Articles | Volume 11, issue 11
https://doi.org/10.5194/gmd-11-4451-2018
https://doi.org/10.5194/gmd-11-4451-2018
Development and technical paper
 | 
05 Nov 2018
Development and technical paper |  | 05 Nov 2018

Implementing spatially explicit wind-driven seed and pollen dispersal in the individual-based larch simulation model: LAVESI-WIND 1.0

Stefan Kruse, Alexander Gerdes, Nadja J. Kath, and Ulrike Herzschuh

Related authors

Disentangling future effects of climate change and forest disturbance on vegetation composition and land-surface properties of the boreal forest
Lucia S. Layritz, Konstantin Gregor, Andreas Krause, Stefan Kruse, Ben F. Meyer, Tom A. M. Pugh, and Anja Rammig
EGUsphere, https://doi.org/10.5194/egusphere-2024-1028,https://doi.org/10.5194/egusphere-2024-1028, 2024
Short summary
Forest structure and individual tree inventories of northeastern Siberia along climatic gradients
Timon Miesner, Ulrike Herzschuh, Luidmila A. Pestryakova, Mareike Wieczorek, Evgenii S. Zakharov, Alexei I. Kolmogorov, Paraskovya V. Davydova, and Stefan Kruse
Earth Syst. Sci. Data, 14, 5695–5716, https://doi.org/10.5194/essd-14-5695-2022,https://doi.org/10.5194/essd-14-5695-2022, 2022
Short summary
SiDroForest: a comprehensive forest inventory of Siberian boreal forest investigations including drone-based point clouds, individually labeled trees, synthetically generated tree crowns, and Sentinel-2 labeled image patches
Femke van Geffen, Birgit Heim, Frederic Brieger, Rongwei Geng, Iuliia A. Shevtsova, Luise Schulte, Simone M. Stuenzi, Nadine Bernhardt, Elena I. Troeva, Luidmila A. Pestryakova, Evgenii S. Zakharov, Bringfried Pflug, Ulrike Herzschuh, and Stefan Kruse
Earth Syst. Sci. Data, 14, 4967–4994, https://doi.org/10.5194/essd-14-4967-2022,https://doi.org/10.5194/essd-14-4967-2022, 2022
Short summary
Holocene wildfire and vegetation dynamics in Central Yakutia, Siberia, reconstructed from lake-sediment proxies
Ramesh Glückler, Rongwei Geng, Lennart Grimm, Izabella Baisheva, Ulrike Herzschuh, Kathleen R. Stoof-Leichsenring, Stefan Kruse, Andrei Andreev, Luidmila Pestryakova, and Elisabeth Dietze
EGUsphere, https://doi.org/10.5194/egusphere-2022-395,https://doi.org/10.5194/egusphere-2022-395, 2022
Preprint archived
Short summary
Novel coupled permafrost–forest model (LAVESI–CryoGrid v1.0) revealing the interplay between permafrost, vegetation, and climate across eastern Siberia
Stefan Kruse, Simone M. Stuenzi, Julia Boike, Moritz Langer, Josias Gloy, and Ulrike Herzschuh
Geosci. Model Dev., 15, 2395–2422, https://doi.org/10.5194/gmd-15-2395-2022,https://doi.org/10.5194/gmd-15-2395-2022, 2022
Short summary

Related subject area

Biogeosciences
Learning from conceptual models – a study of the emergence of cooperation towards resource protection in a social–ecological system
Saeed Harati-Asl, Liliana Perez, and Roberto Molowny-Horas
Geosci. Model Dev., 17, 7423–7443, https://doi.org/10.5194/gmd-17-7423-2024,https://doi.org/10.5194/gmd-17-7423-2024, 2024
Short summary
The biogeochemical model Biome-BGCMuSo v6.2 provides plausible and accurate simulations of the carbon cycle in central European beech forests
Katarína Merganičová, Ján Merganič, Laura Dobor, Roland Hollós, Zoltán Barcza, Dóra Hidy, Zuzana Sitková, Pavel Pavlenda, Hrvoje Marjanovic, Daniel Kurjak, Michal Bošel'a, Doroteja Bitunjac, Maša Zorana Ostrogović Sever, Jiří Novák, Peter Fleischer, and Tomáš Hlásny
Geosci. Model Dev., 17, 7317–7346, https://doi.org/10.5194/gmd-17-7317-2024,https://doi.org/10.5194/gmd-17-7317-2024, 2024
Short summary
DeepPhenoMem V1.0: deep learning modelling of canopy greenness dynamics accounting for multi-variate meteorological memory effects on vegetation phenology
Guohua Liu, Mirco Migliavacca, Christian Reimers, Basil Kraft, Markus Reichstein, Andrew D. Richardson, Lisa Wingate, Nicolas Delpierre, Hui Yang, and Alexander J. Winkler
Geosci. Model Dev., 17, 6683–6701, https://doi.org/10.5194/gmd-17-6683-2024,https://doi.org/10.5194/gmd-17-6683-2024, 2024
Short summary
Impacts of land-use change on biospheric carbon: an oriented benchmark using the ORCHIDEE land surface model
Thi Lan Anh Dinh, Daniel Goll, Philippe Ciais, and Ronny Lauerwald
Geosci. Model Dev., 17, 6725–6744, https://doi.org/10.5194/gmd-17-6725-2024,https://doi.org/10.5194/gmd-17-6725-2024, 2024
Short summary
Implementing the iCORAL (version 1.0) coral reef CaCO3 production module in the iLOVECLIM climate model
Nathaelle Bouttes, Lester Kwiatkowski, Manon Berger, Victor Brovkin, and Guy Munhoven
Geosci. Model Dev., 17, 6513–6528, https://doi.org/10.5194/gmd-17-6513-2024,https://doi.org/10.5194/gmd-17-6513-2024, 2024
Short summary

Cited articles

Abaimov, A. P.: Geographical distribution and genetics of Siberian larch species, in: Permafrost Ecosystems – Siberian Larch Forests, vol. 209, edited by: Osawa, A., Zyryanova, O. A., Matsuura, Y., Kajimoto, T., and Wein, R. W., Springer, Netherlands, Dordrecht, 41–58, 2010. 
Abramowitz, M. and Stegun, I. A.: Handbook of mathematical functions: with formulas, graphs, and mathematical tables, Dover Books on Mathematics, Dover Publications, 2012. 
Ackerly, D. D.: Community assembly, niche conservatism, and adaptive evolution in changing environments, Int. J. Plant Sci., 164, S165–S184, https://doi.org/10.1086/368401, 2003. 
Ashley, M. V.: Plant parentage, pollination, and dispersal: How DNA microsatellites have altered the landscape, CRC. Crit. Rev. Plant Sci., 29, 148–161, https://doi.org/10.1080/07352689.2010.481167, 2010. 
Austerlitz, F., Jung-Muller, B., Godelle, B., and Gouyon, P.-H.: Evolution of coalescence times, genetic diversity and structure during colonization, Theor. Popul. Biol., 51, 148–164, https://doi.org/10.1006/tpbi.1997.1302, 1997. 
Download
Short summary
It is of major interest to estimate feedbacks of arctic ecosystems to global warming in the upcoming decades. However, the speed of this response is driven by the potential of species to migrate and the timing and spatial scale for this is rather uncertain. To close this knowledge gap, we updated a very detailed vegetation model by including seed and pollen dispersal driven by wind speed and direction. The new model can substantially help in unveiling the important drivers of migration dynamics.