Articles | Volume 11, issue 9
Geosci. Model Dev., 11, 3623–3645, 2018
https://doi.org/10.5194/gmd-11-3623-2018

Special issue: Particle-based methods for simulating atmospheric aerosol...

Geosci. Model Dev., 11, 3623–3645, 2018
https://doi.org/10.5194/gmd-11-3623-2018

Model description paper 06 Sep 2018

Model description paper | 06 Sep 2018

libcloudph++ 2.0: aqueous-phase chemistry extension of the particle-based cloud microphysics scheme

Anna Jaruga and Hanna Pawlowska

Related authors

libcloudph++ 1.0: a single-moment bulk, double-moment bulk, and particle-based warm-rain microphysics library in C++
S. Arabas, A. Jaruga, H. Pawlowska, and W. W. Grabowski
Geosci. Model Dev., 8, 1677–1707, https://doi.org/10.5194/gmd-8-1677-2015,https://doi.org/10.5194/gmd-8-1677-2015, 2015
Short summary
libmpdata++ 1.0: a library of parallel MPDATA solvers for systems of generalised transport equations
A. Jaruga, S. Arabas, D. Jarecka, H. Pawlowska, P. K. Smolarkiewicz, and M. Waruszewski
Geosci. Model Dev., 8, 1005–1032, https://doi.org/10.5194/gmd-8-1005-2015,https://doi.org/10.5194/gmd-8-1005-2015, 2015
Short summary

Related subject area

Atmospheric sciences
Novel estimation of aerosol processes with particle size distribution measurements: a case study with the TOMAS algorithm v1.0.0
Dana L. McGuffin, Yuanlong Huang, Richard C. Flagan, Tuukka Petäjä, B. Erik Ydstie, and Peter J. Adams
Geosci. Model Dev., 14, 1821–1839, https://doi.org/10.5194/gmd-14-1821-2021,https://doi.org/10.5194/gmd-14-1821-2021, 2021
Short summary
Evaluation of ECMWF IFS-AER (CAMS) operational forecasts during cycle 41r1–46r1 with calibrated ceilometer profiles over Germany
Harald Flentje, Ina Mattis, Zak Kipling, Samuel Rémy, and Werner Thomas
Geosci. Model Dev., 14, 1721–1751, https://doi.org/10.5194/gmd-14-1721-2021,https://doi.org/10.5194/gmd-14-1721-2021, 2021
Short summary
Influence of biomass burning vapor wall loss correction on modeling organic aerosols in Europe by CAMx v6.50
Jianhui Jiang, Imad El Haddad, Sebnem Aksoyoglu, Giulia Stefenelli, Amelie Bertrand, Nicolas Marchand, Francesco Canonaco, Jean-Eudes Petit, Olivier Favez, Stefania Gilardoni, Urs Baltensperger, and André S. H. Prévôt
Geosci. Model Dev., 14, 1681–1697, https://doi.org/10.5194/gmd-14-1681-2021,https://doi.org/10.5194/gmd-14-1681-2021, 2021
Short summary
Seasonal and diurnal performance of daily forecasts with WRF V3.8.1 over the United Arab Emirates
Oliver Branch, Thomas Schwitalla, Marouane Temimi, Ricardo Fonseca, Narendra Nelli, Michael Weston, Josipa Milovac, and Volker Wulfmeyer
Geosci. Model Dev., 14, 1615–1637, https://doi.org/10.5194/gmd-14-1615-2021,https://doi.org/10.5194/gmd-14-1615-2021, 2021
Short summary
MLAir (v1.0) – a tool to enable fast and flexible machine learning on air data time series
Lukas Hubert Leufen, Felix Kleinert, and Martin G. Schultz
Geosci. Model Dev., 14, 1553–1574, https://doi.org/10.5194/gmd-14-1553-2021,https://doi.org/10.5194/gmd-14-1553-2021, 2021
Short summary

Cited articles

Alefeld, G. E., Potra, F. A., and Shi, Y.: Algorithm 748: Enclosing Zeros of Continuous Functions, ACM Trans. Math. Softw., 21, 327–344, https://doi.org/10.1145/210089.210111, 1995. a
Alfonso, L. and Raga, G.: Estimating the impact of natural and anthropogenic emissions on cloud chemistry: Part I. Sulfur cycle, Atmos. Res., 62, 33–55, https://doi.org/10.1016/S0169-8095(02)00022-4, 2002. a
Andrejczuk, M., Grabowski, W. W., Reisner, J., and Gadian, A.: Cloud-aerosol interactions for boundary layer stratocumulus in the Lagrangian Cloud Model, J. Geophys. Res.-Atmos, 115, D22, https://doi.org/10.1029/2010JD014248, 2010. a
Andrejczuk, M., Gadian, A., and Blyth, A.: Numerical simulations of stratocumulus cloud response to aerosol perturbation, Atmos. Res., 140–141, 76–84, https://doi.org/10.1016/j.atmosres.2014.01.006, 2014. a
Arabas, S. and Pawlowska, H.: Adaptive method of lines for multi-component aerosol condensational growth and CCN activation, Geosci. Model Dev., 4, 15–31, https://doi.org/10.5194/gmd-4-15-2011, 2011. a
Download
Short summary
libcloudph++ is a free and open-source library of schemes representing cloud microphysics (e.g. condensation of water vapour into cloud droplets, collisions between water drops, precipitation) in numerical models. This work adds new schemes that represent aqueous chemical reactions in water drops. The schemes focus on the oxidation of SO2 by O3 and H2O2. The libcloudph++ is now capable of resolving the changes in aerosol sizes caused by both collisions between water drops and aqueous oxidation.