Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.240 IF 5.240
  • IF 5-year value: 5.768 IF 5-year
  • CiteScore value: 8.9 CiteScore
  • SNIP value: 1.713 SNIP 1.713
  • IPP value: 5.53 IPP 5.53
  • SJR value: 3.18 SJR 3.18
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 71 Scimago H
    index 71
  • h5-index value: 51 h5-index 51
GMD | Articles | Volume 11, issue 12
Geosci. Model Dev., 11, 5173–5187, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 11, 5173–5187, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Model description paper 21 Dec 2018

Model description paper | 21 Dec 2018

TPVTrack v1.0: a watershed segmentation and overlap correspondence method for tracking tropopause polar vortices

Nicholas Szapiro and Steven Cavallo

Related subject area

Atmospheric Sciences
Three-dimensional normal mode functions: open-access tools for their computation in isobaric coordinates (p-3DNMF.v1)
Carlos A. F. Marques, Martinho Marta-Almeida, and José M. Castanheira
Geosci. Model Dev., 13, 2763–2781,,, 2020
Short summary
Optimizing a dynamic fossil fuel CO2 emission model with CTDAS (CarbonTracker Data Assimilation Shell, v1.0) for an urban area using atmospheric observations of CO2, CO, NOx, and SO2
Ingrid Super, Hugo A. C. Denier van der Gon, Michiel K. van der Molen, Stijn N. C. Dellaert, and Wouter Peters
Geosci. Model Dev., 13, 2695–2721,,, 2020
Short summary
H2SO4–H2O binary and H2SO4–H2O–NH3 ternary homogeneous and ion-mediated nucleation: lookup tables version 1.0 for 3-D modeling application
Fangqun Yu, Alexey B. Nadykto, Gan Luo, and Jason Herb
Geosci. Model Dev., 13, 2663–2670,,, 2020
Short summary
Simulated wind farm wake sensitivity to configuration choices in the Weather Research and Forecasting model version 3.8.1
Jessica M. Tomaszewski and Julie K. Lundquist
Geosci. Model Dev., 13, 2645–2662,,, 2020
Short summary
RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting
Georgy Ayzel, Tobias Scheffer, and Maik Heistermann
Geosci. Model Dev., 13, 2631–2644,,, 2020
Short summary

Cited articles

Añel, J. A., Antuña, J. C., de la Torre, L., Castanheira, J. M., and Gimeno, L.: Climatological features of global multiple tropopause events, J. Geophys. Res., 113, D00B08,, 2008. a
Béguin, A., Martius, O., Sprenger, M., Spichtinger, P., Folini, D., and Wernli, H.: Tropopause level Rossby wave breaking in the Northern Hemisphere: a feature-based validation of the ECHAM5-HAM climate model, Int. J. Climatol., 33, 3073–3082,, 2012. a
Bluestein, H. B.: Synoptic-dynamic Meteorology in Midlatitudes: Observations and theory of weather systems, vol. 2, Taylor & Francis, New York, USA, 1992. a
Cavallo, S. M. and Hakim, G. J.: Potential vorticity diagnosis of a tropopause polar cyclone, Mon. Weather Rev., 137, 1358–1371, 2009. a
Cavallo, S. M. and Hakim, G. J.: Composite structure of tropopause polar cyclones, Mon. Weather Rev., 138, 3840–3857, 2010. a, b
Publications Copernicus
Short summary
Tropopause polar vortices (TPVs) are coherent (anti)cyclonic features based on the tropopause common in polar regions with typical radii of 100 to 1000 km, intensities of 1 to 50 K, and lifetimes of days to months. Towards furthering our understanding of TPV structure and dynamics and their linkages throughout the earth system, the tracker more robustly represents TPV shape as variable size and intensity undulations on the tropopause and lifetime as material eddies with similarity over time.
Tropopause polar vortices (TPVs) are coherent (anti)cyclonic features based on the tropopause...