into the Small Aral Sea
Georgy Ayzel and Alexander Izhitskiy
Proc. IAHS, 379, 151–158, https://doi.org/10.5194/piahs-379-151-2018,https://doi.org/10.5194/piahs-379-151-2018, 2018
Short summary
Impact of possible climate changes on river runoff under different natural conditions
Yeugeniy M. Gusev, Olga N. Nasonova, Evgeny E. Kovalev, and Georgy V. Ayzel
Proc. IAHS, 379, 293–300, https://doi.org/10.5194/piahs-379-293-2018,https://doi.org/10.5194/piahs-379-293-2018, 2018
Short summary

Related subject area

Atmospheric sciences
The MESSy DWARF (based on MESSy v2.55.2)
Astrid Kerkweg, Timo Kirfel, Duong H. Do, Sabine Griessbach, Patrick Jöckel, and Domenico Taraborrelli
Geosci. Model Dev., 18, 1265–1286, https://doi.org/10.5194/gmd-18-1265-2025,https://doi.org/10.5194/gmd-18-1265-2025, 2025
Short summary
An enhanced emission module for the PALM model system 23.10 with application for PM10 emission from urban domestic heating
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev., 18, 1119–1139, https://doi.org/10.5194/gmd-18-1119-2025,https://doi.org/10.5194/gmd-18-1119-2025, 2025
Short summary
Identifying lightning processes in ERA5 soundings with deep learning
Gregor Ehrensperger, Thorsten Simon, Georg J. Mayr, and Tobias Hell
Geosci. Model Dev., 18, 1141–1153, https://doi.org/10.5194/gmd-18-1141-2025,https://doi.org/10.5194/gmd-18-1141-2025, 2025
Short summary
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev., 18, 1103–1118, https://doi.org/10.5194/gmd-18-1103-2025,https://doi.org/10.5194/gmd-18-1103-2025, 2025
Short summary
Explaining neural networks for detection of tropical cyclones and atmospheric rivers in gridded atmospheric simulation data
Tim Radke, Susanne Fuchs, Christian Wilms, Iuliia Polkova, and Marc Rautenhaus
Geosci. Model Dev., 18, 1017–1039, https://doi.org/10.5194/gmd-18-1017-2025,https://doi.org/10.5194/gmd-18-1017-2025, 2025
Short summary

Cited articles

Austin, G. L. and Bellon, A.: The use of digital weather radar records for short-term precipitation forecasting, Q. J. Roy. Meteor. Soc., 100, 658–664, https://doi.org/10.1002/qj.49710042612, 1974. a, b
Ayzel, G.: hydrogo/rainymotion: rainymotion v0.1, Version v0.1, Zenodo, https://doi.org/10.5281/zenodo.2561583, 2019. a
Ayzel, G., Heistermann, M., and Winterrath, T.: rainymotion: python library for radar-based precipitation nowcasting based on optical flow techniques, available at: https://github.com/hydrogo/rainymotion (last access: 28 March 2019), 2019. a, b, c, d
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. a
Bellerby, T. J.: High-resolution 2-D cloud-top advection from geostationary satellite imagery, IEEE T. Geosci. Remote, 44, 3639–3648, https://doi.org/10.1109/TGRS.2006.881117, 2006. a
Download
Short summary
How much will it rain within the next hour? To answer this question, we developed rainymotion – an open source Python software library for precipitation nowcasting. In our benchmark experiments, including a state-of-the-art operational model, rainymotion demonstrated its ability to deliver timely and reliable nowcasts for a broad range of rainfall events. This way, rainymotion can serve as a baseline solution in the field of precipitation nowcasting.
Share