Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
GMD | Articles | Volume 11, issue 7
Geosci. Model Dev., 11, 2789–2812, 2018
https://doi.org/10.5194/gmd-11-2789-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: The Lund–Potsdam–Jena managed Land (LPJmL) dynamic...

Geosci. Model Dev., 11, 2789–2812, 2018
https://doi.org/10.5194/gmd-11-2789-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Model description paper 12 Jul 2018

Model description paper | 12 Jul 2018

Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0)

Werner von Bloh et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Werner von Bloh on behalf of the Authors (12 Feb 2018)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (24 Feb 2018) by Julia Hargreaves
RR by Anonymous Referee #1 (13 Mar 2018)
ED: Publish subject to minor revisions (review by editor) (14 Mar 2018) by Julia Hargreaves
AR by Anna Wenzel on behalf of the Authors (25 Jun 2018)  Author's response    Manuscript
ED: Publish as is (27 Jun 2018) by Julia Hargreaves
Publications Copernicus
Download
Short summary
The dynamics of the terrestrial carbon cycle are of central importance for Earth system science. Nutrient limitations, especially from nitrogen, are important constraints on vegetation growth and the terrestrial carbon cycle. We extended the well-established global vegetation, hydrology, and crop model LPJmL with a nitrogen cycle. We find significant improvement in global patterns of crop productivity. Regional differences in crop productivity can now be largely reproduced by the model.
The dynamics of the terrestrial carbon cycle are of central importance for Earth system science....
Citation