Articles | Volume 11, issue 8
https://doi.org/10.5194/gmd-11-3261-2018
https://doi.org/10.5194/gmd-11-3261-2018
Model description paper
 | 
13 Aug 2018
Model description paper |  | 13 Aug 2018

A parameterisation for the co-condensation of semi-volatile organics into multiple aerosol particle modes

Matthew Crooks, Paul Connolly, and Gordon McFiggans

Related authors

Uncertainty in aerosol hygroscopicity resulting from semi-volatile organic compounds
Olivia Goulden, Matthew Crooks, and Paul Connolly
Atmos. Chem. Phys., 18, 275–287, https://doi.org/10.5194/acp-18-275-2018,https://doi.org/10.5194/acp-18-275-2018, 2018
Short summary
Equilibrium absorptive partitioning theory between multiple aerosol particle modes
Matthew Crooks, Paul Connolly, David Topping, and Gordon McFiggans
Geosci. Model Dev., 9, 3617–3637, https://doi.org/10.5194/gmd-9-3617-2016,https://doi.org/10.5194/gmd-9-3617-2016, 2016
Short summary

Related subject area

Atmospheric sciences
The MESSy DWARF (based on MESSy v2.55.2)
Astrid Kerkweg, Timo Kirfel, Duong H. Do, Sabine Griessbach, Patrick Jöckel, and Domenico Taraborrelli
Geosci. Model Dev., 18, 1265–1286, https://doi.org/10.5194/gmd-18-1265-2025,https://doi.org/10.5194/gmd-18-1265-2025, 2025
Short summary
An enhanced emission module for the PALM model system 23.10 with application for PM10 emission from urban domestic heating
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev., 18, 1119–1139, https://doi.org/10.5194/gmd-18-1119-2025,https://doi.org/10.5194/gmd-18-1119-2025, 2025
Short summary
Identifying lightning processes in ERA5 soundings with deep learning
Gregor Ehrensperger, Thorsten Simon, Georg J. Mayr, and Tobias Hell
Geosci. Model Dev., 18, 1141–1153, https://doi.org/10.5194/gmd-18-1141-2025,https://doi.org/10.5194/gmd-18-1141-2025, 2025
Short summary
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev., 18, 1103–1118, https://doi.org/10.5194/gmd-18-1103-2025,https://doi.org/10.5194/gmd-18-1103-2025, 2025
Short summary
Explaining neural networks for detection of tropical cyclones and atmospheric rivers in gridded atmospheric simulation data
Tim Radke, Susanne Fuchs, Christian Wilms, Iuliia Polkova, and Marc Rautenhaus
Geosci. Model Dev., 18, 1017–1039, https://doi.org/10.5194/gmd-18-1017-2025,https://doi.org/10.5194/gmd-18-1017-2025, 2025
Short summary

Cited articles

Abdul-Razzak, H. and Ghan, S.: A parameterisation for the activation 2. multiple aerosol types, J. Geophys. Res., 105, 6837–6844, 2000.
Abdul-Razzak, H., Ghan, S., and Rivera-Carpio, C.: A parameterisation for the activation 1. single aerosol type, J. Geophys. Res., 103, 6123–6131, 1998.
Allen, J., Dookeran, N., Smith, K., and Sarofim, A.: Measurement of polycyclic aromatic hydrocarbons associated with size-segregated atmospheric aerosols in Massachusetts, Environ. Sci. Technol., 30, 1023–1031, 1996.
Andreae, M. O. and Crutzen, P. J.: Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry, Science, 276, 1052–1058, 1997.
Barahona, D., West, R. E. L., Stier, P., Romakkaniemi, S., Kokkola, H., and Nenes, A.: Comprehensively accounting for the effect of giant CCN in cloud activation parameterizations, Atmos. Chem. Phys., 10, 2467–2473, https://doi.org/10.5194/acp-10-2467-2010, 2010.
Download
Short summary
Clouds form when water condenses onto particles in the atmosphere and the size and chemical composition of these particles can have a large influence over how much water condenses and the subsequent formation of cloud. Additional gases exist in the atmosphere that can condense onto the aerosol particles and change their composition. We present a fast and efficient method of calculating the effect of atmospheric gases on the formation of cloud that can be used in climate and weather models.
Share